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Abstract— Exploratory data analysis (EDA) on time-series data is 

an indispensable and important process for not only data analysts 

but also non-expert users. It helps them make data-driven 

decisions by discovering important patterns of a certain 

phenomenon. However, it poses 2 challenges for data analysts 

and decision-makers. First, although a lot of business intelligence 

tools have been introduced that can help explore the data, they 

require repeated analytic procedures and most of the procedures 

rely on users’ intuition, knowledge, and efforts. Second, even 

though there have been several attempts to quantify insights to 

automatically detect interesting patterns, they do not consider 

score fairness among detected patterns. Therefore, they are not 

suitable when data has the heterogeneity of insight types, 

attributes scales, and time intervals. We attack these challenges 

by introducing our new proposed system Timesight, which 

explores data through all possible time units and all attributes 

automatically. Timesight evaluates various types of time-driven 

insight, matching the fairness among each type of insight, each 

attribute, and each time interval. We verify our system using an 

internal application log dataset. Our experiment with data 

analysts working on the same dataset shows that Timesight 

alleviates tedious works and is effective in discovering insight. 

Keywords-component; Data exploration; Insight discovery; 

Data mining; Time-series data. 

I.  INTRODUCTION  

Nowadays, efforts to make data-driven decisions are 
continuously increasing in various industries [11] to reduce 
costs or improve productivity. For instance, a manufacturer 
who wants to increase productivity can adjust the time on the 
assembly line, observing delays calculated from the data. After 
introducing a solution to the bottleneck, the decision-maker 
would measure the time of the process again to see if the 
change results in time-saving. Thus, exploratory data analysis 
(EDA) is an indispensable and important process to discover 
potential meaning or important patterns (called insight) from a 
data [12]. Based on the EDA process, data analysts are able to 
understand the data to predict or prevent certain phenomenon 
via building statistical methods or machine learning models. It 
is also important for non-experts users who are in an important 
position and should make a critical decision from the data 
without any data scientific knowledge such as statistics and 
probability theory.  

 

 

 

TABLE I.  CRIME DATASET 

timestamp district # of victims crime category 

2019-09-29 

06:39:00 
A3 12 firearm 

2018-12-31 

18:42:00 
B2 24 knife 

2017-03-05 

13:15:00 
C1 5 vehicle 

Among many kinds of datasets, time-series data that 
contains time information about certain events is more 
valuable than other simple multi-dimensional data. Because, it 
is important to discover striking patterns of specific 
phenomena or events over various time units (e.g., year, 
month, weekday, etc.) in many domains such as business, 
manufacturing, healthcare, economy, sociology, and even 
government.  

Suppose that we have a crime in a city dataset with the 
schema (timestamp, district, number of victims, crime 
category) as shown in Table 1. Figure 1 presents some 
examples of insights. It can be very helpful for people who are 
looking for hidden insight in the data if we get the information 
that the number of firearm accident has seasonality for each 
quarter (as Figure 1(a)) or the number of victims is most 
pronounced in the second day of the week as shown in Figure 
1(b). 

(a) # of firearm accidents for each quarter       (b) # of victims by day of week 

Figure 1. Example of insights 

EDA Challenge. Although lots of business intelligence 
tools like Tableau [9] and Qlik [10] have been introduced that 
can help explore the data, they require repeated analytic 
procedures and most of the procedures rely on users’ intuition, 
knowledge, and efforts. Users have to repeat trial-and-error 
procedures: building their own hypothesis, selecting 
appropriate attributes and possible time units, entering the 
formula, plotting results with suitable visualization, and 
exploring remarkable patterns (e.g., trend, spike point). It has 



timestamp 

2019-09-29 
06:39:00 

2018-12-31 

18:42:00 

2017-03-05 

13:15:00 

(a) 

Year month day hour 
year-

quarter 

year-

month 

year-

month-day 

2019 09 29 06 2019-3 2019-09 2019-09-29 

2018 12 31 18 2018-4 2018-12 2018-12-31 

2017 03 05 13 2017-2 2017-03 2017-03-05 

(b) 

the advantage of offering a high degree of freedom for 
advanced users. However, it is mentally and physically tedious 
and exhausting for both non-expert users and professionals in 
data analysis. If the data has more than thousands of attributes 
and millions of records, it becomes impossible to evaluate all 
the assumptions, regardless of users’ expertise. 

Fairness Challenge. Even though there have been several 
attempts [1] [2] to quantify insights to automatically detect 
interesting patterns, they do not consider score fairness among 
detected patterns. It is difficult to match the fairness because 
each type of insight needs different score function to calculate 
interestingness, most real-world datasets have different scales 
and units among attributes, and each time unit might have 
different intervals. Thus, it is challenging to provide fair 
scores that users can easily and reasonably accept. 

We attack these challenges by introducing our new 
proposed system Timesight, which explores data through all 
possible time units and all attributes automatically. Timesight 
defines and evaluates various types of time-driven insight, 
matching the fairness among each type of insight, each 
attribute, and each time interval. Therefore, the contributions 
of this paper are: 

 We demonstrate the way that automatically prepares 
the time-series data to well extract hidden insights. 

 We propose the normalization technique to make them 
fairly comparable among diverse time intervals and 
attribute scales. 

 We define 4 types of time-driven insight and unified 
formulation of each type to assess the magnitude of 
interestingness. 

The rest of the paper is organized as follows: Section 2 
presents an overview of our data modeling procedure. Section 
3 provides 4 types of insight and score functions and Section 4 
describes the pseudo-code of Timesight and optimization 
techniques. Section 5 demonstrates our experiment using a 
real-world dataset. Section 6 discusses related work, followed 
by the conclusion and future work in Section 7. 

II. DATA MODELING 

In this section, we present the data preparation procedures 
to calculate data insights. It is assumed that a multi-
dimensional dataset D is given as a tabular format consisting of 
a series of rows, and each row is represented by a set of 
attributes (columns). We assume that D contains 3 types of 

attribute sets T, N and C: T={t1,t2,…,tα} is a timestamp attribute 

set, N={n1,n2,…,nβ} is a numerical attribute set, and 

C={c1,c2,…,cγ}  is a categorical attribute set where α, β, and γ 

are the number of timestamp, numerical, and categorical 
attributes, respectively. In this paper, the data modeling process 
is divided into two phases: timestamp decomposition and data 
aggregation and normalization.  

Timestamp Decomposition. Suppose that each timestamp 
attribute has ‘yyyy-MM-dd HH:mm:ss’ format. We define a set 

O={o1,o2,…,oδ} that includes extracted time units according to 

the analytics objective (in this section, it is assumed that there 
is one timestamp attribute in D for the convenience of 
derivation). We illustrate an example in Figure 2 where the 
original timestamp attribute, and the extracted attributes are in 
Figure 2(a) and Figure 2(b), respectively. In this paper, we 
define 7 (i.e., δ=7) extracted attributes for each timestamp 
attribute, i.e., O={‘yyyy’, ‘MM’, ‘dd’, ‘HH’, ‘yyyy-qq (year-
quarter)’, ‘yyyy-MM’, ‘yyyy-MM-dd’}. The elements of O 
depend on the analytics objective and can be declared 
dynamically (e.g., ‘yyyy HH’, ‘HH:mm’, etc.).  

Figure 2. A timestamp decomposition example of (a) the original attribute, 

and (b) the extracted attributes from (a). 

Data Aggregation and Normalization. The data 
aggregation and normalization techniques are applied to the 
dataset to make it fairly comparable among diverse time units 
and types of insight. In this paper, numerical as well as 
categorical attributes are used for insight scoring (which is 
different in that related works only consider numerical 
attributes) because the pattern of categorical attributes can 
contain important meaning after appropriate aggregations. For 

the available aggregation functions agg ∈ {SUM, AVG, 

COUNT, …}, we consider agg for the categorical and the 

numerical attributes separately, because the available 
aggregations for the categorical and numerical attributes are 
different. For example, COUNT and PERCENTAGE are for 
categorical, while SUM and AVG are for numerical attributes. 
For the arbitrary time unit element ol in O (1≤l≤ δ), the 
aggregated datasets can be obtained based on two cases. 

Case1: For numerical attributes, the function GN(ol,nj) 
groups D by ol with certain aggregation on the attribute nj, 
which is presented as follows: 

GN(ol,nj) ≈ SELECT agg(nj) FROM D GROUP BY ol 

Case2: For categorical attributes, for the arbitrary ith 
categorical attribute, let Ei denote the set of distinct elements of 
the ci, assuming that |Ei|≥1 and ei,m the arbitrary mth element of 
Ei  (1≤m≤|Ei|). The function GC(ol,ei,m), which filters D with 
value ei,m and groups D by ol with certain aggregation on the 
attribute cj can be presented as follows: 

GC(ol,ei,m)≈ SELECT agg(cj) FROM D WHERE cj= ei,m 

GROUP BY ol 



Thus, from the given GN(ol,nj) and GC(ol,ei,m), the result set 
X can be derived as: 

X= {
  (     )                                          

                                                 
   on D 

We obtain an aggregated result set X={x1,x2,…,xn} from 

each categorical and numerical attribute considering multiple 
time unit elements. Next, we normalize all values in the X 
using min-max normalization [3]. It maps all values to the 
range [0, 1], and helps us focus on the relative ratio, improving 
the balance among other result sets that are measured by 
different units. It also enhances fairness with different insight 
types. There is another well-known normalization method 
called standardization (or Z-score normalization) [3], but it 
creates new data not bounded to a certain interval. 
Consequently, we get a normalized result set Xnorm from X. An 
example of normalization is illustrated in Figure 3 where 
Figure 3(a) is the original result set X and Figure 3(b) is the 
normalized result set Xnorm. 

Xnorm  {           
        

          
           } 

 

5 21 -1 32 -11 13 0 -7 19 29 

(a) 

0.37 0.74 0.23 1.0 0.0 0.56 0.26 0.09 0.70 0.93 

(b) 

Figure 3. A normalization example of (a) the original result set, and (b) the 

normalized result set from (a) which is bounded in range [0, 1]. 

III. INSIGHT SCORE FUNCTIOIN 

We define 4 types of time-driven insight: spike point, 
change point, seasonality, and trend. We want to score and 
rank interestingness of each insight based on the p-value to 
discover important insight from the entire result set. In statistics, 
the p-value is the probability of the observation from the null 
hypothesis and commonly used to determine whether an 
observation is statistically significant [4]. We use different 
kinds of null hypotheses for different types of insight to 
calculate the appropriate p-values. In this paper, we use the 
Gaussian distributions N(μ,σ

2
) [5], where μ and σ

2 
are constant 

parameters to model the distribution of observational values of 
each insight type. We use μ=0 and σ

2
=1 for all types of 

insights for convenience, but each can be replaced with the 
appropriate parameters in future studies. 

Spike point. The Spike point means that a certain value in 
Xnorm represents a notable difference from others. Data analysts 
who are exploring a data are attracted by the significant 
deviations from predictable patterns. The spike point can be 
discovered by measuring how the certain point is noticeable 
over other values. The distribution of various domains, such as 
physics, biology, economics, social science, and other 
numerous man-made phenomena often follow power-law 
distribution [6]. Therefore, we set the null hypothesis of spike 
point as:  

H0: Xnorm follows power-law distribution. 

Let Xnorm={xnorm,1,xnorm,2,…,xnorm,n} be the set of values in 
the result of aggregation as mentioned previous section. We 
sort Xnorm in the descending order and get the maximum value 
xnorm,max. Then, from the xnorm,max, we evaluate the magnitude of 
interestingness against the hypothesis H0 is true. Hence, we fit 
values in Xnorm \{ xnorm,max } to the power-law distribution (i.e., 
a∙i

-b
). Next, from the xnorm,max’s prediction error emax = xnorm,max - 

  norm,max, we calculate p-value pspike = P(e > emax| e ~ N(μ,σ
2
)). 

Consequently, the score of spike point is 1 – pspike 

scorespike = 1 – pspike 

(a) Change point                                                        (b) Trend 

Figure 4. Examples of change point and trend. 

Change point. A change point generally indicates an 
abrupt variation of values between the previous and subsequent 
intervals [17]. Figure 4(a) shows an example of change point. 
We use mean value on the window size K to obtain 
representative value. Thus, the null hypothesis of change point 
is:  

H0: Difference of mean between before and after xnorm,i ≈ 0. 

Let Xnorm={xnorm,1,xnorm,2,… ,xnorm,n} be the time series of 
values and assume length of window size, K < n/2. By shifting 
the window along the values, we calculate the mean for values 
in left and right window of size   respectively. And their 
difference di is as follows: 
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Let dmax denote the maximum difference value. Then, we 
calculate p-value pchange= P(d > dmax | d ~ N(μ,σ

2
)). Thus, the 

score of change point is 

scorechange = 1 – pchange 

Seasonality. If the data show repetitive patterns or 
fluctuation over a specific period, we can say it has seasonality. 
We use the autocorrelation function (ACF) because it is 
commonly used to determine whether the data has a 
dependency on its past [7]. If the strongest correlation appears 
at a particular period p for a given ol (e.g., 4 for ‘yyyy-qq’, 12 
for ‘yyyy-mm’, etc.), we determine it has seasonality. Thus, we 
set the null hypothesis as follows: 

H0: a ∈ ACF(Xnorm) has maximum value amax at p. 



Then, the p-value is pseasonality= P(a > amax | a ~ N(μ,σ
2
)). As 

a result, the score of seasonality is 1 – pseasonality 

scoreseasonality = 1 – pseasonality 

Trend. It indicates that the data show continuously rising 
or falling movement over time, like in Figure 4(b). Those who 
want to discover explainable patterns in the data are well 
obsessed when it has a very different slope from 0. Thus, we 
set the null hypothesis as: 

H0: Slope of the values in Xnorm over the entire time ≈ 0. 

First, we fit Xnorm to a line by linear regression as shown in 
Figure 4(b). We also normalize the x-axis values using min-
max normalization, for fairness with another result set. As a 
result, we can concentrate on the change of values, not the 
length (time interval) of the data. Then we calculate its slope s

*
 

and coefficient of determination, r
2
. The r

2
 represents how well 

the line fits the data [8]. Also, we compute the p-value as ptrend 
= P(s > | s

*
| | s ~ N(μ,σ

2
)). Finally, we can obtain the trend score 

r
2
 * (1 – ptrend) where r

2
 is used to reflect the accuracy of the 

regression. 

scoretrend = r
2
 * (1 – ptrend)  

IV. FRAMEWORK 

In this section, we describe the full procedure of Timesight 
using pseudo-code first, and then discuss the pruning-based 
optimization techniques that can reduce search space and 
running time, improving the overall performance of Timesight. 

Algorithm 1 InsightDiscovery(T, N, C) 

1: max-heap ℍ←{} 

2: O← extract all possible time units from T 

3: for ol in O do 

4: for nj in N do 

5: Xnorm ← normalize(GN(ol, nj)) 

6: CalculateInsights(Xnorm, ℍ) 

7: for ci in C do 

8: for ei,m in ci do 

9: Xnorm ← normalize(GC(oi, ei,m)) 

10: CalculateInsights(Xnorm , ℍ) 

11: return ℍ  

 Function: CalculateInsights(X, ℍ) 

12: for each insight type I do 

13: scoreI ← calculateI(X) 

14: insert (scoreI, X) to ℍ  

 

 

A. Psuedo Code 

Algorithm 1 presents the full procedure of our insight 
discovery system. We assume that there is one timestamp 
attribute in D for the convenience of derivation. 

First, we initiate the max heap ℍ to store insights in 
descending order (Line 1) and extract all possible time units 
(Line 2). Then iterating over all time units (Line 3), we 
repeatedly generate Xnorm to score insights for all numerical 
attributes N (Lines 4, 5). At the same time, we generate Xnorm 

for all categorical attributes C (Lines 7-9). Using the generated 
result set Xnorm, function ‘CalculateInsights’ calculates scores 
of all insight types and updates ℍ (Lines 12-14). 

B. Pruning-Based Optimization Technique 

Searching and computing all possible time units and all 
attributes take a lot of time and degrade performance. 
Therefore, we suggest the three pruning methods that can save 
time performance. 

1) We pass calculating the score if multiple Xnorm sets are 
identical for different time units. For instance, if the data is 
only for 2019, the result sets of ‘yyyy-mm’ and ‘mm’ have the 
same values. This can be applied equally on ‘yyyy-qq’ with 
‘qq’, ‘yyyy-MM-dd’ with ‘dd’ and so on.  

2) If the length of Xnorm is too short, the data cannot 
represent a particular pattern properly. As a result, we set the 
minimum length ζ (e.g., ζ = 4, because ‘qq’ can have a 
maximum length of 4.) and if the length of Xnorm is shorter than 
ζ, then we do not calculate all insight score. 

3) If |Ei| is too large, the search space grows exponentially 
and the performance is degraded. Also, if |Ei| = 1, it may not be 
meaningful to apply aggregation on ci. Consequently, we set 
the minimum and maximum length θ (e.g., 70) and calculate 
score only if 1<|Ei|<θ.  

V. EXPERIMENT 

TABLE II.  SUMMARY OF EXPERIMENT DATA 

Range of date 2009.06.26 00:29:12 ~ 2019.07.12 23:50:02 

# of rows 100000 

# of numerical attributes 10 

# of categorical attributes 49 

 
In this section, we apply the real-world time-series data to 

evaluate the effectiveness of Timesight. This data is an internal 
application log dataset that is de-identified for research 
purposes. The summary of the dataset is shown in Table 2. The 
data has a timestamp attribute that represents the access date 
for each user from 2009 to 2019. And 10 numerical attributes 
and 49 categorical attributes contain a variety of information. 



Figure 5 presents 12 result insights from Timesight. 
Timesight analyzes time stamp attributes by decomposing it in 
many ways such as year, quarter, year-quarter, month, year-
month, day, weekday, year-month-day, and so on. As a result, 
users can examine the data from various time perspectives. 
Each of A, B, C, D, and E is a service name in the application, 
and each Y, Z is a device name that the user used to access the 
application. 

Figure 5(d) and Figure 5(g) show that the number of people 
who accessed the application using device Z had a clear 
seasonality for year-month and year-quarter. Also, we can see 
that most people accessed the application using device Y on the 
25

th
 of every month and every December, as shown in Figure 

5(e) and Figure 5(l), respectively. Furthermore, Figure 5(k) 
represents that the number of people who signed in through 
service E had a significant change point before and after 2016-
01-15. The rest of Figure 5 shows us the clear tends of each 
aggregated attribute for year, quarter, year-quarter, weekday. 

It is very convenient for analysts and decision-makers in the 
aspect of getting these insights from the data without the effort 
to explore it in person. Furthermore, they can make immediate 
decisions like: 1) From Figure 5(d) and Figure 5(g) they can try 
to find out the reason that the usage of device Z has seasonality 
and is most prominent in December and look for a solution that 
can balance monthly usage to improve overall usage. 2) From 
Figure 5(k), they can investigate why service E shows dramatic 
changes in usage around 2016-01-15 and apply that factor on 
other services. 3) From Figure 5(i), the decision-maker can 
promote service D on weekends so that the usage of service D 
does not decrease on weekends. Analysts who are working on 
the same dataset observed the effectiveness of results in 
alleviating their tedious works and discovering meaningful 
insights. 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

Figure 5. Result of our experiments. The x-axis is each time unit and the y-axis is each aggregated result set.  

The black lines indicate actual result set, and the red lines indicate fitted trends or periods of seasonality. The red points indicate spike points or change points. 



VI. RELATED WORK 

In this section, we discuss prior works from multiple areas 
related to our research. We review the related works and 
describe how they differ from Timesight. 

Business Intelligence Tools. Business intelligence tools, 
such as Tableau [9], Qilk [10], and Sisense [13] have recently 
improved capabilities in EDA and gained in popularity. These 
tools allow data analysts and decision-makers who lack 
programming skills to easily select attributes and build 
visualizations based on their abilities. However, they require 
repeated analytic procedures and most of the procedures rely 
on users’ intuition, knowledge, and efforts. Furthermore, if the 
data has more than thousands of attributes, it becomes 
impossible to evaluate all the assumptions regardless of users’ 
expertise. On the contrary, Timesight discovers insight 
automatically, exploring all attributes and all time units based 
on unified formulations of various insight types. Therefore, 
Timesight alleviates the tedious trial-and-error process of users. 

Automated Exploratory Analysis. There have been 
several kinds of research that attempt to quantify insights to 
automatically detect interesting patterns. The SeeDB [14], 
which is the visualization recommendation system, identified 
charts that are largely deviated from a given reference, and 
considers them as insight. But, it is difficult to use for non-
expert users or service managers because they have to select 
and put queries by themselves. Whereas Timesight extracts 
insight automatically using unified formulations of various 
insight types. In Foresight [1], the authors defined about 6 
insight types and their score functions to facilitate the rapid 
discovery of insights from large, high-dimensional datasets. 
However, first, because they tried to define insights into the 
general attribute domain, they did not consider time-driven 
insights such as trends, change points, seasonality. Also, they 
did not consider the difference between each attribute`s scales 
that might affect a huge effect on calculated insight scores. 
QuickInsight [2] [15] which is the most recent research, is 
automatic insight discovering system released in Microsoft 
Power BI [16]. QuickInsight proposed a unified formulation of 
important patterns and introduced an insight mining framework 
to automatically mine insight from given data. However, it also 
did not consider fairness among detected patterns caused by the 
heterogeneity of attribute scales, time intervals, and 
formulations. On the other hand, Timesight normalizes 
attributes and time intervals to provide fair scores that users can 
easily and reasonably accommodate. 

VII. CONCLUSION AND FUTURE WORK 

We introduce a novel approach to automatically discover 
interesting insight from multi-dimensional time-series data to 
offer invaluable hidden information to both data analysts and 
decision-makers. We decompose a timestamp attribute in 
several ways to examine the data at various time perspectives 
and use both numerical attributes and categorical attributes as 
targets by applying appropriate aggregations. And we 
normalize values in the result set to obtain fair scores between 
each insight type, each attribute, and even each time interval. 
And then, we define 4 types of time-driven insight and unified 

score functions to assess the interestingness of each result set. 
Furthermore, we demonstrate Timesight using pseudo-code and 
propose several pruning techniques to improve the performance 
of Timesight. Lastly, we present our experimental result based 
on an internal service log dataset that helps data analysts to 
discover hidden insight easily. 

We want to advance this research through some direction of 
future work. First, we will develop and supplement additional 
types of insight such as the correlation between different Xs. 
Second, we use uniformed μ and σ

2
 for distributions of all 

insight types in the paper for convenience. But we will 
investigate lots of datasets to find appropriate μ and σ

2
 for each 

type of insight. Lastly, the limitation of our system is that as the 
number of rows and attributes in the dataset increase, the 
search space is extended together. This can increase the time 
and space it takes to calculate the scores. We need an advanced 
optimization method to solve these problems.  

REFERENCES 

[1] Demiralp. C., Haas. P.J., Parthasarathy. S., and Pedapati. T., “Foresight: 
Recommending visual insight”, Proceedings of the VLDB Endowment, 
Vol. 10, No. 12, pp. 1937-1940, 2017.  

[2] Tang. B, Han. S., Yiu. M.L., Ding. R., and Zhang. D., “Extracting Top-
K Insights from multi-dimensional Data”, In: Proceeding of 2017 ACM 
International Conference on Management of Data (SIGMOD `17), pp. 
1509-1524. ACM, New York, NY, USA, 2017. 

[3] Patro. S.G.K., and Sahu. K.K., “ Normalization: A Preprocessing Stage”, 
International Advanced Research Journal in Science, Engineering and 
Technology, Vol. 2, No. 3, pp. 20-22, 2015. 

[4] Krzywinski. M., Altman. N., “Points of significance: Significance, p 
values and t-tests.” Nature methods, Vol. 10, pp. 1041-1042, 2015. 

[5] Lyon, A., “Why are Normal Distributions Normal?.” The British Journal 
for the Philosophy of Science, Vol. 65, No. 3, pp. 621-649, 2014. 

[6] Newman M. E. J., “Power laws, Pareto distributions and Zipf’s law.” 
Contemporary Physics, Vol.46, No.5, pp323-351, 2005.  

[7] Nopia. Z.M., Lennie. A., Abdullah S., Nuawi. M.Z., Nuryazmin. A.Z., 
and Baharin. M.N., “The use of autocorrelation function in the 
seasonality analysis for fatigue strain data.” Journal of Asian Scientific 
Research, Vol. 2, No. 11, pp. 782-788, 2012. 

[8] Hamilton. D.F., Ghert. M. and Simpson. A.H., “Interpreting regression 
models in clinical outcome studies.” Bone Joint Res, Vol. 4, No. 9, pp. 
152-153, 2015. 

[9] Tableau Homepage, https://www.tableau.com/, last accessed 2019/11/14. 

[10] Qlik Homepage, https://www.qlik.com, last accessed 2019/11/14. 

[11] Brynjolfsson. E., McElheran. K., “The Rapid Adoption of Data-Driven 
Decision-Making.” American Economic Review, Vol. 106, No. 5, pp. 
133-139, 2016.  

[12] Yu, C.H., “Exploratory data analysis.” Methods 2, 2017, pp. 131-160.  

[13] Sisense Homepage, https://www.sisense.com/, last accessed 2019/11/14. 

[14] Vartak. M., and Rahman. S., Madden. S., “SeeDB: efficient data-driven 
visualization recommendations to support visual analytics.” Proceedings 
of the VLDB Endowment, Vol. 8, No. 13, pp. 2182-2193, 2015. 

[15] Ding. R., Han. S., Xu. Y., Zhang. H., and Zhang. D., “QuickInsights: 
Quick and Automatic Discovery of Insights from Multi-Dimensional 
Data.” In: Proceeding of the 2019 International Conference on 
Management of Data (SIGMOD `19), pp. 317-332. ACM, New York, 
NY, USA, 2019. 

[16] Microsoft Power BI Homepage, https://powerbi.microsoft.com/, last 
accessed 2019/11/14. 

[17] Aminikhanghahi. S., and Cook D.J., “A Survey of Methods for Time 
Series Change Point Detection.” Knowledge and information systems, 
Vol. 51, No. 2, pp. 339- 367, 2017. 

 

https://www.tableau.com/
https://www.qlik.com/
https://www.sisense.com/
https://powerbi.microsoft.com/en-us/

