
Controller Synthesis for ROS-based Multi-Robot
Collaboration

Xudong Zhao1, Rui Li1, Wanwei Liu1, Hao Shi1, Shaoxian Shu2, Wei Dong1
1College of Computer Science, National University of Defense Technology, Changsha, China

2Hunan Institute of Traffic Engineering, Changsha, China
{zhaoxudong13, lirui18, wwliu, shihao14}@nudt.edu.cn, shushaoxian@163.com, wdong@nudt.edu.cn

Abstract—Given a multi-robot system and the high-level tasks
for the robots. How to ensure the correct behavior of robots to
complete their tasks is critical. In this paper, we design a frame-
work that can automatically generate correct-by-construction
controllers for multi-robot system. In this framework, we propose
a multi-robot specification based on the Temporal Logic Synthesis
Format (TLSF) to guarantee the robots’ behavior. And two
execution algorithms were proposed to abstract the synthesized
automata into high-level controllers. These controllers were
integrated into Robot Operating System (ROS) to control actions
and movements of robots in Gazebo, which is an open-source
3D robotics simulator. Based on this framework, we developed
a toolkit, which allows users to achieve system-level controller
synthesis and simulation capable to be used for research such as
mission planning, motion planning, automatic obstacle avoidance
and so on.

Index Terms—multi-robot system, robot operating system,
temporal logic synthesis format, controller synthesis

I. INTRODUCTION

In the past few years, the study of autonomous robots has
become increasingly appealing. Robots have been employed in
many application domains. Especially in the fight against the
novel coronavirus pneumonia that broke out in early 2020,
robots are widely used in various applications include food
delivery, medicine delivery, temperature measurement, disin-
fection, etc. Robots effectively replace humans for operation,
reducing the possibility of cross-infection. People increasingly
realize the importance and convenience of robots in human
life.

Multi-robot systems (MRS) is defined as a group of robots
coordinated to perform some complex tasks that cannot be
completed by a single robot [1]. Therefore, in some particular
scenarios, we usually need MRS to complete tasks. However,
in practice, most application scenarios are uncertain and dy-
namic, robots may behave unexpectedly in these scenarios.
How to ensure the correctness of robot behavior in these
dynamic environments is critical.

Based on these considerations, the researchers used formal
methods such as model-checking [2] and synthesis to ensure
the correctness of the robot’s behavior. One important ap-
proach is to use Linear Temporal Logic (LTL) [3] as the

Corresponding author: Wei Dong. This work was supported
by National Natural Science Foundation of China (No.61690203,
No.61532007) and National Key Reseach and Development Program
of China (No.2017YFB1001802).

DOI reference number: 10.18293/SEKE2020-082

specification to generate controllers of robots [4] [5]. Extensive
research has been carried out on how to translate the high-
level specifications into robot controllers. Finucane et al.
developed a toolkit called LTLMoP [6]. It can translate the
user-written LTL specification into a robot controller, and the
controller can be executed to simulate the behavior of the
robot in a two-dimension area. Their work successfully bridges
the gap between high-level specifications and low-level robot
controllers.

However, this tool only provides controller synthesis and
simulation for a single robot. To apply these studies in
multi-robot scenarios, we extend their work to MRS. In this
paper, we introduce a framework that automatically translates
the multi-robot specification based on the Temporal Logic
Synthesis Format (TLSF) [7] into high-level controllers for
the multi-robot system. These controllers can be integrated
into ROS [8], which is an opensource software architecture
that contains a variety of libraries and packages suitable for
robots. Then these controllers were executed by appropriate
packages and tools based on ROS. To better demonstrate the
experimental results, the behavior of robots is simulated in
Gazebo [9].

In order to prove the practicality of this framework, we
developed a toolkit for designing, executing, and simulating
multi-robot controllers generated automatically from the multi-
robot specification. Our contributions include the following
three aspects:

• First, the framework we proposed provides a complete
development process for multi-robot collaborative tasks,
including automata synthesis, generation and execution
of controllers.

• Second, we propose two algorithms that can more effi-
ciently abstract the synthesized automata into high-level
controllers.

• Third, we achieve system-level simulation in Gazebo with
ROS, which makes it easier to experiment with physical
robots.

The rest part of this paper is structured as follows: Section
II summarizes the theoretical basis of this paper; In section
III, we elaborate on the various components of this framework;
Then we present an example of collaborative task in section IV,
which briefly introduce how to use our toolkit; We conclude
this paper in section V.

II. PRELIMINARIES
A. Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal temporal logic
which has been widely used to model the change of a reactive
system over time.

LTL Syntax. Let AP be a set of atomic propostions with
temporal logic X (next) and U (until), where p ∈ AP is a
Boolean variable. LTL formulas are defined according to the
follwing grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

LTL Semantics. Semantics of an LTL formula ϕ are defined
on an infinite sequences π = π1π2 · · · of truth assignment to
the atomic propostions p ∈ AP , where π(i) denote the i-th
element of π and π(i) ∈ 2AP . The satisfaction relationship |=
between π, i and a LTL formula ϕ is defined as follows:

π, i |= p iff p ∈ π(i)
π, i |= ¬ϕ iff π, i 2 ϕ
π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2

π, i |= Xϕ iff π, i+ 1 |= ϕ

π, i |= ϕ1 Uϕ2 iff ∃k > i with π, k |= ϕ2 and

∀i 6 j < k with π, j |= ϕ1)

The formula Xϕ means that ϕ is true in the next position of
the sequence. ϕ1 Uϕ2 indicates that ϕ2 will be true somewhere
in the future, and ϕ1 must be maintained as true until ϕ2 is
true.

The sequence π satisfies formula ϕ if π, 0 |= ϕ. The
temporal operators of LTL G(always), F(eventually):
• Fϕ ≡ trueUϕ;
• Gϕ ≡ ¬F¬ϕ;
Where Gϕ with always and Fϕ with eventually express the

properties that ϕ will always hold true in every position of the
sequence and ϕ will be true at some position of the sequence
in the future respectively. Further, GFϕ indicates that ϕ is true
infinitely often.

B. General Reactivity(GR(1))

LTL formulas are particularly suited to model the evolu-
tion of a reactive system where atomic propositions can be
divided into two parts: system input (environment) and output
(system). However, the realizability of LTL is 2-EXPTIME-
complete, which increases computational overhead.

To reduce the computational complexity into an acceptable
range, we consider a special class of temporal logic formulas
[10]. The GR(1) fragment of LTL specification consists of
environment assumptions and system guarantees. A GR(1)
synthesis problem is defined as a game between a system
player and an environment player. We expect the system
wins the game. In other words, we can always synthesize
controllers that generate behavior strategies satisfying given
specifications. A GR(1) game structure is organized as follows:
• X is the set of input variables controlled by environment,
X ′ is the value of X in the next state;

• Y is the set of output variables controlled by system, Y ′
is the value of Y in the next state;

• θe is an assertion over X characterizing the initial states
of the environment;

• θs characterizes an assertion over X ∪ Y characterizing
the initial states of the system;

• ρe characterizes transition relation of the environment
over X ∪ Y ∪ X ′;

• ρs characterizes transition relation of the system over X∪
Y ∪ X ′ ∪ Y ′;

• J e
i∈1..m is a set of justice requirements of the environ-

ment;
• J s

j∈1..n is a set of justice requirements of the system;
The acceptance condition is finally defined as:

(θe ∧ Gρe ∧ GFJ e)→ (θs ∧ Gρs ∧ GFJ s)

where Gρe and Gρs are safety conditions over the environment
and the system while GFJ e and GFJ s are liveness properties
over the environment and the system.

C. Robot Operating System (ROS)

ROS [8] is a framework for robotics research and develop-
ment. The core of ROS is communication mechanism. ROS is
a peer-to-peer network of nodes that communicate with each
other using custom ROS messages that are based on TCP/IP.
Each node can be used to control the behavior of the robot,
process the information obtained by the sensors, etc. In an
MRS, we regard each robot as a node, and all nodes are
connected to a ROS master. Through the master, each node can
locate and communicate with other nodes by three different
methods:
(1) Topic: For real-time and periodic messages, the topic is

the best choice. The node that subscribes to messages
from a topic is called the topic’s subscriber, while the
node that publishes messages to a topic is called the
topic’s publisher.

(2) Service: Service communication is two-way. It can send
messages and return feedback. The service consists of
two parts: the requester (Client) and the responder/service
provider (Server). The client sends a request, waits for
the server to process it and returns a reply. The entire
service communication is completed through a ”request-
response” mechanism.

(3) Actionlib: Actionlib is used to execute a long-term com-
munication process. The actionlib communication process
can be viewed at any time, and the request can be
terminated. Actionlib works in client-server mode and is
a two-way communication mode.

The ROS ecosystem includes some tools to analyze and
simulate robot behavior. Gazebo [9] is a three-dimensional
physics simulation platform with a powerful physics engine,
high-quality graphics rendering, convenient programming, and
graphical interfaces. Gazebo can add the physical properties
of the robot and the surrounding environment to the model,
such as mass, coefficient of friction, coefficient of elasticity,

GR(1)
algorithm

Execution
algorithms

Synthesis

ExecutionSlmulation

Tasks Multi-robot
Specification

Automata

Controllers

Fig. 1: Overview of the framework

etc. Therefore, we can simulate physical phenomena in the real
world and show them as much as possible in this simulation
environment.

III. CONTROLLER SYNTHESIS AND SIMULATION
FOR MRS

Given a multi-robot system and tasks to be completed by
the robots, the objective of our framework is to automatically
generate controllers for each robot and simulate the behavior
of robots in Gazebo. The framework consists of four parts,
the relationship between them is illustrated in Figure 1 and
the functions of them are introduced as follows.

A. Multi-robot specification

TLSF [7] is a high-level format for the specification of
synthesis problems. Compared with LTL, it is more read-
able, therefore, users can easily write and read expressive
specifications. Another advantage of TLSF is that it’s easy to
support by synthesis tools. After writing the specification, the
Synthesis Format Conversion Tool (SyFCo) can compile
TLSF specifications into LTL specifications.

In a multi-robot system, a robot regards other robots as
part of the environment. A robot’s environment propositions
can be sensed by its sensors and obtained by communicating
with other robots. To express the robot’s perception ability,
execution ability and communication relationship with other
robots, a tuple R = 〈S,A,C〉 for each robot in MRS was
defined:
• S is the environment variables gained by robot;
• A is the action variables performed by the robot’s actu-

ators;
• C is the communication node that are used to communi-

cate with each other through network.
Based on the advantages of TLSF and the tuple we difined,

we propose a multi-robot specification. Take two robots as an
example, where:

R1 = 〈{R2.act2}, {act1}, node1〉
R2 = 〈{R1.act1}, {act2, act3}, node2〉
The specification for these two robots are shown in Figure

2. Keywords env (environment), sys (system) are set of input
variables and output variables respectively and keywords asm
(assumption), gar (guarantee) characterize initial conditions,

transition relations and justice requirements for environment
and system respectively.

main R1 {
env { R2.act2;}
sys { act1;}
asm { GF(R2.act2);}
gar { G(R2.act2->X(act1));}}

main R2 {
env { R1.act1;}
sys { act2,act3;}
asm { GF(R1.act1);}
gar { G(R1.act1->X(act3));}}

Fig. 2: An example of multi-robot specification

The users could write the corresponding specification for
each robot in MRS according to the multi-robot specification
format we proposed. Based on the capabilities of the robot
and the collaborative task to be completed, the continuous
behavior of the robot should be abstracted into a finite set of
propositions by a discrete formalism (TLSF). These propo-
sitions consist of the sensor information the robot perceives,
the actions to be performed. The specification also includes
the topological information of the robot’s task area. Same as
a single robot, in an MRS, each robot has a corresponding
specification and its automaton that synthesized from these
specifications.

B. Specification to Automaton

Take two robots as an example, Figure 3 illustrates the
process of synthesizing, as mentioned in section II, we use
GR(1) as the synthesis algorithm and automatically synthe-
sisze automaton from the multi-robot specification by a tool
called JTLV [11].

SPEC

Region
Information

Synthesis
Algorithm

SPEC
Synthesis
Algorithm

Propositions

Propositions

Automaton1
Automaton2

Fig. 3: The synthesis of automaton

To more intuitively explain the process of synthesizing spec-
ification into an automaton, the following briefly introduces the
synthesis algorithm in [10].

As mentioned before, the synthesis algorithm was used
to solve the game between the robot and the environment.
Consider a game structure G: 〈X ,Y, θe, θs, ρe, ρs,J e,J s〉,
the initial state of robot and environment is sX∪Y where
sX∪Y |= θe ∧ θs. Then from the initial state, both the
robot and the environment make decisions that determine their

next states, the environment choose an input sX ′ such that
(s, sX ′) |= ρe and the system choose an output sY′ such
that (s, sX ′ , sY′) |= ρs. The winning condition for the game
is given as a GR(1) formula φ = (GFJ e → GFJ s), the
implication between justice goals Je of the environment and
Js of the robot. In other words, no matter what the environ-
ment does, the robot can always find a way to proceed and
satisfy the GR(1) formula φ, we say that the robot is winning
and an automaton can be synthesized from the specification.
Otherwise, we say that the environment is winning and the
specification is unrealizable. Once the task specification of the
robot is realizable, the synthesis algorithm is to find a winning
strategy that the robot should follow to complete the desired
task.

The strategy synthesised by the algorithm can be viewd as
an automaton A = (X ,Y,Q, Q0, γ, δ):
• X is the set of input (environment) propositions,
• Y is the set of output (robot) propositions,
• Q is the set of states,
• Q0 ⊂ Q is the set of initial states,
• γ : Q → 2X∪Y is the state labeling function where γ(q)

is the set of robot propositions and input propositions that
are true in state q, i.e., states hold the environment inputs.

• δ : Q → 2Q is the transition relation. If current state is
q and at next point environment inputs is sX , then q′ is
the successor state of q if and only if sX |= γ(q′).

A run of a strategy is sequence s = s0X , s
0
Y , s

1
X , s

1
Y , · · · , s.t.

∀i :
(
(qi, s

i
X , qi+1) |= δ

)
∧
(
siY = γ(qi)

)
∧
(
si+1
Y = γ(qi+1)

)
.

Based on this sequence, the discrete path of the robot can be
acquired which guides the robot to choose a region to go or
activate/deactivate the different robot actions.

C. Automaton to Controller

Match

Robot1

Sensor

ENV_PROP

Automaton1 SYS_PROP

A
ct
u
at
o
r

Command

Match

Robot2

Sensor

ENV_PROP

Automaton2 SYS_PROP

A
ct
u
at
o
r

Command

Communication

World

Output Output

In
p
u
t

In
p
u
t

E
xt
ra
ct

E
xt
ra
ct

Fig. 4: Turn automatons into controllers

We introduce that the continuous behavior of the robot is
abstracted into a discrete specification and then synthesized
into an automaton. This part introduces how to turn these
discrete automata into continuous controllers.

As shown in figure 4, an automaton is actually a finite state
machine (FSM). Different states include the robot’s perception
of dynamic environments and the actions that the robot should

perform. We propose an algorithm to deal with environment
propositions, which are gained by the sensors of robots and
the communication between robots. Furthermore, based on the
Boolean value of these propositions, this algorithm can match
the corresponding state in the automaton.

Algorithm 1: Discrete automaton to continuous con-
trollers
Input: Automaton A
CurrState← q0 ∈ Q0

SuccStateSet← δ(q0)
Actions← {a1, a2, · · · } ∈ γ(q0)
Execute(Actions)
while True do

InputV al← SenseOrInformed();
FoundState← False;
foreach qi ∈ SuccStateSet do

if InputV al |= γ(qi) then
NextState← qi;
Execution(CurrState,NextState);
CurrState← NextState;
SuccStateSet← δ(CurrState);
FoundState← True;
BREAK;

end
end
if Foundstate is False then

ERROR(’Invalid Input’)
end

end

As shown in Algorithm 1, in the beginning, the robot
is in its initial state, which is defined as the current state.
According to this state, the robot executes current actions and
get the successor states set. In each step, the robot obtains
its environmental information and determines input values
through its sensors or by communicating with other robots.
Based on these inputs and current state, we can get the
NextState in the successor states set. The robot then executes
the actions and complete the state transition, the execution
algorithm is illustrated in Algorithm 2. When the next state
is not found in the set of successor states, which means that
the environment violated its assumptions, the execution will
report an error and stop running.

When it comes to the cross-regional problem, we propose
some simple controllers. Generally, we define those control
robot’s actuators as execute controllers, which can complete
execution in a short time, while those control robot’s motion
are navigation controllers. Compared with the former, naviga-
tion controllers take a longer time to complete execution. The
process of executing these controllers is shown in Algorithm 2.
Take a transition between states as an example, when the
robot is in different regions between the current state and
the next state, the navigation controller should be executed
first, and then the execute controller. That is, the robot will
only execute the action when it reaches the designated region.

Robot movement is achieved through the navigation package
in ROS. When both states are in the same region, the action
is executed directly.

Algorithm 2: Execution
Input: Current state qi and Next State qi+1

CurrState← qi
CurrRegion← ri ∈ γ(qi)
NextState← qi+1

NextRegion← ri ∈ γ(qi+1)
Actions← {a1, a2, · · · } ∈ γ(qi+1)
if NextRegion 6= CurrRegion then

Navigation Controller(NextRegion);
Execute Controller(Actions);

else
Execute Controller(Actions);

end

D. Simulation

To simulate multi-robot missions in Gazebo, the experimen-
tal environment must be configured in advance. The various
components include the world model, map information, navi-
gation packages, and communication method for configuration
are elaborated as follows. To minimize the user’s workload as
much as possible, the corresponding navigation packages files
and the program for communication between robots will be
generated automatically according to the number of robots.

1) World: As shown in figure 4, the environment that
the robot simulates in Gazebo is called world. As the name
indicates, the world file is to simulate a real physical world. It
can simulate physical parameters, such as gravity, friction co-
efficient, elastic coefficient, etc. For the tasks to be completed
by the MRS, the user could build a corresponding world model
using Gazebo’s building editor, which allows the user to import
a floor plan and add walls, stairs, and doors relatively easily.

2) Map: After establishing the world model, we control the
robot to move in the world and use laser radar or depth camera
to generate laser data and convert it into the map. This is the
troublesome part of the simulation process. Then we manually
extract the topological information of the generated map.

3) Navigation: Navigation and localization are important
parts of the robot’s tasks. The robot performs navigation and
localization according to the established map. There are two
packages in ROS that can be used directly.

• move base: It can plan the global path according to a
given target position, and also plan a local path based on
nearby environments to avoid obstacles.

• amcl: It is a probabilistic localization system for a
robot moving in two-dimensional area. It implements the
adaptive Monte Carlo localization approach [12], which
can get the position of the robot by using a particle filter
against a known map.

IV. IMPLEMENTATION AND EXAMPLE

The toolkit we developed is modular and includes three
modules. For different collaborative tasks, users can configure
the number and propositions of robots to write multi-robot
specification. Then the realizable specification can be synthe-
sized into automata, finally, turn these automata into high-level
controllers and simulate in Gazebo. For the sake of clarity, we
introduce a robot collaboration experiment based on the home
service scenario. As shown in figure 5, we design a workspace
for robots. Then according to this sketch, we create a world
model in Gazebo.

HOUSE

Region1

Region2

Robot1

Robot2

Robot3

mailbox
Dustbin

Fig. 5: Example diagram

In this example, region1 is inside the yard while region2
is the outside of the yard. Three home service robots work in
these two areas, Among them, Robot1 is mainly responsible
for patrolling the region1, and is also responsible for handling
some chores in family life. For example, when there is mail
in the mailbox, it will fetch it, and when waste is detected on
the ground, it will pick it up and throw it into the dustbin
in region2. Robot2 is responsible for delivering the mail.
After delivering the mail, Robot1 will be informed. Robot3
is responsible for security tasks. When it detects that a thief
is trying to break into the house, it will send a warning and
inform Robot1 to come and defend. At the same time, robot2
is never allowed to enter region1.

As defined in section III, we formalize this multi-robot
system based on the capabilities of robots and the collaborative
tasks, where:

R1 : 〈{waste,R2.mail, R3.thief}, {pick, fetch, catch}, node1〉
R2 : 〈{mailbox}, {deliver, informR1 mail}, node2〉
R3 : 〈{thief}, {catch, informR1 thief}, node3〉
The multi-robot specification for robots is given in figure

6, where R2.mail means R1 gets mail proposition by com-
municating with R2, so is R3.thief . After synthesizing these
automata from the specification, we turn them into continuous
control commands and simulate in Gazebo. There are six
screenshots shown in figure 7.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework that can automat-
ically generate correct-by-construction controllers for multi-
robot system. To simulate the behavior of robots, these
generated controllers were executed in Gazebo with ROS,

which provides state-of-the-art algorithms for several known
problems in robotics. We develope a toolkit to implement
this framework. Because ROS targets at real robots and not
only 3D simulation, it is easier to embed these controllers
for simulation into real robots. Compared to experiments
using real robots, it is low-cost, convenient and extensible for
research.

In future work, we plan to provide a user-friendly interface
and experiment with real robots. Besides, we will combine
methods in the field of robot control to extend the functionality
of this framework as much as possible.

main R1{
env {

Waste;
R2.Mail;
R3.Thief;}

sys {
Pick;
Catch;
Patrol;
Fetch;}

asm {
!Waste;
!R2.Mail;
!R3.Thief;}

gar {
!Pick;
!CatchThief;
!Patrol;
!Fetch;
GF Patrol;
G(X Waste -> X Pick);
G(X R2.Mail -> X Fetch);
G(X R3.Thief -> X Catch);}}

main R2{
env {

Mailbox;}
sys {

Deliver;
InformR1_mail;}

asm {
!Mailbox;}

gar {
!Deliver;
!InformR1_mail;
G(X Mailbox -> X Deliver);
G(Deliver -> X InformR1_mail);
G !Region1;}}

main R3{
env {

Thief;}
sys {

InformR1_Thief;
CatchThief;}

asm {
!Thief;
GF Thief;}

gar {
!InformR1_Thief;
!CatchThief;
G(X Thief -> X InformR1_Thief);
G(X Thief -> X CatchThief);}}

Fig. 6: Specification for home service robots

REFERENCES

[1] A. Gautam and S. Mohan, “A review of research in multi-robot sys-
tems,” in 2012 IEEE 7th International Conference on Industrial and
Information Systems (ICIIS), Aug 2012, pp. 1–5.

(a) Mail delivery (b) Fetch mail

(c) Waste detected (d) Pick up and throw away

(e) Thief detected (f) Catch the thief

Fig. 7: Experimental run of the service robots scenario

[2] E. M. Clarke and B. Schlingloff, “Model checking,” in Handbook of
Automated Reasoning (in 2 volumes), 2001, pp. 1635–1790.

[3] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, pp. 46–57.

[4] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control design for hybrid systems with tulip: The temporal logic
planning toolbox,” in 2016 IEEE Conference on Control Applications
(CCA), Sep. 2016, pp. 1030–1041.

[5] H. Kress-Gazit, “Robot challenges: Toward development of verication
and synthesis techniques [errata],” IEEE Robot. Automat. Mag., vol. 18,
no. 4, pp. 108–109, 2011.

[6] C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop: Experimenting
with language, temporal logic and robot control,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October
18-22, 2010, Taipei, Taiwan, pp. 1988–1993.

[7] S. Jacobs, F. Klein, and S. Schirmer, “A high-level LTL synthesis format:
TLSF v1.1,” in Proceedings Fifth Workshop on Synthesis, SYNT@CAV
2016, Toronto, Canada, July 17-18, 2016, pp. 112–132.

[8] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
vol. 3, 01 2009.

[9] N. P. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, September
28 - October 2, 2004, pp. 2149–2154.

[10] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in Verification, Model Checking, and Abstract Interpretation, 7th Inter-
national Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,
2006, Proceedings, pp. 364–380.

[11] A. Pnueli, Y. Sa’ar, and L. D. Zuck, “Jtlv: A framework for devel-
oping verification algorithms,” in Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, pp. 171–174.

[12] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization
for mobile robots,” in 1999 IEEE International Conference on Robotics
and Automation, Marriott Hotel, Renaissance Center, Detroit, Michigan,
USA, May 10-15, 1999, Proceedings, pp. 1322–1328.

