
Correct Software by Design for Software-Defined Networking: A Preliminary
Study

Liang Hao, Xin Sun, Lan Lin, Zedong Peng
Department of Computer Science, Ball State University, Muncie, IN 47306, USA

{lhao, xsun6, llin4, zzpeng}@bsu.edu

Abstract

We report our experience of applying rigorous software
specification and design methodologies to the development
of applications for the emerging software-defined network-
ing (SDN) paradigm. While much of the prior work in the
SDN space focused on creating novel algorithms and pro-
tocols, in this paper we take the position that the imple-
mentation of those algorithms and protocols on the SDN
platform is a hard problem on its own that deserves a sys-
tematic treatment from the software engineering perspec-
tive. Through a concrete case study of implementing an es-
sential switching algorithm as an SDN app, we expose the
challenges stemmed from the unique three-tier architecture
of SDN, and propose a rigorous approach that flows from
functional requirements through stepwise refinement to de-
sign and implementation. Our case study shows promises of
the proposed approach in supporting correctness arguments
for the software developed for the SDN platform.

1 Introduction

Software-defined networking (SDN) is an emerging tech-
nology that has completely transformed modern network-
ing, with widening adoptions in industries such as IT,
telecommunications, retails, and healthcare, to name a few.
At the core of the technology is the ability to apply software
solutions to hard, long-standing networking problems while
cutting the operation costs via automation.

Until very recently the focus of the SDN community was
on creating new and SDN-specific algorithms and proto-
cols that can take advantage of the unique capabilities of
SDN to solve sophisticated networking problems, such as
highly-dynamic, fine-grained traffic engineering and adap-
tive intrusion detection. However, little attention was given
to the software engineering aspects of app development, as
it was assumed that the implementation of those algorithms
and protocols was straightforward. More recently there has

been some work, including the authors’ own, on the test-
ing and orchestration of the SDN apps that leveraged tech-
niques from the software engineering discipline. But to the
best of our knowledge, there has not been a systematic in-
vestigation on the implementation of the SDN apps guided
by software engineering principles and methodologies.

In this paper we take the position that implementing
SDN apps is a hard problem on its own that deserves a sys-
tematic treatment from the software engineering perspec-
tive. We present a case study of implementing a basic yet
essential switching algorithm on the SDN platform. Our so-
lution takes two iterations of rigorous software specification
and design. It flows from functional requirements through
stepwise refinement to design and implementation. We re-
port our experience that shows promises of the proposed ap-
proach, which also supports correctness arguments for the
software developed for the SDN platform.

2 The MAC Learning Algorithm

We introduce in this section a preliminary case study,
i.e., the MAC learning algorithm. We first describe the al-
gorithm and its implementation on a traditional switch. We
then describe how the SDN architecture differs fundamen-
tally from the traditional network architecture, and expose
the challenges of migrating the same algorithm to SDN that
stem from the architectural difference.

2.1 On a Traditional Switch

The MAC learning algorithm is implemented on every
traditional switch, typically in the firmware. It is the core
switching algorithm that enables a switch to forward pack-
ets toward their destinations. The algorithm builds the
switch table and at the same time utilizes the table to deter-
mine the switch port to which a packet should be directed.
An entry in the switch table contains (1) the hardware iden-
tification number, termed Media Access Control (MAC) ad-
dress, of some host or router in the network; this address is

DOI reference number: 10.18293/SEKE2020-081



Figure 1. The learning algorithm working on
a traditional network

used as the key for indexing the table, (2) the switch port
leading toward that MAC address, and (3) a timer to delete
the entry in the future in case it becomes stale. The table is
stored in the memory and is initially empty. More specifi-
cally, the algorithm has the following components (also il-
lustrated in Figure 1):
• For each incoming packet received on a port, the switch
creates an entry in the switch table if such an entry does
not exist. The entry contains (1) the MAC address in the
packet’s source address field, (2) the port from which the
packet arrived, and (3) a timer set to expire after some pe-
riod of time. If such an entry already exists, the timer will
be refreshed. If there exists an entry with the same key (i.e.,
the MAC address) but a different port, the port will be up-
dated based on the new information, and the timer be reset.
• For each incoming packet, the switch uses the MAC ad-
dress in the packet’s destination address field to look up the
table. If the MAC address is listed, the switch will send the
packet out the associated port; otherwise, the switch will
flood the packet out all active ports except the incoming port
(the port the packet was received on).
• The switch deletes an entry in the table when the asso-
ciated timer expires. This is to handle potential topology
change, e.g., hosts being removed or relocated.

2.2 The SDN Architecture

The unique three-tier architecture of SDN (illustrated in
Figure 2) has important implications on the development of
software for SDN, so we briefly describe it here. At the
bottom tier are the hardware boxes, commonly called SDN
switches. Compared to hardware boxes (such as switches
and routers) in a traditional network, SDN switches are
much dumber (and also cheaper). A traditional switch or
router has the intelligence, provided by the device firmware,
to decide for itself how to handle incoming packets, as the
firmware implements various networking algorithms and
protocols. In contrast an SDN switch does not have such

Figure 2. The three-tier SDN architecture

intelligence; it relies on the controller (the middle tier in
the SDN architecture) to provide “instructions” (technically
called FlowMod messages or simply FlowMods) on how to
handle packets and then act accordingly. The controller is a
software platform that runs on any commodity PC server,
and can be viewed as the operating system for the net-
work. On the one hand the controller interacts with the
hardware boxes and provides instructions (i.e., FlowMods)
to them upon request. On the other hand it provides a set
of APIs that supports individual SDN apps running on top
of it. The SDN apps (the top tier) collectively implement
the intelligence of the network. Each app typically man-
ages/optimizes one aspect of the network, such as switch-
ing, routing, traffic engineering, intrusion detection, etc.
They obtain an abstract representation of the network state
(e.g., topology, traffic load) from the controller and out-
put to the controller instructions on how the network state
should be modified and how incoming packets should be
handled. The controller then compiles the instructions re-
ceived from all apps to generate FlowMod messages and
sends FlowMod messages to the SDN switches.

2.3 The Challenges of Migrating the Al-
gorithm to SDN

As explained above, in the SDN paradigm the MAC
learning algorithm is to be implemented as an app running
on top of the controller. This app will be responsible for
building the tables, one for each switch. The switches are
only capable of querying the controller (which in turn con-
sults the app) to obtain necessary instructions in the form
of FlowMod messages to forward incoming packets. Such
a query from a switch contains the source and destination
MAC addresses of the packet and the switch port on which
the packet was received. This allows the app to create or up-
date the entry corresponding to the source MAC address in
the querying switch’s table. A FlowMod message from the



controller back to the switch is in the format of “send any
packet with source MAC address s and destination MAC
address d to the port p” or “flood any packet with source
MAC address s and destination MAC address d”.

It is important to note that, the SDN architecture requires
the querying switch to cache any FlowMod message re-
ceived from the controller in a local table structure called
FlowMod table. The switch will then use the cached Flow-
Mod messages to process subsequent packets with the same
source and destination MAC addresses, without querying
the controller again. A switch may cache as many instruc-
tions as its memory space permits. As a critical measure to
save memory space, any cached instruction will be deleted
after it has not been utilized for a period of time. This
caching technique is critical to optimizing the packet pro-
cessing speed on the switches, as querying the controller
introduces significant delays. As an example, imagine that
a large file is being transmitted over a local-area network
from the host s to the host d. Tens of thousands of packets
will be transmitted, all with the same source and destination
MAC addresses. A switch w queries the controller when it
receives the first packet and caches the FlowMod message
from the controller. The switch will then use the cached
FlowMod to forward all subsequent packets of the same file
without querying the controller again. Hence the controller
will only see the first packet of that file.

The fact that the SDN controller, and consequently all
apps running on top it, only see a small fraction of all the
packets in the network has an important implication on the
implementation of the MAC learning algorithm, or more
specifically, on refreshing the timers associated with table
entries. Recall that an entry will be refreshed every time a
packet from the same source MAC address is received. Be-
cause the controller does not see most of the packets, it will
not be able to effectively refresh the timers. As a result,
many of the timers will unnecessarily expire, causing the
app to instruct the switches to flood much more frequently
than necessary. Continuing from the file transmission ex-
ample and imagining the switch w receives a new packet
with s as the destination MAC address shortly after the file
transmission. It queries the controller which in turn con-
sults the app. But the app has timed out the table entry cor-
responding to the MAC address s because it did not see any
of the subsequent packets of that file. Thus the app, through
the controller, will instruct the switch to flood the packet.
Clearly the flooding is unnecessary in this case because the
information contained in the expired table entry is still valid.
As flooding causes significant bandwidth overhead that de-
grades the network performance, it is highly undesirable.
(On the other hand, the switch does see all the packets of
the file. We will explore in Section 5 how this knowledge of
the switch may be leveraged to prevent the MAC learning
app from unnecessarily timing out table entries.)

3 Leveraging Rigorous Software Specifica-
tion and Design Methodologies

Developing a reliable SDN app, just as developing a re-
liable piece of any software, relies on rigorous methods for
code development and testing, and a development process
that is based on more than heuristics. In our opinion, each
SDN app should first be treated as a black box, and flow
naturally through a sequence of requirements specification,
design, implementation, and testing steps. In migrating the
MAC learning algorithm from traditional network to SDN,
we applied two rigorous methods for software specification
and design, i.e., Prowell and Poore’s sequence-based spec-
ification and stepwise refinement [10, 12, 13] and Exman’s
linear software models and the modularity matrix [8, 7].

Sequence-based specification was developed in the 90’s
by the University of Tennessee Software Quality Research
Laboratory. It converts ordinary, functional requirements to
a precise specification that defines software’s response to
any possible input sequence, through a systematic sequence
enumeration process. In this process, sequences of system
inputs are enumerated in length-lexicographic order and
mapped to software’s outputs, and grouped in equivalence
classes based on behavior described in (software) require-
ments. The completed enumeration encodes a formal model
in the form of a finite state machine (a Mealy machine) that
is refined into design and implementation [10, 12, 13].

Linear software models and the modularity matrix were
recently developed by Iaakov Exman in the study of real
software system composition, as a formal theory of mod-
ularity. He proposed that the composition of a software
system can be represented by a modularity matrix, whose
rows and columns represent functionals (a generalization
of methods) and structors (a generalization of classes), re-
spectively, and 1/0-valued matrix elements indicate asserted
links (associations) (or lack of) between rows (functionals)
and columns (structors). He proved that a standard mod-
ularity matrix, in which one has only linearly independent
structors and functionals, must be both square and block-
diagonal, with disjoint diagonal blocks representing inde-
pendent system modules. He showed that canonical sys-
tems strictly obey linear software models, and larger sys-
tems tend to agree with bordered linear software models
with a few outliers near the diagonal block borders. The
outliers point to areas of coupling that need to be resolved
in system design [8, 7].

We first applied sequence-based specification to derive a
rigorous specification from functional requirements for our
chosen case study, and refined it into a state-based specifica-
tion and design. Then we applied the modularity matrix to
validate the modular design refined from the formal specifi-
cation. We derived the specification in two iterations, with
new findings at the end of the first iteration, which we in-



corporated into the second iteration’s work product.

4 Our Solution: The First Iteration

We started with a natural language description of the be-
havior of the MAC learning algorithm, i.e., the software
requirements, as shown in Table 1. In developing the re-
quirements we also identified a system boundary that cuts
the interfaces between the software and its external entities
in the software’s environment, i.e., the switches (communi-
cation with the switches is through the SDN controller), the
memory (that stores the lookup tables for the switches), and
the timers. Figure 3 depicts our identified system boundary
for the first increment.

Table 1. MAC learning algorithm require-
ments: The first increment

Tag Requirement
1 On receiving a packet with source MAC address sa, destination

MAC address da from switch s and in-port p, if the lookup table
for s does not contain entries for either sa or da, the learning
switch should add a new entry (sa, p, t) to the same lookup
table, start timer t, and flood the same packet to all the ports of
s except the in-port p.

2 The output of the learning switch is solely determined by the
incoming packet information, the current lookup table status,
and the timer events, as encapsulated in the most recent input.

3 On receiving a packet with source MAC address sa, destination
MAC address da from switch s and in-port p, if the lookup table
for s does not contain an entry for sa but contains an entry for
da, the learning switch should add a new entry (sa, p, t) to the
same lookup table, start timer t, and forward the same packet to
the port of da as specified in the lookup table (for s).

4 On receiving a packet with source MAC address sa, destination
MAC address da from switch s and in-port p, if the lookup table
for s contains an entry for sa but does not contain an entry for
da, the learning switch should overwrite the entry (sa, p, t) to
the same lookup table, restart timer t, and flood the same packet
to all the ports of s except the in-port p.

5 On receiving a packet with source MAC address sa, destination
MAC address da from switch s and in-port p, if the lookup table
for s contains entries for both sa and da, the learning switch
should overwrite the entry (sa, p, t) to the same lookup table,
restart timer t, and forward the same packet to the port of da as
specified in the lookup table (for s).

6 On receiving a timer going off event for the MAC address sa in
the lookup table for switch s, the learning switch should delete
the entry (sa, p, t) from the same lookup table, and stop timer
t.

From the identified system boundary we collected soft-
ware’s inputs (stimuli) and outputs (responses), as shown in
Table 2 and Table 3.

The sequence enumeration proceeds as follows. One ex-
plicitly enumerates all possible stimulus sequences first ac-
cording to the length, and within the same length lexico-
graphically. For each enumerated sequence, one maps it to

Table 2. MAC learning algorithm stimuli: The
first increment

Stimulus (Parameterized) Shorthand
Packet(source MAC address, destination
MAC address, switch, in-port)

pa(sa, da, s, p)

Look up table(switch) lt(s)
Timer going off(switch, source MAC ad-
dress)

t(s, sa)

Table 3. MAC learning algorithm responses:
The first increment

Response Shorthand
Forward forward
Flood flood
Add a new entry to the lookup table add
Overwrite an existing entry in the lookup ta-
ble

overwrite

Delete an existing (expired) entry from the
lookup table

delete

Start timer start
Restart timer restart
Stop timer stop

a software’s response based on the requirements, and de-
clares it equivalent to a prior sequence if both sequences
take the software to the same situation (i.e., internal state).
If a stimulus sequence is operationally not realizable (for
instance, when a button-pressing event happens before the
power-on event), the sequence is mapped to a special ille-
gal response, otherwise, it is legal. If a sequence is declared
equivalent to a prior sequence, it is reduced, otherwise, it is
unreduced. One proceeds from Length n to Length n + 1
only extending both legal and unreduced sequences (by ev-
ery stimulus), until there are no more sequences to extend.
At that point the enumeration is complete.

SDN MAC 
learning algorithm

Switches (through 
SDN controller)

Memory 
(lookup table)

Timers

packets

forward / 
flood 

command

read

write

going 
off

start / 
restart / 

stop

system

Figure 3. The system boundary for the first
increment

An enumeration of the learning switch algorithm is
shown in Table 4. The columns are stimulus sequences,
their mapped responses, and requirements traces, respec-
tively. We omit the column that shows reductions to prior
sequences (as explained later, all the enumerated sequences



are reduced to the first sequence in the table). We started
with the empty sequence λ. All the others are Length 1 se-
quences with either an incoming packet (pa(sa, da, s, p)) as
the current input, or a timer going off event (t(s, sa)). When
a packet comes in, we used predicates (in square brackets)
to refine the condition based on the lookup table status, i.e.,
whether the source address sa and the destination address
da are in the lookup table for switch s, respectively, in order
to define the software’s unique response deterministically.
It turned out that all the Length 1 sequences are reduced
to λ, suggesting a stateless software control that maps cur-
rent input (with predicate refinement) to current output. We
held the following assumptions in sequence enumeration:
(1) The pa(sa, da, s, p) and t(s, sa) events are queued by
the SDN controller for processing, hence cannot happen si-
multaneously; and (2) All the timers are set to go off after
the same time interval once started/restarted.

Table 4. A MAC learning algorithm enumera-
tion: The first increment

Sequence Response Trace
λ 0 Method
pa(sa, da, s, p)[sa ̸∈
lt(s), da ̸∈ lt(s)]

add (sa, p, t) to lt(s), start t,
flood pa(sa, da, s, p) to all the
ports of s except p

1, 2

pa(sa, da, s, p)[sa ̸∈
lt(s), da ∈ lt(s)]

add (sa, p, t) to lt(s), start t,
forward pa(sa, da, s, p) to the
port of da in lt(s)

2, 3

pa(sa, da, s, p)[sa ∈
lt(s), da ̸∈ lt(s)]

overwrite (sa, p, t) in lt(s),
restart t, flood pa(sa, da, s, p)
to all the ports of s except p

2, 4

pa(sa, da, s, p)[sa ∈
lt(s), da ∈ lt(s)]

overwrite (sa, p, t) in
lt(s), restart t, forward
pa(sa, da, s, p) to the port of
da in lt(s)

2, 5

t(s, sa) delete (sa, p, t) in lt(s), stop t 2, 6

As one could observe, our first iteration of the specifica-
tion was a direct, intuitive migration of the traditional MAC
learning algorithm, replacing distributed intelligence with
centralized intelligence, solely based on the algorithm’s be-
havior. What were overlooked are the constraints enforced
by the unique SDN architecture, i.e., the different roles
taken by the controller and the switches, as well as the
caching of instructions (in the form of FlowMod messages)
on the switches. Without considering these requirements
the controller would see and handle every packet that goes
through every switch, making itself excessively “fat” and
causing unnecessary, significant delays to degrade network
performance. This observation led to our second iteration
of the specification to be discussed next.

5 Our Solution: The Second Iteration

In the second iteration we took into consideration im-
portant architectural differences introduced by SDN, i.e.,

Table 5. MAC learning algorithm require-
ments: The second increment

Tag Requirement
1 The SDN controller maintains a lookup table for each switch

mapping MAC addresses to ports on that switch. Each switch
maintains a FlowMod table that maps (source MAC address,
destination MAC address, in-port) to (out-port, timer value).
Recall from Section 2.3 that the FlowMod table contains the
cached FlowMod messages which are instructions from the con-
troller to the switch.

2 On receiving a packet with source MAC address sa, destination
MAC address da, in-port p of switch s, if the FlowMod table
of switch s has an entry for (sa, da, p), denoted by (op, t), the
switch will forward the packet to port op, and restart timer with
value t; otherwise, it will send the packet on to the controller
for processing.

3 When the controller receives a packet with source MAC address
sa, destination MAC address da from switch s and in-port p, if
the lookup table for s does not contain an entry for da, the learn-
ing switch should add/overwrite an entry (sa, p) to the lookup
table, and flood the same packet to all the ports of s except the
in-port p.

4 The output of the learning switch is solely determined by the
incoming packet information, the current lookup table status, or
the FlowRemoved message, as encapsulated in the most recent
input.

5 When the controller receives a packet with source MAC address
sa, destination MAC address da from switch s and in-port p,
if the lookup table for s contains an entry for da (with out-port
op), the learning switch should add/overwrite an entry (sa, p)
to the lookup table, forward the same packet on to port op, and
write a FlowMod message (s, sa, da, p, op, t, add) and its re-
versed FlowMod message (s, da, sa, op, p, t, add), where t is
the timer value, to switch s.

6 When a FlowMod table entry expires, the switch automati-
cally removes it from the FlowMod table, and sends a FlowRe-
moved message to the controller. When the controller receives
a FlowRemoved message from switch s, with source MAC ad-
dress sa, destination MAC address da, and in-port p, it deletes
the lookup table entry (sa, p) for s, and sends a FlowMod mes-
sage (s, da, sa, p, delete) to remove the reversed FlowMod ta-
ble entry maintained by s.

7 Any FlowMod table entry maintained by the switch that goes
stale (it only goes stale when the out-port becomes incorrect and
cannot reach the destination) must eventually time out (expire)
to prevent packet loss.

the two-level architecture in which the controller and the
switches take on different roles. We notice the following
for the SDN environment:
• Lookup tables are on the controller, rather than on the
switches, and are outside of the system boundary (of the
specified learning algorithm).
• The controller only sees the packets that the switches do
not know how to handle (forward).
• The controller sends the switches FlowMod messages
that are maintained by the switches. The FlowMod mes-
sages have different information packed than the informa-
tion packed in a lookup table entry.



• No timer is associated with lookup table entries. Timer
effect is simulated on the switches.

The new knowledge we learned contributed to our de-
rived requirements for the second increment shown in Ta-
ble 5. A new system boundary was identified as depicted in
Figure 4, from which we defined stimuli and responses in
Table 6 and Table 7.

SDN MAC 

learning 

algorithm

Switches 

(through 

SDN 
controller)

Memory 

(lookup 

table)

unmatched 
packet

flood command

forward command 

FlowRemoved
message

read a lookup 
table entry 

write a lookup 
table entry 

FlowMod message

system

Figure 4. The system boundary for the sec-
ond increment

Table 6. MAC learning algorithm stimuli: The
second increment

Stimulus (Parameterized) Shorthand
Unmatched packet(switch, source MAC ad-
dress, destination MAC address, in-port)

pa(s, sa, da, p)

Look up table(switch) lt(s)
FlowRemoved message(switch, source MAC
address, destination MAC address, in-port)

frm(s, sa, da, p)

Table 7. MAC learning algorithm responses:
The second increment

Response Shorthand
Forward forward
Send a FlowMod message to the switch with
the following information: switch, source
MAC address, destination MAC address, in-
port, out-port, timer value, type (add or
delete)

flowmod(s, sa, da, ip,
op, t, add) or
flowmod(s, sa, da, ip,
delete)

Flood flood
Add/Overwrite a new entry to the lookup ta-
ble with the following information: switch,
source MAC address, in-port

add-lt(s, sa, p)

Delete an existing (expired) entry from the
lookup table with the following information:
switch, source MAC address, in-port

delete-lt(s, sa, p)

We completed a sequence enumeration for the second
increment in Table 8. Similarly all Length 1 sequences are
reduced to the empty sequence indicating a stateless soft-
ware control for this simple SDN app. This is because we
used predicates to refine the lookup table status, at a certain

level of abstraction, at the receipt of an unmatched packet
or a FlowMod message from the switch, to deterministically
identify software’s behavior while keeping the enumeration
productive.

Table 8. A MAC learning algorithm enumera-
tion: The second increment

Sequence Response Trace
λ 0 Method
pa(s, sa, da, p)
[da ̸∈ lt(s)]

add-lt(s, sa, p), flood
pa(s, sa, da, p) to all the ports of
s except p

1, 2, 3, 4

pa(s, sa, da, p)
[da ∈ lt(s)]

add-lt(s, sa, p), forward
pa(s, sa, da, p) to the port
of da in lt(s) (denoted by op),
flowmod(s, sa, da, p, op, t, add),
flowmod(s, da, sa, op, p, t, add)

1, 2, 4, 5, 7

frm(s, sa, da, p) delete-lt(s, sa, p),
flowmod(s, da, sa, p, delete)

1, 2, 4, 6, 7

Refinement of a sequence-based specification into de-
sign and implementation proceeds with selecting a software
architecture and capturing how to gather each stimulus, gen-
erate each response, and maintain each system state.

Towards the implementation of an SDN MAC learning
algorithm, we selected Mininet [1] as the network emula-
tor, and Floodlight [4] as the open SDN controller. There
is a learning switch already provided by Floodlight, which
we disabled and replaced with a simple learning switch
implemented from scratch based on our formal specifica-
tion. This consists of two Java files that define a class
and an interface: SimpleLearningSwitch.java and
ISimpleLearningSwitchService.java.

In Table 9 and Table 10 we show how one could write
Java code to gather each stimulus and generate each re-
sponse. No state data is needed for this simple stateless
control as identified by the specification.

We defined functionals from the requirements in Ta-
ble 11, and structors from our design (classes and methods)
in Table 12. Figure 5 shows a standard modularity matrix
for the MAC learning algorithm based on these definitions
that obeys linear software models. Due to the simplicity of
this app (a single class implementing the algorithm), struc-
tors correspond to a group of class methods rather than a
group of classes.

Testing of the SDN learning switch algorithm turned out
to be a trivial testing problem given the stateless (rather than
a stateful) software control. Using predicate refinement, we
were able to enforce a trajectory onto a specific lookup table
state, enabling a direct mapping from the current input (e.g.,
an incoming packet) to the current output, and exhaustive
testing of all scenarios of uses.



Table 9. MAC learning algorithm stimuli gath-
ering

Stimulus Design / Implementation
pa(s, sa, da, p) SimpleLearningSwitch.receive(IOFSwitch sw,

OFMessage msg, FloodlightContext cntx),
msg.getType() == PACKET IN, sw ⇒ s, cntx
⇒ (sa, da), msg ⇒ p

lt(s) Map⟨IOFSwitch, Map⟨MacAddress, OFPort⟩⟩,
SimpleLearningSwitch.macToSwitchPortMap,
macToSwitchPortMap.get(s)

frm(s, sa, da, p) SimpleLearningSwitch.receive(IOFSwitch sw,
OFMessage msg, FloodlightContext cntx),
msg.getType() == FLOW REMOVED, sw ⇒ s,
msg ⇒ (sa, da, p)

Table 10. MAC learning algorithm response
generation

Response Design / Implementation
forward SimpleLearningSwitch.pushPacket(IOFSwitch sw,

Match m, OFPacketIn msg, OFPort outport)
flowmod(s, sa, da,
ip, op, t, add) or
flowmod(s, sa, da,
ip, delete)

SimpleLearningSwitch.writeFlowMod(IOFSwitch
sw, OFFlowModCommand command, OF-
BufferId buffered, Match m, OFPort output),
sw ⇒ s, command ⇒ OFFlowModCom-
mand.ADD or OFFlowModCommand.DELETE, m
⇒ (sa, da, ip), outport ⇒ op, SimpleLearning-
Switch.FLOWMOD DEFAULT IDLE TIMEOUT
⇒ t

flood SimpleLearningSwitch.writePacketOutForPacketIn
(IOFSwitch sw, OFPacketIn msg, OFPort porttype)
Pass in OFPort.FLOOD as porttype

add-lt(s, sa, p) SimpleLearningSwitch.addToPortMap(IOFSwitch
sw, MacAddress sourceMac, OFPort inport)

delete-lt(s, sa, p) SimpleLearningSwitch.removeFromPortMap(IOF-
Switch sw, MacAddress sourceMac)

Table 11. MAC learning algorithm functionals

Functional Requirement
Processing in-packets: collecting information 3, 4, 5, 6
Processing in-packets: sending on to switches 3, 4, 5
Writing FlowMod messages on switches 2, 4, 5, 6, 7
Maintaining lookup table entries 1, 3, 4, 5, 6

6 Related Work

Software-defined networking is a new paradigm in com-
puter networking that is gaining significant momentum.
The key concept of softwarization was first introduced in
the seminal work [11]. For the next several years, the
research primarily focused on the technologies that en-
abled the core platform. This includes the development of
the controller software(e.g., Floodlight [4] and OpenDay-
light [2]), the communication protocol (called OpenFlow)
between the hardware boxes and the software controller [3],

Table 12. MAC learning algorithm structors

Structor Class Method
Retrieving relevant
information from
incoming packets

SimpleLearningSwitch.receive, createMatch-
FromPacket

Sending received
packets to switches

SimpleLearningSwitch.pushPacket, Simple-
LearningSwitch.writePacketOutForPacketIn

Writing FlowMod
messages to switches

SimpleLearningSwitch.writeFlowMod

Processing lookup ta-
ble entries

SimpleLearningSwitch.addToPortMap, Sim-
pleLearningSwitch.removeFromPortMap,
SimpleLearningSwitch.inLookupTable

Figure 5. A standard modularity matrix for the
SDN MAC learning algorithm

the pipeline packet processing on the hardware boxes [5],
and so on.

More recently and as the core SDN platform has been
established, the networking community has begun to shift
its attention to the development of SDN apps. The develop-
ment has largely focused on the creation of advanced net-
working algorithms and techniques that utilize the unique
capabilities provided by the SDN platform, such as direct
programmability and centralized control, to solve hard and
long-standing problems in networking, such as dynamic
traffic engineering [9], efficient and intelligent anomaly de-
tection [15], optimized energy efficiency [14], to name a
few. Unfortunately the problem of implementing those
algorithms and techniques into software applications is
largely overlooked, as it has been assumed that the imple-
mentation is straightforward. This paper takes the position
that the implementation is in fact a non-trivial problem, and
our major contributions are to shed light on the implemen-
tation complexity, and to propose and sketch an initial so-
lution. As such this work complements the prior research
well. To the best of our knowledge, no prior work has sys-
tematically addressed the software engineering problems in
SDN application development.

Finally, we wish to note that there has been effort (in-



cluding the authors’ own work) in applying software engi-
neering techniques in the SDN context, but mainly to the
testing [6, 16] and orchestration [17] of SDN apps. In con-
trast, this paper focuses on the implementation of those ap-
plications.

7 Conclusion

The emerging software-defined networking paradigm
revolutionizes computer networking and presents new chal-
lenges to the software engineering community. The ar-
chitecture enabled by SDN enforces re-examination of the
many assumptions (that have been taken for granted in de-
veloping traditional networking software), when one devel-
ops SDN control software. We propose a systematic and
methodical approach to SDN app development through rig-
orous software specification and design methodologies, that
can be applied to developing new SDN apps, or migrating
existing algorithms and protocols to the SDN environment.
We illustrate a preliminary case study of the MAC learning
algorithm that shows promises of achieving correct soft-
ware by design for software-defined networking, through
a sequence of refinement steps. Our future work includes
further validation of our approach via more case studies of
more sophisticated SDN apps to address scalability, and uti-
lizing/augmenting existing tool support.

Acknowledgments

This work was generously funded by Air Force Research
Laboratory(AFRL) through the NSF Security and Software
Engineering Research Center (S2ERC), and by the National
Science Foundation (NSF) under Grants CNS-1660569 and
1835602. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of AFRL,
S2ERC, or NSF.

References

[1] Mininet: An Instant Virtual Network on your Laptop (or
other PC). http://mininet.org.

[2] The OpenDaylight Project. http://opendaylight.
org.

[3] OpenFlow Specifications. https:
//www.opennetworking.org/
software-defined-standards/
specifications/.

[4] Project Floodlight: Open Source Software for
Building Software-Defined Networks. http:
//www.projectfloodlight.org/floodlight/.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz. Forwarding

metamorphosis: Fast programmable match-action process-
ing in hardware for SDN. SIGCOMM Computing Commu-
nications Review, 43(4):99–110, 2013.

[6] M. Canini, D. Venzano, P. Perešı̀ni, D. Kostic̀, and J. Rex-
ford. A NICE way to test Openflow applications. In Pro-
ceedings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation, pages 127–140, San Jose,
CA, 2012.

[7] I. Exman. Linear software models: Standard modularity
highlights residual coupling. International Journal of Soft-
ware Engineering and Knowledge Engineering, 24(2):183–
210, 2014.

[8] I. Exman. Conceptual integrity of software systems: Ar-
chitecture, abstraction and algebra. In Proceedings of the
29th International Conference on Software Engineering and
Knowledge Engineering, pages 416–421, Pittsburgh, PA,
2017.

[9] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi,
K. N. B., C. Bhagat, S. Jain, J. Kaimal, S. Liang, and et al.
Before and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in Google’s software-
defined WAN. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, pages
74–87, Budapest, Hungary, 2018.

[10] L. Lin, S. J. Prowell, and J. H. Poore. An axiom system
for sequence-based specification. Theoretical Computer Sci-
ence, 411(2):360–376, 2010.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
Flow: Enabling innovation in campus networks. Computer
Communication Review, 38:69–74, 2008.

[12] S. J. Prowell and J. H. Poore. Foundations of sequence-
based software specification. IEEE Transactions on Soft-
ware Engineering, 29(5):417–429, 2003.

[13] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.
Cleanroom Software Engineering: Technology and Process.
Addison-Wesley, Reading, MA, 1999.

[14] M. Rahnamay-Naeini, S. S. Baidya, E. Siavashi, and
N. Ghani. A traffic and resource-aware energy-saving mech-
anism in software defined networks. In International Con-
ference on Computing, Networking and Communications,
pages 1–5, Kauai, HI, 2016.

[15] A. Santos da Silva, J. A. Wickboldt, L. Z. Granville, and
A. Schaeffer-Filho. ATLANTIC: A framework for anomaly
traffic detection, classification, and mitigation in SDN. In
IEEE/IFIP Network Operations and Management Sympo-
sium, pages 27–35, Istanbul, Turkey, 2016.

[16] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, and et al.
Troubleshooting blackbox SDN control software with min-
imal causal sequences. In Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Communi-
cation, pages 395–406, Chicago, IL, 2014.

[17] X. Sun and L. Lin. Leveraging rigorous software specifica-
tion towards systematic detection of SDN control conflicts.
In Proceedings of the 31st International Conference on Soft-
ware Engineering and Knowledge Engineering, pages 193–
258, Lisbon, Portugal, 2019.


