
Automated Rogue Behavior Detection for Android
Applications

Shuangmin Zhang, Ruixuan Li�, Junwei Tang, Xiwu Gu
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, China

E-mail: {shmzhang, rxli, jwtang, guxiwu}@hust.edu.cn

Abstract—There are a large number of third-party application
markets that provide application download services for Android
users. In order to improve users’ satisfaction, major application
markets urgently need an automated solution to avoid some
rogue behaviors that affect users’ experience, such as rogue
advertisements that induce users to click, rogue pop-up boxes
that cannot be closed normally, and rogue floating windows
that affect users’ experience. To address such problems, we
propose a rogue behavior detection framework. We use the
object detection approach to identify advertisements in screen
views, the random forest method to identify the pop-up views,
and then combine image analysis, natural language processing
and heuristic methods to detect rogue behaviors. The proposed
framework can also record evidences of rogue behaviors in
applications, so that application markets can ask developers
to rectify. The experimental results show that the precision of
rogue application detection reached 96.7% and the recall reached
90.1%.

I. INTRODUCTION

In the last decade, it has entered the era of mobile devices.
According to the mobile operating system market share in
March 2020, Android system has the highest share at 72.26%
[1]. The huge user base of the Android system has also
spawned a large number of feature-rich Android application-
s. Users with high security awareness generally choose to
download applications from large application markets, because
most of them perform virus detection before allowing the
applications to be online. However, there are still a large
number of problematic applications that can cause trouble to
users in application markets.

Research on Android applications mainly focuses on safety
issues that pose a significant risk, such as malware detection
[2], privacy leak detection [3] and ad fraud detection [4].
Little attention has been paid to user experience of using
Android applications. For the detection of rogue ads (a kind of
rogue behavior), the detection of ads in the screen views is a
key point. Ad detection methods mainly adopt traffic analysis
method [4] [5]. These methods can only identify the screen
views containing ads, but cannot give the specific location of
the ads. Hence, an efficient method is needed to detect the
location of the ads in screen views. In order to improve users’
experience and satisfaction, an automated solution is urgently

DOI reference number: 10.18293/SEKE2020-089

needed to identify rogue behaviors that affect users’ experience
in Android applications, including some rogue behaviors that
only affect users’ experience without causing major security
issues.

In this paper, we propose a framework to find rogue
behaviors that affect users’ experience. The contributions of
our work are as follows. We propose an object detection
approach based on deep learning approach to detect ads in
screen views. It can be used to serve rogue ad detection. We
present a classifier that can divide the screen views into those
containing and not containing pop-up boxes based on random
forest. It can be used to serve rogue pop-up box and rogue ad
detection. We implement the rogue ad detection module based
on natural language processing and heuristic rules, the rogue
pop-up box detection module based on heuristic rules, and
the rogue floating window detection module based on image
analysis and heuristic rules.

II. DEFINITION AND CATEGORIES OF ROGUE
BEHAVIORS

A. Definition of Rogue Behavior
Rogue Behavior: A kind of application behavior that

indirectly affects the user’s mobile device, making the user
unable to use the mobile device conveniently, and bringing
potential threat to the user’s mobile device. It has no direct
damage to the system after the execution, nor causing the
infringement of user’s personal information and fees [6].

B. Categories of Rogue Behavior
1) Rogue Ad: Ads with contents that induce users to

click. Some ads often display some inductive information to
induce users to click. As shown in Fig. 1(a), the bottom of the
left screen view is an ad. The ”Clear Memory” and ”Close” in
the ad view are fake buttons. Such ads can easily mislead users
to think that their devices need to clear memory. When a user
clicks on the green fake button, the installation package starts
to be downloaded. Ads that overlay clickable components.
To improve the click rate of ads, applications may pop up
an ad pop-up box immediately after a normal pop-up box.
The original intention of the user is to click the button of
the normal pop-up box, but at this time, the ad pop-up box
pops out suddenly, and the user is highly likely to click on
the ad by mistake, as shown in Fig. 1(b). Ads that appear



before application exit. After a user’s click on the exit key,
the application will usually pop up a prompt box to confirm
if the user really wants to exit. When the user clicks the
”Exit” button, the user’s intention is to leave the application.
However, some applications show an ad after clicking the
”Exit” button, as shown in Fig. 1(c).

2) Rogue Pop-up Box: Some developers may use pop-up
box inappropriately, causing trouble to users. As shown in Fig.
1(d), the prompt pop-up box of the application only provides
one button means ”update”, without the button to close the
pop-up box. Through manual testing, even clicking the back
key of Android device still cannot exit, which will cause great
trouble to users.

3) Rogue Floating Window: Some applications misuse the
floating window to place ads for profit. Because a floating
window is floating on the normal application screen view,
it will cover part of the contents in the application screen
view, which will affect users’ experience. Android application
developers generally like to design the floating window used
for advertising purposes as red-envelope-style to attract users
to click on the ad, as shown in Fig. 1(e).

Fig. 1. Rogue Behaviors.

III. METHOD
The overall scheme of rogue behavior detection for Android

applications is shown in Fig. 2. The Android application
traversal module automatically runs applications and records
information based on Appium1. The information of the screen
views and the events that caused the views’ transition are
recorded during the traversal process, as shown in Fig. 3.
The main purpose of the Android application screen view
classification module is to classify the application screen
views. This module will train a deep learning-based object
detection model and a random forest-based classifier. The
object detection model is used to identify ads in the screen
views. The random forest classifier is used to divide the
screen views into views containing pop-up box and those not
containing pop-up box. The rogue ad detection module, the
rogue pop-up box detection module and the rogue floating
window detection module are used to identify rogue behaviors
in Android applications.

1Appium. http://appium.io/

Fig. 2. Overall Scheme of Rogue Behavior Detection.

Fig. 3. Recorded Information.

A. Ad Detection
We design a lightweight network based on RetinaNet [7],

as shown in Fig. 4. The left is backbone, the medium is
Feature Pyramid Networks (FPN) structure [8], the right are
classification and bound regression subnetworks. Each of L1
and L2 is a convolution. L3, L4 and L5 are made up of 4,
8 and 4 cells respectively, and each cell is a residual module
composed of three deep separable convolutions [9]. By FPN
structure, features of different scales are fused to combine the
high-level information with the low-level information. Each
of the classification and bound regression branches contains
two residual modules consisting of two convolutions. Finally, a
convolution is added as the output layer. We design 24 anchors
of different scales and aspect ratios at each location. For the
classification branch, each anchor is classified as an ad or non-
ad, so the number of the output channels is 48. For the bound
regression branch, every four numbers make up the upper-left
and lower-right coordinates of the border, so the number of
the output channels is 96.



Fig. 4. Ad Detection Model.

B. Pop-up View and Non-Popup View Classification
We divide the Android application screen views into views

containing pop-up box and those not containing pop-up box.
We analyze the information of 1,000 Android applications,
and summarize a series of features. These features include
some 0-1 features as well as continuous value features. These
features can be roughly divided into the following categories:
component size features, component quantity features, compo-
nent location features, keyword features and the proportions of
components with specific attributes. The extracted features are
suitable for decision tree classifier, so we use a random forest
classifier based on decision tree. The random forest classifier
has higher accuracy by combining the results of multiple base
classifiers.

C. Heuristics-based Detection of Rogue Behaviors
1) Rogue Ad Detection: Detection of ads with contents

that induce users to click. We first get the ad images cropped
from the screenshots according to the ad detection result, and
then we use the Optical Character Recognition (OCR) API
provided by Baidu2 to extract the texts in ad images. Then,
we analyze the semantics of the advertising texts. In order
to remove the interference of the texts outside the ad, we
adopt difference set of OCR texts and view texts. Due to
Chinese has multiple expressions of the same meaning, we
need to understand the degree of similarity between different
words. We adopt neural network word vectors for word
representation, so we can identify other inductive sentences
of similar meaning. The detection can be considered as an
advertising text classification task. We adopt FastText [10] as
the classification model, because it is based on word vectors
and maintains high accuracy while training and testing time
are greatly reduced. Detection of ads that overlay clickable
components. In order to overlay the clickable components, the
ad view should have an ad that occupies more than 30% of
the screen space. The previous screen view of the ad view is
a pop-up view that contains at least one clickable component.
Detection of ads that appear before the application exits.
Generally, before exiting the application, users will be asked if
they really want to quit. There are two situations at this time.
One is that the user clicks the ”Exit” button, then will lead to
exit. In normal circumstances, this prompt view should be the

2Baidu OCR. https://ai.baidu.com/tech/ocr/general

last view in the traversal process. If an ad view appears after
that, this ad is a rogue ad. Another situation is that the user
clicks the ”Cancel” button, then will go back to the previous
view. Because the previous view may contain ads, the ads that
appear at this time should not be considered as rogue ads.

2) Rogue Pop-up Box Detection: The detection of pop-
up boxes that force applications to upgrade requires the
cooperation of the automated traversal module. In automated
traversal process, we remove events of update buttons. If a
pop-up view contains ”update”, ”upgrade”, ”download” or
other texts with similar meanings, and the event executed on
this view is ”Back” type event, and the ID of the next view
is equal to this view, the view is considered to have a pop-up
box that forces users to update the application.

3) Rogue Floating Window Detection: The most intuitive
feature of rogue floating windows is that they have red-
envelope-style small icons that are approximately square. We
consider components with an aspect ratio between 0.8 and 1.2
to be regarded as approximate square, and extract the pixel
value of each pixel for such components. The screen views
that contain such components with visual red pixels accounting
for more than 20% and visual yellow pixels accounting for
more than 3% are considered as those likely to have red-
envelope-style floating windows. It is found that rogue floating
windows often exist in multiple screen views. Therefore, we
further consider the context information of the current screen
view. If one of the surrounding screen views also contains
red-envelope-style icon, we believe it contains rogue floating
window.

IV. EXPERIMENTAL EVALUATION

A. Dataset
The dataset used in our work is from the application market

named ”Mango Download Station”3. We collected a total
of 4,000 applications. For Android application ad detection,
500 applications were randomly selected as the dataset. For
the classification of views containing pop-up box and views
not containing pop-up box, 1,000 applications were randomly
selected as the dataset. For the detection of rogue behaviors,
the remaining 3,000 applications were selected as the test set,
which did not include the training set used for ad detection
and the dataset used for the classification of screen views.

B. Result of Ad Detection
We use 300 applications as the training set, and the re-

maining 200 applications as the validation set. The validation
results are shown in Fig. 5. Fig. 5(a) shows the precision
curve. Fig. 5(b) shows the recall curve. Fig. 5(c) shows the
F1 curve. Fig. 5(d) shows the precision-recall curve. The
abscissa represents the recall under different score thresholds,
the ordinate represents the corresponding accuracy, and the
area under the curve represents the Average Precision (AP).
Here, the score threshold means that during evaluation, a
predicted box with a score lower than the threshold will be

3Mango Download Station. http://www.90370.com



thought as a negative case, otherwise as a positive case. The
evaluation was conducted with an Intersection Over Union
(IOU) of 0.75, which means that the predicted box and the
ground truth box are considered to be matched if their IOU is
greater than 0.75. Based on the results and combined with
the need to identify ads in our work, the score threshold
with higher recall rate is selected under the condition that the
precision and F1 value are not too low. The score threshold we
use for ad detection is 0.42. The AP is 0.808 on the validation
set. The effect of ad detection is good enough to be used in
our work to serve rogue ad detection.

Fig. 5. Precision, Recall, F1 and P-R Curve.

C. Result of Pop-up View and Non-Popup View Classifica-
tion

In this experiment, 1,000 applications were randomly se-
lected as the dataset. For the evaluation of the classifier, the
10-fold cross-validation method is used. We randomly divided
the data into 10 parts, one of which was taken as the validation
set and the other 9 parts as the training set. The experiment
was conducted for 10 times, and the arithmetic mean value of
the results was taken as the final result. The results show that
the average accuracy of the classification is 98%. The effect of
the classifier is good enough to be used in our work to serve
rogue pop-up box detection and rogue ad detection.

D. Result of Rogue Behavior Detection

By manually marking the data set, 131 of the 3000 appli-
cations in the test set were marked as having rogue behaviors.
Using our method to test the 3,000 applications, the results
of rogue behavior detection are shown in Table I. The results
show that 122 applications have rogue behaviors, of which
118 applications do have rogue behaviors, and 4 do not.
13 applications with rogue behaviors were not identified. In
summary, the precision of rogue behavior detection in our
work is 96.7%, and the recall is 90.1%.

TABLE I
RESULT OF ROGUE BEHAVIOR DETECTION.

Predict Labels
Rogue Apps Normal Apps

Actual
Labels

Rogue Apps 118 13
Normal Apps 4 2865

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an effective rogue behavior
detection framework for Android applications. We implement
ad detection, screen view classifier, rogue ad detection, rogue
pop-up box detection, and rogue floating window detection.
Using the methods we proposed, 118 Android applications
containing rogue behaviors were found in 3,000 applications.
The results show that the precision of rogue application
detection reached 96.7% and the recall reached 90.1%.

We only identify five types of rogue behaviors, and other
rogue behaviors may exist in reality. Meanwhile, new rogue
behavior is still emerging. The methods proposed in this paper
is scalable, and this study can be easily expanded to new rogue
behaviors.

VI. ACKNOWLEDGEMENT

This work is supported by the National Key Research
and Development Program of China under grants 2016YF-
B0800402 and 2016QY01W0202, National Natural Science
Foundation of China under grants U1836204 and U1936108.

REFERENCES

[1] statcounter, “Mobile operating system market share worldwide,” https:
//gs.statcounter.com/os-market-share/mobile/worldwide, 2020.

[2] Y. S. Sun, C.-C. Chen, S.-W. Hsiao, and M. C. Chen, “Antsdroid:
automatic malware family behaviour generation and analysis for android
apps,” in Australasian Conference on Information Security and Privacy.
Springer, 2018, pp. 796–804.

[3] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp.
1–29, 2014.

[4] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 257–268.

[5] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud
in android applications,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, 2014, pp.
123–134.

[6] C. C. S. Association, “Description format for mobile internet malicious
code,” http://www.ptsn.net.cn/standard/std query/show-yd-3983-1.htm,
2013.

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[8] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling,
“M2det: A single-shot object detector based on multi-level feature
pyramid network,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 9259–9266.

[9] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[10] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.


