
Mining DApp Repositories: Towards In-Depth
Comprehension and Accurate Classification

Yeming Lin∗†, Jianbo Gao‡, Tong Li∗†, Jingguo Ge ∗†, Bingzhen Wu∗†
∗Institute of Information Engineering, Chinese Academy of Science, Beijing, 100093, China
†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, 100049, China

‡School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
∗†{linyeming,litong,gejingguo,wubingzhen}@iie.ac.cn, ‡gaojianbo@pku.edu.cn

Abstract—Blockchain has recently attracted great interest from
both academia and industry. Ethereum introduces programma-
bility into blockchain through smart contracts and provides an
open-source computing platform for blockchain-based decentral-
ized applications (DApps). There are currently thousands of
DApps pertaining to different application domains, including
games, gambling and finance. In order to better comprehend
blockchain application scenarios and help developers understand
DApps better, clear DApps classification criteria are needed.
However, many DApps that can be found through collection
websites (commonly known as DApp Stores) are not classified
properly, making these datasets imprecise. This issue has mo-
tivated the present empirical study of DApp categories, as a
part of which over 2,500 DApps in three DApp Stores are
investigated, allowing us to produce and publicly release a
high-quality dataset in which misclassified DApps are relabeled
manually, facilitating their more precise classification. We also
propose DAppClassifier, a novel technique for classifying DApps
based on their actual functionalities. When developing the new
classifier, we extracted features from source code, bytecode and
historical transactions, and trained neural networks to classify
DApps. Our approach was evaluated on the released dataset and
achieved good precision.

Index Terms—Blockchain, Decentralized Application, Compre-
hension, Ethereum, Smart Contract

I. INTRODUCTION

Owing to the growing interest in Bitcoin, considerable
efforts have been invested into the development of blockchain
techniques. Ethereum is a public open-source blockchain-
based distributed computing platform, providing a Turing-
complete virtual machine for executing smart contracts. Smart
contract refers to open-source programs that can be automati-
cally executed without any centralized control. Consequently,
it is the most important innovation of Ethereum.

Blockchain-base decentralized applications (abbreviated as
DApps), are the emerging trend in the blockchain develop-
ment, as they rely on smart contracts instead of traditional
centralized server as the back-end. Owing to its transparency,
decentralization, and security, this infrastructure offers im-
mense potential for use in a variety of fields, including finance,
governance, supply chain management, etc. Thus, it is not
surprising that the number of DApps has already surpassed

DOI reference number: 10.18293/SEKE2020-088

2,500 within 4 years, with the value of the DApp market
estimated at billions of dollars [1].

DApp Store is a repository that facilitates DApp manage-
ment. Akin to AppStore for the iOS system, it provides a
convenient platform for users to browse DApps and select
those that meet their needs. To expedite searching, DApp
Stores classify DApps into a set of categories, such as Games,
Gambling, Exchange, and High-risk.

Such categorization can be helpful for both users and
developers, as users can browse the appropriate category to
find relevant DApps, whereas developers can determine the
most optimal category for their DApps prior to submission.

At present, DApp categories are manually selected by the
developers at the time of submission. The maintainers of DApp
Stores will subsequently manually check if the classification
is correct, aiming to detect high-risk DApps (such as those
hiding a Ponzi scheme). However, as such classification relies
on human judgment, it can be error-prone. On one hand, the
predefined categories may be ambiguous, and the developers
may find it difficult to locate a proper category for their DApp.
On the other hand, as manually verifying classification for each
DApp is time-consuming, there is a risk of exposing DApp
users to security issues.

To provide a comprehensive understanding of the DApp
classification status, as a part of this investigation, an empirical
study involving over 2500 DApps in three DApp Stores is
conducted. Based on the findings obtained, a dataset is con-
structed and its accuracy is optimized by manually relabeling
misclassified DApps.

However, to the best of our knowledge, no effort has been
devoted to the DApp classification problem. Although several
approaches have been proposed for labelling and identifying
smart contracts (a component of DApp), they can only be
utilized to cluster similar smart contracts [2] or identify special
smart contract types, such as Ponzi scheme or honeypot [3]
[4]. Thus, none of them can be directly applied to classify
multifarious DApps. Even though, some approaches to mobile
App classification can be potentially modified for use in DApp
classification, as they do not take advantage of the unique
characteristics of DApps, the classification performance would
be compromised.

To overcome these shortcomings, in this paper, we propose
DAppClassifier, a novel technique for classifying DApps based



on easily obtainable rich and comprehensive features that
represent the actual DApp functionalities. DAppClassifier first
extracts features from source code, bytecode and historical
transactions, which is the communication between the user
and the DApp. Next, hybrid neural networks are devised to
classify DApps.

To evaluate DAppClassifier performance, it is applied to the
optimized dataset (obtained in the first phase of this study as a
part of which misclassified DApps were relabeled manually),
achieving >84% average precision.

The main contributions of this work are as follows:
• We conduct a systematic empirical study on DApp sta-

tus, extensively investigate DApp classification problem
and obtain the different categories characteristics.

• We construct a high-quality dataset by relabeling
misclassified DApps. The revised dataset is open sourced
and can be accessed from https://bit.ly/2JFmtiS.

• To eliminate the need for manual verification and reclassi-
fication, we propose DAppClassifier that can automat-
ically classify DApps based on their rich and compre-
hensive features. The effectiveness of DAppClassifier is
subsequently confirmed by testing its performance against
other available techniques.

II. BACKGROUND

In this section, we provide the background information
required for understanding our work.

A. Ethereum and Smart Contract

Ethereum is a public open-source blockchain-based dis-
tributed computing platform that provides a running environ-
ment for decentralized applications.

A smart contract is a computer program outlining the rules
under which the participants agree to interact with each other.
If the pre-defined rules are met, the agreement is automatically
enforced.

B. Ethereum Virtual Machine (EVM)

Ethereum provides EVM to support the compilation and
execution of smart contracts. Technically, it is the runtime
environment for smart contracts in Ethereum. It is a stack-
based, register-less virtual machine, where operators and
operands are all pushed onto the stack indistinguishably, with
the exception of the data that requires persistent storage space
on Ethereum. Solc compiler will translate readable solidity
code into bytecode, only EVM can understand.

C. Decentralized Applications

Centralized systems directly control the operation of the
individual units and flow of information from a single center.
Decentralized applications (DApps) are applications that run
on a decentralized network rather than a single computer.
Technically, a DApp is composed of front-end and back-end
code, whereby the front-end is an Internet-based interface,
typically a web page, and the back-end contains the key data

and operations, typically based on one or more smart con-
tracts in a blockchain. When users interact with blockchain-
based DApps, a transaction is initiated and recorded on the
blockchain permanently. So we can get all the interactions
between DApps and users from the blockchain.

III. EMPIRICAL STUDY

In this section, current DApp classification status is briefly
outlined.

For this analysis, three DApp Stores: State of the DApps
[1], DappRadar [5], and Dapp.com [6] are chosen as the
representatives of the current DApp market (based on the
Google Search results).

A. Overview of DApp Categories

This section commences with an overview of DApp cate-
gories, to help readers better understand the current classifica-
tion criteria. DApp Stores utilize predefined categories, allow-
ing users to find the DApps they need. However, these are not
standardized, making comparisons across different platforms
difficult, while introducing the risk of misclassification.

TABLE I
DAPP CATEGORIES ON THE WEBSITES. FOR EACH CATEGORY, THE

COLUMNS OF THE TABLE SHOW, FROM LEFT TO RIGHT: THE NUMBER OF
DAPPS FROM State of the DApps (#S), DappRadar (#R), AND Dapp.com

(#D).

Category #S #R #D
Games 303 402 455

Gambling 211 375 266
High-risk 148 333 256

Exchanges 106 57 65
Finance 101 - 53

Social 86 - 45
Media 55 - -

Development 49 - -
Marketplaces 41 15 -

Property 29 - -
Governance 27 - -

Wallet 20 - -
Security 20 - -
Storage 17 - -
Identity 15 - -
Health 4 - -

Insurance 4 - -
Energy 3 - -

Collectibles - 52 -
Tools - - 57

Art - - 33
Others - 260 84
Total 1239 1494 1314

B. Misclassification of DApps

In this section, we provide a descriptive analysis on the
DApps in the three most widely used platforms: State of the
DApps [1], DappRadar [5], and Dapp.com [6] to determine
if these are properly classified by the developers. We crawled
all DApps information from three platforms and matched them
by front-end URL and contract address. If they have the same
front-end URL or similar front-end URL with the same con-
tract address, we consider them to be the same DApp, for some
DApps have different URL parameters in order to identify
the source of the request. Our investigation has uncovered



TABLE II
MISCLASSIFICATION ACROSS DIFFERENT DAPP STORES

Overlap Categories #DApps
Games, High-risk, Gambling 8

Gambling, High-risk 77
Games, High-risk 71
Games, Gambling 37

Games, Collectibles 25
Games, Marketplaces 13

High-risk, Finance 12
Finance, Others 20
Social, Others 24
Tools, Others 12

two important problems with the current classification system,
which are discussed below.

1) The classification criteria are ambiguous and differ
across DApp Stores: We compare DApps and the categories
utilized by the aforementioned three DApp Stores, and find
that the classification criteria are non-uniform and ambiguous,
for the following two reasons.

First, each DApp Store uses a different number of cate-
gories, at 18, 7, and 9, respectively (Table I). While Games,
Gambling, High-risk and Exchanges are utilized in all three
cases, Health and Insurance, for example, only exist in State
of the DApps.

Second, even if DApp Stores utilize the same category,
such as Games or Gambling, the classification criteria can be
ambiguous. In an ideal scenario, the same DApp should be
classified into the same category on all DApp Stores. However,
according to our investigation, this is not always the case, as
shown in Table II. For example, 37 DApps classified as Games
on one DApp Store are classified as Gambling on the other.

Moreover, as no clear description of the categories is
provided on the DApp Stores, developers would find it chal-
lenging to determine the most appropriate category for their
DApps.

2) DApps are often misclassified by DApp Stores: As a part
of our investigation, we examine the characteristics of DApps
and check if these corresponded to their classification by DApp
Stores.

For this purpose, we conducte a preliminary experiment
on smart contracts of DApps, which is guided by three hy-
potheses: (1) Intuitively, DApps with the same smart contracts
should be in the same category; (2) DApps with the same run-
time code should be in the same category; and (3) DApps with
the same opcode list should be in the same category, because
opcode (rather than the operand) determines the program
execution logic.

To test these hypotheses, we extract smart contracts from
DApps. When comparing run-time code, we match the code
textually, whereas for opcode list comparison, we split the run-
time code into opcode list and operand list, and remove the
latter.

Our findings revealed that, in the three DApp Stores in-
cluded in our analysis, 41, 29, and 36 DApps, respectively,
violate the three hypotheses given above, suggesting high

degree of misclassification. We manually analyze these DApps
and found that more than 40% of DApps changed from High-
risk to other categories, in order to trick users into using. We
manually corrected these classification errors in our dataset.

C. The Difficulties of DApp Classification

As mentioned earlier, due to the lack of clarity in the
classification criteria used by DApp Stores, developers often
struggle with interpreting the requirements for each category,
which may result in misclassification of their DApps.

To mitigate these issues, an automatic classification ap-
proach is needed, as it would allow developers to identify
the most suitable category for their DApps, while aiding the
DApp Store maintainers in the verification process, which is
currently conducted manually.

However, objective DApp classification is challenging for
several reasons, as explained below.

1) Limited EVM features: EVM is a runtime environment
for smart contracts based on a 256-bit register stack. Unlike
in traditional operating systems, in EVM, program’s operators
and operands are all pushed onto the stack indistinguishably.
As EVM relies on fewer operator types, it is not as complex
as traditional operating systems. For example, Dalvik Instruc-
tion Set Architecture (ISA) defines 218 Android application
instructions, and Java runtime machine (JVM) provides about
202 instructions, whereas only 137 are provided by the EVM.

Traditional program classification techniques are mostly
based on static and dynamic features of the code. Due to the
simplicity of smart contracts, it is much harder to generalize
features to classify DApps.

2) Redundancies in libraries: To reduce human effort and
avoid source code duplication, DApp developers tend to invoke
public libraries developed by some third-party organizations
(like openzeppelin1 or oraclize2). Most developers and com-
panies also store proprietary code in private libraries for
subsequent reuse. In the context of this investigation, a library
can be regarded as a special kind of smart contract. A typical
smart contract is composed of multiple functions with different
access scope, such as Internal, External, Public, Private, etc.
However, in contrast to traditional programming languages,
when compiling a smart contract that relies on libraries, all
public and external functions will be compiled into application
binary interfaces (abbreviated as ABIs), which serve as the
inference for library invocations, regardless of whether the
function is needed by the DApp.

We analyze library invocation by all DApps from the three
DApp Stores, whereby Table III provides all libraries that
are invoked by more than one category. As can be seen,
most public or external functions are never used. Due to
such redundancy, many conventional program classification
techniques (which are often based on program similarity)
cannot be applied effectively.

Moreover, if a library is invoked by multiple DApps from
different categories, these DApps will have similar sets of

1https://openzeppelin.org/
2http://provable.xyz/



TABLE III
MOST COMMONLY INVOKED LIBRARIES.

Library Name #DC #SC #Int #Ext #Used
Math 11 47 12 4 0

ECRecovery 8 20 2 1 0
MathLib 3 8 4 3 0

PaymentLib 2 6 6 21 0
CommUtils 2 6 19 8 0

DLL 2 6 0 8 0
Player 2 6 9 8 1

AttributeStore 2 6 0 2 0
StringLib 2 6 1 1 0

SortitionSumTreeFactory 2 4 1 8 0
Helper 2 4 4 17 0

LinkedListLib 2 2 11 6 0
For each library, the columns of the table show, (from left to right): the
number of DApp categories (#DC) and smart contracts (#SC) invoking the
library, internal and private functions (#Int), external and public functions
(#Ext), and public and external functions (#Used) in the library that are
actually used.

ABIs. As a result, ABI-based classification techniques which
are commonly used in Mobile App classification cannot be
directly applied to classify DApps.

As illustrated above, current DApp classification is time-
consuming and error-prone, as it is challenging to utilize the
limited information from the DApp itself for this purpose.
To address this issue, we develop an automated classification
method, DAppClassifier, as described in the subsequent sec-
tion.

IV. DAPPCLASSIFIER

A. An Overview of DAppClassifier

In this section, we use machine learning to solve the DApp
classification problem. The resulting DAppClassifier predicts
DApp category based on easy-to-access features representing
the actual DApp functionalities. The overall DAppClassifier
structure is shown in Figure 1. Given the input of all in-
formation pertaining to a particular DApp—including DApp
bytecode, transactions in history, and DApp source code
(optional)—the classification is performed in two steps: the
feature extraction process and the classification process. In the
following sections, we provide detailed description of these
two processes.

Feature Extraction Process Classification Process

ByteCode

Transactions

SourceCode

DNN

CNN

CNN DNN

Predicted
Category

<one-hot>

Bytecode Blocks

Function Name

Source code

<embedding>

<embedding> <softmax>

…

Fig. 1. An Overview of DAppClassifier

B. Feature Extraction Process

In this step, various features that are related to the DApp
category are identified, ensuring that they are easy-to-access
and can reflect the program functionalities.

The feature extraction process is guided by three hypothe-
ses: (1) Function names reflect their actual functionalities; (2)

Similar execution logic is more likely to imply similar program
functionalities; and (3) The developer-defined names in source
code are indicative of the actual functionalities.

1) Function name features: In practice, function names
should reflect program functionalities. However, these can be
difficult to obtain. Intuitively, function names can be deduced
from function calls incorporated into the execution traces dur-
ing transactions, but this is unreliable, as not all functions will
be called during execution, especially for infamous DApps. As
an alternative, features can be extracted from binary code and
transactions. However, this approach leads to two difficulties
discussed below.

First, only the 4-byte digital signatures (hash values of
function names) can be extracted from binary code. These
signatures cannot be directly used as features, because one of
the classification criteria mandates that similar function names
should imply similar functionalities. Thus, it is necessary to
convert each signature into the initial word-form. Second, as
explained in Section III, a significant number of unused
library functions are compiled into the bytecode, which would
compromise the effectiveness of the selected features.

Our feature extraction approach can mitigate these issues.
We retrieve word-form function names by utilizing Ethereum
Function Signature Database3 —a large-scale open-source
database that records common function names and corre-
sponding signatures. This allows those 4-byte signatures to be
mapped to their human-readable versions (in our experiment,
about 60% function names can be matched). In addition, we
perform an additional filtering process, whereby we identify
all library functions before collecting all the function names
invoked through transaction. Finally, we remove all the un-
invoked public library function names to eliminate redundan-
cies.

2) Bytecode block features: The bytecode reflects DApp
behavior, and can thus be used in classification. However, the
bytecode cannot be used directly due to several reasons.

First, bytecode is composed of three components: creation
code, swarm code, and runtime code. As the first two elements
are used for the creation and distributed storage, they have no
contribution to the program runtime behavior. Second, runtime
code consists of operators and operands (i.e., PUSH 0X80). If
the operands are not filtered out, the extracted feature will be
too sensitive to the operands. Third, runtime code comprises of
multiple blocks, each of which indicates a logical unit. Thus,
to maximize the feature utility, runtime code should be divided
into basic blocks.

To alleviate these issues, DAppClassifier extracts refined and
subtle features from bytecode in three steps: [2]

1) Redundant code elimination: In this step, all superfluous
creation and swarm code parts, which easily identified,
are removed.

2) Desensitization: All the operands (i.e., the immediate
numbers after operators) are removed. Note that, as a
special kind of operand, the signature of function name

3https://www.4byte.directory/



is also removed. Those have already been discussed in
function name features.

3) Division into basic blocks: In runtime code, operators
JUMP, JUMPI, REVERT, STOP, and RETURN are the
indicators of an interruption in a logical relationship.
DAppClassifier divides the runtime code according to
the opcodes.

Following the above process, DAppClassifier can identify
refined and subtle block-level sub-sequences of bytecode as a
feature.

3) Source code features: Compared with bytecode, source
code can better convey the intent of developers. Not only
the function names and statements are in high-level language,
which is similar to the human language, but code also con-
tains abundant programming notes, which convey intention of
developers.

For this reason, DAppClassifier applies tokenization and
embeddings features from source code, which is a two-layer
neural network that processes text, whereby its input is a text
corpus and its output is a set of vectors.

C. Classification Process

In the classification model, (1) three units are used to handle
the three kinds of features, which are subsequently combined
by (2) applying another Deep Neural Network (DNN) model.

1) DNN for Feature Name features: DNN model is a
learning method with multiple layers of neural networks. It
is particularly suitable for classification prediction problems
where inputs are assigned a class or label.

Specifically, our network is a fully connected DNN model
with RELU activations, N layers, and M units per layer. We
swept over N = [3, 4, 5, 6, 7] and M = [32, 64, 128, 256,
512]. Our best performing model has N = 3 layers and M =
64 units, yielding a learning rate of 3× 10−5.

2) CNN for Function Body features: Convolutional Neural
Network model (abbreviated as CNN) is a neural network that
uses convolution in place of general matrix multiplication.

Specifically, our network is a CNN model with an embed-
ding layer (embedding dim = 128), a convolutional layer (256
filters with kernel size = 5) and a MaxPool layer (each layer
contains 64 neurons).

3) CNN for Source Code features: In line with the approach
adopted for sentence classification in the NLP scenario, to
handle features, CNN with the same specifications as given
above is utilized to extract meaningful sub-structures from
source code.

4) DNN to Conjunct the Units: The intermediate results of
the above three models are concatenated by a model composed
of three layers: an input layer combining the output of the three
units, a 128-dimensional fully connected layer, and a softmax
layer to output the final category.

V. EVALUATION

In this section, we describe the experimental design adopted
for evaluating DAppClassifier, followed by the experimental
results demonstrating its correctness and effectiveness.

TABLE IV
EXPERIMENTAL RESULTS

Dataset DAppClassifier FuncName ByteBlocks Source
#S 84.6% 78.2% 77.2% 79.9%
#R 83.5% 78.9% 76.3% 79.3%
#D 84.0% 80.1% 79.6% 70.3%

A. Evaluation Design

We conduct large-scale experiments on DApp classification
based on our self-constructed open-sourced dataset.

Dataset: Data on the three most commonly-used DApp
Stores, namely State of the DApps, DappRadar, and Dapp.com
are crawled, manually checked and all misclassified DApps
are relabeled or removed(As explained in Section III-B),we
matched them by front-end URL and contract address. If they
have the same front-end URL or similar front-end URL with
the same contract address, we consider them to be the same
DApp, for some DApps have different URL parameters in
order to identify the source of the request. Yielding a large-
scale dataset covering about 2,573 DApps including 11,230
smart contracts deployed on the Ethereum Environment.

For each DApp, we download the bytecode and transactions,
and retrieve its source code (if available) by Etherscan. To
collect data on these smart contracts, we manually run an
Ethereum node, starting from the Genesis block to the latest
block to identify all the transactions and extract bytecode and
runtime code. We focus on the DApp categories containing at
least 20 DApps, since these categories are more representative
of the general classification status. The revised dataset has
been released (https://bit.ly/2JFmtiS), it contains the DApp
name, contract address, category, DApp url, etc..

B. Experimental Results

In this section, we present the experimental results related
to the two research questions.

RQ1: How many DApps can be accurately classified into
the correct category? The experimental results of our clas-
sifier reported in Table IV indicate that its accuracy surpasses
84% when applied to each of the DApp Stores, confirming that
our approach is technically promising. As precision, recall and
F-score are consistent for multiclassification problem, only the
precision of our approach is reported.

RQ2: How does each feature contribute to the DApp
classification performance?

The columns 3–5 of Table IV show the performance (mea-
sured in terms of precision) of DAppClassifier based on a
single feature (with a single classification unit).

Features extracted from source code should aid in accurate
classification, as the programmer’s intent is typically conveyed
through function and routine names and developer comments.
However, the results reported in the last column of Table IV
counter this intuitive expectation, requiring further investiga-
tion.

Note that the experiments focusing on source code only
are conducted on DApps for which source code is available.
As nearly half of the DApps lacked source code, the dataset



used for training in this experiment is substantially reduced.
In particular, in Dapp.com only 50.4% of DApps are released
with source code, compared with 63.9% and 56.7% DApps
on State of the DApps and DappRadar respectively. Thus, all
three features should be utilized to improve the classification
accuracy.

VI. DISCUSSIONS

In this section, we will discuss the benefits and shortcom-
ings of our approach.

Function name feature extraction benefits: In the pro-
posed approach, prior to extracting function name features,
based on the unique DApp characteristics, all the un-invoked
public library function names are removed. To evaluate the
effectiveness of this strategy, we conduct another experiment
on the DApps with historical transactions, applying only the
function name feature unit. Besides the feature extraction
process described in Section IV, we conduct comparison ex-
periments, each incorporating the following feature extraction
processes:

• Names from Invocation & Bytecode removed unused li-
braries: The features we used in our approach.

• All names from Bytecode: All function names extracted
from bytecode are utilized, i.e., the unused public library
functions are not removed.

• All names from Invocation: All function names from
invocations in the history of transactions are identified
and utilized.

• Names from Invocation & Bytecode:The function names
collected by adopting the strategy described in Section
IV are combined with those from the invocations.

As can be seen in Figure. 2, the features collected by
utilizing All names from Invocation process achieve the lowest
accuracy. This finding supports our hypothesis that function
names identified through invocations of historical transactions
are not sufficient for meaningful classification, due to users
inadequate. The features collected via the strategy denoted
as All names from Bytecode yield a higher precision because
all the functions in the application are utilized, not just those
that have been called. However, lack of understanding of user
behavior leads to insufficient accuracy.

We take the advantage of both and combine them as input.
The features collected through Names from Invocation &
Bytecode and Names from Invocation & Bytecode removed
unused libraries can both reach the top accuracy given a long
training time. However, by removing all the unused library
methods, the learning convergence can be expedited.

VII. RELATED WORK

Several studies have been conducted to evaluate the
Ethereum ecosystem. For example, some authors characterized
money transfer [7], contract invocation [8], code similarity [9]
of Ethereum. Other researchers focused on financial activities
on Ethereum, including Ponzi schemes [3], Honeypots [4]
detect and ICO behavior finding [10], which might be a
complement to our work. There is an empirical study on

0 5 10 15 20 25 30 35 40
epoch

0.650

0.675

0.700

0.725

0.750

0.775

0.800

ac
cu

ra
cy

All names from Invocation
Names from Invocation & Bytecode
All names from Bytecode
Names from Invocation & Bytecode removed unused libraries

Fig. 2. Comparison within different features

distributed applications [11]; however, our research is more
systematic and is conducted on a larger scale. Moreover,
machine learning has been used to label similar smart contracts
with source code [2], even though its notion of a “cluster”
cannot be precisely defined.

VIII. CONCLUSION AND FUTURE WORK

Owing to the development of blockchain and mobile tech-
nology, the number of DApps has already surpassed 2,500,
and the scale of DApp market is estimated at billions of
dollars [1]. To provide a better comprehension of decentral-
ized applications (DApps), we have conducted a systematic
empirical study on DApp classification status, and have con-
structed a dataset by relabeling misclassified DApps. Based on
our empirical findings, we have proposed DAppClassifier—a
novel approach for classifying DApps based on their real
functionalities. Extensive evaluations have demonstrated that
DAppClassifier can achieve an average precision of greater
than 84%.

REFERENCES

[1] S. of the DApps, “Stateofthedapps,” 2020. [Online]. Available:
https://www.stateofthedapps.com

[2] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen,
“Automated labeling of unknown contracts in ethereum,” in 2017 26th
International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2017, pp. 1–6.

[3] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 2018 World Wide Web Conference. International
World Wide Web Conferences Steering Committee, 2018, pp. 1409–
1418.

[4] C. F. Torres and M. Steichen, “The art of the scam: Demystifying hon-
eypots in ethereum smart contracts,” arXiv preprint arXiv:1902.06976,
2019.

[5] D. Radar, “Dappradar,” 2020. [Online]. Available: https://dappradar.com
[6] DApp.com, “Dappcom,” 2020. [Online]. Available: https://www.dapp.

com
[7] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,

“Understanding ethereum via graph analysis,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
1484–1492.

[8] L. Kiffer, D. Levin, and A. Mislove, “Analyzing ethereum’s contract
topology,” in Proceedings of the Internet Measurement Conference 2018.
ACM, 2018, pp. 494–499.

[9] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing
code clones in the ethereum smart contract ecosystem,” arXiv preprint
arXiv:1905.00272, 2019.

[10] G. Fenu, L. Marchesi, M. Marchesi, and R. Tonelli, “The ico phe-
nomenon and its relationships with ethereum smart contract environ-
ment,” in 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). IEEE, 2018, pp. 26–32.

[11] K. Wu, “An empirical study of blockchain-based decentralized applica-
tions,” arXiv preprint arXiv:1902.04969, 2019.


