
Cross-project Reopened Pull Request Prediction in
GitHub

Abdillah Mohamed†‡, Li Zhang†, Jing Jiang†∗
†State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

‡University Institute of Technology, University of Comoros, Comoros
Email:{abdillah,lily,jiangjing}@buaa.edu.cn

Abstract—In GitHub, pull requests may get reopened again for
further modification and code review. Prediction of within-project
reopened pull requests works well if there is enough amount of
training data to build the training model. However, for new projects
that have a limited amount of pull requests, using training data
from other projects can help to predict the reopened pull requests.
Therefore, it is important to study cross-project reopened pull request
prediction and help integrators in new projects.

In this paper, we propose a cross-project approach that consists of
building a decision tree training model based on an external project
as a source project to predict the reopened pull requests in another
project. We evaluate the effectiveness of cross-project prediction on
7 open source projects containing 100,622 pull requests. Experiment
results show that the cross-project prediction achieves accuracy from
78.76% to 96.52%, and F1-measure from 53.34% to 90.58% across 7
projects. We examine the feature importance using the decision tree
predictor and find that the number of commits is the most important
feature in the majority of projects.

Keywords—Reopened pull request prediction, Cross project,
GitHub.

I. INTRODUCTION

GitHub is popular among a large number of software
developers around the word [1].

To identify whether or not a pull request will be reopened,
we proposed in our prior work a within-project predictor
that consists of splitting the entire dataset of a project into
a training set and a testing set to predict whether or not
a closed pull request would be reopened [2]. Prediction of
within-project reopened pull requests works well if there is
enough amount of training data to build the training model.

However, for new projects that have a limited amount of
pull requests, using training data from other projects can
help to predict the reopened pull requests. It is important
to study cross-project reopened pull request prediction, and
help integrators in new projects. Several researchers studied
the cross-project defect prediction [3]–[5]. To the best of our
knowledge, the cross-project reopened pull request prediction
has not been explored yet.

In this paper, we proposes a cross-project approach that
consists of building a decision tree training model based on
an external project as source project to predict the reopened
pull requests in another project. This approach first extracts
code features of modified changes, review features during

∗Corresponding author
DOI reference number: 10.18293/SEKE2020-072

evaluation, and developer feature of contributors from a source
project. Then it uses decision tree classifier to make prediction
for pull requests in a target project.

In order to explore the performances of this approach,
we collect datasets of 7 open-source projects and 100,622
pull requests. Results show that the cross-project reopened
pull request prediction achieves accuracy of 78.76%, 95.11%,
94.12%, 89.95%, 93.06%, 96.52%, 94.87%, and F1-measure
of 53.34%, 86.52%, 83.72%, 73.54%, 81.54%, 90.58%,
85.72% for the target projects bootstrap, cocos2d-x, symfony,
homebrew-cask, zendframework, rails, and angular.js respec-
tively. We explore feature importance, and find that in the
majority of projects, number of commits is the most important
in the prediction of reopened pull requests.

The main contributions of this paper are as follow:
• We build a cross-project approach based on a source

project to predict the reopened pull requests in a target
project. Results show that cross-project approach per-
forms well in predicting reopened pull requests.

• We find that the number of commits is the most important
feature in the cross-project reopened pull request predic-
tion in most of the projects.

The remainder of the work is structured as follows. Section
II presents the data collection. In Section III, we present the
approach of the cross-project reopened pull requests. Section
IV presents the experimental settings. Section V presents the
experimental results of our approach. In section VI, we present
threats to validity. Section VII presents the related work.
Finally, section VIII presents summarise our findings.

II. DATA COLLECTION

We use the same dataset as our previous work [2]. We
choose 7 popular projects such as rails, cocos2d-x, sym-
fony, homebrew-cask, zendframework, angular.js, and boot-
strap with more than 5,000 stars, because they receive many
pull requests and provide datasets for our research.

Table I shows the basic statistics of 7 projects. The table
represents the percentage of reopened pull requests. In the fifth
column, the value before the slash is the number of reopened
pull requests, and the value after the slash is its percentage.
Reopened pull requests exist in all projects.

III. APPROACH

In this section, we describe the cross-project reopened pull
request prediction.



TABLE I
BASIC INFORMATION OF PROJECTS.

Project owner Repository Language #Pull requests #Reopened pull requests #Stars
rails rails Ruby 19,190 467/2.43% 36,253

cocos2d cocos2d-x C++ 14,134 113/0.80% 10,514
symfony symfony PHP 14,569 220/1.37% 14,800
caskroom homebrew-cask Ruby 31,980 331/1.04% 11,229

zendframework zendframework PHP 5,631 213/3.78% 5,522
angular angular.js JavaScript 7,504 223/2.97% 56,359

twbs bootstrap JavaScript 7,614 136/1.79% 112,425

Fig. 1. Overall framework of the cross-project predictor

A. Model-building phase

As shown in Figure 1, our framework takes as input
instances (pull requests) from source project (step 1) with
a known class (i.e., reopened or non-reopened). We collect
code features, review features and developer feature. Next, it
extracts various metrics from the source project to build the
cross-project model (step 2). Then we use a weighted vector
to represent each pull request, and each element in this vector
We describe details of features as follow:

Code feature. We use code features in cross-project re-
opened pull requests prediction at the first close. We take
in count four features to measure modified codes, including
number of commits, number of changed files, number of added
lines and number of deleted lines in a pull request.

Review feature. We consider review features, including
number of comments, evaluation time and closed status. Eval-
uation time is the time difference between the pull request’s
submission and first close. Closed status assess whether a pull
request is accepted or rejected at its first close.

Developer feature. We apply developer feature which quan-
tifies the reputation of contributors who submit pull requests.
For each pull request, we compute the number of accepted and
rejected pull requests submitted by the same contributor before
its creation time. Briefly, the reputation is the proportion of
previous pull requests which are submitted by the contributor

and get accepted.

B. Prediction phase

In the prediction phase, the same cross-project prediction
model built in step 2 is applied to predict whether a closed
pull request would be reopened in the target project. For a
pull request in a target project, we first extract code features,
review features and developer feature as those extracted the
model-building phase (step 3). We then input the values of
these metrics into the cross-project model (Step 4). It outputs
the pull request prediction result about whether it will be either
reopened or non-reopened (Step 5).

IV. EXPERIMENTAL SETTINGS

The main goal of this work is twofold. (i) We build trained
model based one source project to train a model and use it
to predict the reopening of a pull request of another project.
(ii) We study feature importance in predicting reopened pull
requests.

A. Evaluation process and metrics

In evaluation, we use accuracy, precision, recall and f1-
measure. The accuracy measures the number of correctly
classified reopened pull requests (both non-reopened and re-
opened) over the total number of pull requests. Precision is
the ratio of correctly predicted reopened pull requests over
all the pull requests predicted as reopened. Recall is the ratio
of correctly predicted reopened pull requests over all actually
reopened pull requests. F1-measure is the weighted harmonic
mean of precision and recall.

B. Research Questions

We are interested to answer following research questions:
RQ1: How does the cross-project prediction perform?
Motivation. In this research question, we aim at building a

cross-project predictor based on one project as a source project
to predict the pull request reopening in a data of another
project.

Approach. To solve this research question, we aim at
building decision tree training models based on one projects as
a source project by crossing the seven projects between them.
For each of the 6 source projects used separately to predict the
reopened pull requests in one and only target project, we select
the results of the source project that achieves high f1-measure.



RQ2: Which features are important in cross-project
reopened pull request prediction?

Motivation. Different features may have various weights
in cross-project reopened pull request prediction. We wonder
which features are more important than other.

Approach. In order to answer this question, we use decision
tree classifier to compute feature importance in the prediction
of reopened pull requests. Feature importance is calculated as
the decrease in node impurity weighted by the probability of
reaching that node. The node probability can be calculated
by the number of reopened pull request that reach the node,
divided by the total number of pull requests. The higher the
value is, and the more important the feature is.

V. EXPERIMENTAL RESULTS

In this section, we study the results of our study aiming at
answering above research questions.

A. RQ1: Performance of cross-project prediction

In order to answer RQ1, we study results based on different
combination of source projects and target project. We first
analyze the project rails as an example. Table II shows
results when the project rails is the target project. In each
row, we predict reopened pull requests in the project rails
as target projects by crossing the projects symfony, cocos2d-
x, angular.js, zendframework, homebrew-cask and bootstrap
respectively as source projects. The best results are in bold.
Results show that the combination cocos2d-x =>rails achieves
the best performance by achieving an accuracy of 96.52% and
f1-measure of 90.58%.

TABLE II
PREDICTING THE REOPENED PULL REQUEST BASED ON THE PROJECT

RAILS AS THE TARGET PROJECT

Source =>Target
projects

Accuracy Precision Recall F1-
measure

symfony =>rails 96.47% 98.07% 83.92% 90.45%
cocos2d-x =>rails 96.52% 96.60% 85.20% 90.58%
angular.js =>rails 96.02% 95.29% 85.00% 89.85%
zendframework =>rails 96.42% 96.61% 84.75% 90.29%
homebrew-cask =>rails 92.24% 78.51% 83.92% 81.13%
bootstrap =>rails 94.83% 82.77% 92.97% 87.57%

Table III shows the performances of the cross-projects re-
opened pull requests prediction across 7 projects. The projects
on top of the table are used as a target for single source cross-
projects, while the projects on the left side of the table are
used as source projects. We use the source project to train the
decision tree model, and the target project is used as a class
project to predict the reopened pull requests. Results in green
color represent the highest performance predictions of the
cross-project prediction of each target across 6 target projects.
Results show that when predicting reopened pull requests in
the target project angular.js, the source project symfony is
more suitable comparing to the other source projects. In the
same way, we compared the performances of the other source
projects, and find the source project which achieves the highest
F1-measure in predicting reopened pull requests for a specific
target project.

The Table IV presents the combinations of the cross-project
that carry out the best results across 42 combinations from
the Table III. Each target project is used separately with each
of the six remaining projects as source projects to predict
the reopened pull requests and select the combination that
achieves the best results. In the same way, we processed
to select the best combination of crossed projects (sources
and targets) that has good performances. Thus, we notice
that the single source cross-project reopened pull requests
prediction achieves good performances in most of the projects.

TABLE IV
PERFORMANCES OF CROSS-PROJECT REOPENED PULL REQUESTS

PREDICTOR

Source=>Target projects Accuracy Precision Recall F1-
measure

homebrew-cask =>bootstrap 78.76% 48.12% 59.83% 53.34%
zendframework =>cocos2d-x 95.11% 97.36% 77.86% 86.52%
zendframework =>symfony 94.12% 93.72% 75.64% 83.72%
cocos2d-x =>homebrew-cask 89.95% 78.51% 69.16% 73.54%
rails =>zendframework 93.06% 90.18% 74.41% 81.54%
cocos2d-x =>rails 96.52% 96.60% 85.20% 90.58%
symfony =>angular.js 94.87% 97.91% 76.24% 85.72%

RQ1: Across the 7 projects, the single source cross-
project reopened pull requests prediction achieves good
performances in most of the projects.

B. RQ2: Important features for predicting reopened pull re-
quests.

Decision tree classifier also computes the importance of
each feature in the prediction of reopened pull requests,
and we plot the results in the Table V. Feature importance
may be different in various projects. In the majority of
projects, the number of commits is the most important in the
prediction of reopened pull requests. Some pull requests have
many commits, and they may be difficult for integrators to
make a complete evaluation. Therefore, pull requests with
many commits are likely to be reopened, and the number of
commits is the most important feature.

RQ2: In the majority of projects, the number of commits
is the most important in the cross-project reopened pull
request prediction.

VI. THREATS TO VALIDITY

In this section, we introduce threats to the validity of our
study.

Threats to external validity relate to the generalization of
our research. Firstly, our experimental results are limited to 7
projects in GitHub. In the future, we plan to use more projects
to better generalize the results of our method. Secondly, we
analyze open-source software projects in GitHub. In the future,
we plan to study other platforms and compare their results with
our findings in GitHub.

Threats to construct validity refer to the degree to which the
construct being studied is affected by experiment settings. We
use accuracy, precision, recall, and F1-measure. As a results,
there is little threat to construct validity.



TABLE III
F1-MEASURE COMPARISON BETWEEN THE CROSS-PROJECTS REOPENED PULL REQUESTS PREDICTION

Source/Target rails angular.js cocos2d-x Symfony homebrew-cask zendframework bootstrap
rails / 83.61% 86.22% 82.55% 61.82% 81.54% 24.81%
angular.js 89.85% / 84.06% 80.65% 59.58% 77.73% 24.25%
cocos2d-x 90.58% 84.26% / 67.61% 73.54% 80.36% 35.74%
symfony 90.45% 85.72% 84.18% / 61.79% 79.57% 20.59%
homebrew-cask 81.13% 81.62% 83.75% 66.15% / 79.40% 53.34%
zendframework 90.29% 84.87% 86.52% 83.72% 67.34% / 33.68%
bootstrap 87.57% 76.33% 84.68% 69.84% 73.24% 74.43% /

TABLE V
FEATURE IMPORTANCE FOR CROSS-PROJECT REOPENED PULL REQUESTS PREDICTION

Features homebrew-cask
=>bootstrap

zendframework
=>cocos2d-x

zendframework
=>symfony

cocos2d-x
=>homebrew-cask

rails
=>zend-
framework

cocos2d-
x =>rails

symfony
=>Angular.js

Average

Number of commits 0.327 0.275 0.275 0.611 0.476 0.611 0.463 0.434
Number of changed file 0.038 0.411 0.411 0.040 0.361 0.040 0.274 0.225
Number of added lines 0.128 0.000 0.000 0.000 0.045 0.000 0.000 0.025
Number of deleted lines 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Number of comments 0.019 0.033 0.034 0.002 0.017 0.002 0.015 0.017
Evaluation time 0.079 0.169 0.169 0.083 0.041 0.084 0.116 0.106
Closed status 0.322 0.038 0.038 0.234 0.040 0.234 0.025 0.133
Reputation 0.084 0.074 0.073 0.029 0.021 0.029 0.107 0.060

VII. RELATED WORKS

In this section, we mainly discuss related works, including
reopened pull requests and cross-project prediction.

A. Reopened pull requests

In GitHub, there are several works which are focusing on
pull requests evaluation and prediction [2], [6]. We conducted
a case study to understand reopened pull requests [6]. Previous
work [2] designed a within-project reopened pull request pre-
diction, while this paper explores the cross-project reopened
pull request prediction.

B. Cross-project prediction

The cross-project prediction has been the main area of
researches in different aspects by reusing training data from
other projects to make a prediction in a new project. Several
authors discussed the cross-project defect prediction [3]–[5].
Rahman et al. [3] compared the cross-project defect prediction
with the prediction within a project, and they found that cross-
project prediction performance was no worse than within-
project performance and considerably better than random
prediction.

Unlike the above researches, we address a different problem,
namely cross-project reopened pull request prediction.

VIII. CONCLUSION

Cross-project reopened pull requests are important for the
projects that do not have enough historical data to build
prediction models. In this paper, we propose a cross-project
approach for predicting reopened pull requests in GitHub.
This study brings new insight into the performances of the
cross-project using a decision tree classifier. Based on 100,622
pull requests from 7 open-source projects, experimental results
show that the cross-project reopened pull request prediction

achieves an f1-measure of 53.34%, 86.52%, 83.72%, 73.54%,
81.54%, 90.58%, and 85.72% for the target projects bootstrap,
cocos2d-x, symfony, homebrew-cask, zendframework, rails,
and angular.js respectively. We use decision tree to compute
feature importance, and find that number of commits is the
most important feature in the majority of projects.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China No. 2018AAA0102301, the
National Natural Science Foundation of China under Grant No.
61672078, the State Key Laboratory of Software Development
Environment under Grant No.SKLSDE-2019ZX-05.

REFERENCES

[1] A Lima, L Rossi, and M Musolesi. Coding together at scale: Github asa
collaborative social network. In Proceedings of 8th AAAI International
Conference on Weblogs and Social Media, 2014.

[2] Abdillah Mohamed, Li Zhang, Jing Jiang, and Ahmed Ktob. Predicting
which pull requests will get reopened in github. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), pages 375–385. IEEE, 2018.

[3] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. Recalling the”
imprecision” of cross-project defect prediction. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, pages 1–11, 2012.

[4] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-project
defect prediction using a connectivity-based unsupervised classifier. In
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 309–320. IEEE, 2016.

[5] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu
Wang. Hydra: Massively compositional model for cross-project defect
prediction. IEEE Transactions on software Engineering, 42(10):977–998,
2016.

[6] Jing Jiang, Abdillah Mohamed, and Li Zhang. What are the characteristics
of reopened pull requests? a case study on open source projects in github.
IEEE Access, 7:102751–102761, 2019.


