
A Combined Model for Extractive and Abstractive
Summarization Based on Transformer Model

Xin Liu, Liutong Xu
The Academy of Computer Science and Teconology, Beijing University of Post and Telecommunication

Beijing, China
liuxiaoxin@bupt.edu.cn, xliutong@bupt.edu.cn

Abstract—Summary generates by summarizing automatically
main information from the critical sentences of the article.
The traditional method of generating text summarization uses
extractive or abstractive algorithm model built based on neural
attention sequence to sequence framework. This kind of model
has performance bug and weak parallel computing capability
when getting summary, which causes the summary doesn’t fit the
meaning of the original and has no smooth sentences. Therefore,
we put up with a joint summary generation model based on
improving transformer. This model can put attention on sentence
and provide sequence information for periodical transformer
model by recurrent neural network. On the other hand, in
the generation stage, Transformer model is used to learn the
long distance dependence between words, and the summary
statement is more consistent with the original meaning by adding
pointer mechanism and consistency loss function. Experiments
were carried out on three datasets and a manual evaluation was
added to verify that the model has good summary significance.

Index Terms—Text Summarization , Transformer, Sequence
Information, Joint Model

I. INTRODUCTION

Summary generation aims to get a simplified input text
representation to capture the core meaning of the original
content. There are two types of methods: extractive and
abstractive. Extractive methods usually selects the original
sentence or word [1], such as Lead3, Summarunner [2], Swap-
Net [3] model. The summary obtained by these models are
not smooth due to the lack of connectives. Abstractive methods
can generate new words and phrases that are not included in
the source text.But the summary has incorrect fact details and
duplicate information, and words that are out of vocabulary. In
recent years, the pointer generator model proposed by see et
al [4] which has the ability to extract words from the original
text and reduce the repetition rate. Hsu et al. [5] proposed the
inconsistent loss function which combines extractive methods
and abstractive methods.

The transformer model proposed by Ashish et al [9] is
effective for capturing the global context semantic relationship
and parallel computing. In this paper, we proposed TP-EABS
(Transformer added Pointer and combine the Extractive and
Abstractive methods) model. It adopted the advantages of two
types of algorithms and transformer model. The model uses the
hidden layer information of GRU to supplement the sequence

DOI reference number: 10.18293/SEKE2020-069

information of transformer position, and dynamically adjusts
the attention of words in the second phase through sentence
level attention, so as to reduce the probability of words in
sentences with lower weight appearing in the abstract. And
we add a pointer mechanism to the transformer model, which
enables the transformer to copy words from the original text.

In summary, our contributions are as follows:
• We propose a joint model based on improved Transformer.
•We improve the Transformer architecture by adding position
information and pointer mechanisms.
• We have made comparative experiments on CNN/Daily,
Papers and DUC-2004 datasets, and the results have been
improved.

II. RELATED WORK

In recent years, summary generation has been widely stud-
ied. Generally,In the extraction method, key sentences or
words in the original text are extracted and presented as
abstracts. [3] and [4], [6] used recurrent neural network to
code the text, and then mark whether the sentence or word
belongs to the summary statement. Although some extraction
methods [10] can get high Rouge scores, their readability is
very low.

Abstrctive methods are mostly based on the sequence to
sequence framework based on neural attention [11], [14]. [12]
proposed a new model, which first selects key sentences,
then rewrites them with abstract algorithm to generate a brief
summary of the text. [11] proposed a new model, which can
not only retain the ability to generate new words, but also
copy words from the original text accurately to reproduce
information, and reduce the repetition rate of the generated
words in the summary by updating the attention weight. [9]
proposed Transformer, which is completely based on attention
mechanism and eliminates recursion and convolution. It can
solve the problem of long-distance dependence and realize
parallel computing. It can obtain the text semantic information
and structural information better.

III. OUR MODEL

This chapter introduces three aspects: sentence extraction
model, generating model, dynamic word-level mechanism.
Fig. 1 gives the overview of TP-EABS model.



Fig. 1: our model

A. Sentence Extraction Model

The model input is a series of sentencesS = [s1, s2, ..., sm],
where the representative m is the mth sentence and si is the
ith sentence, expressed as si = [w1, w2, ..., wn], the input
sentence maps each word to a vector through the language
training model, and the i-th sentence is expressed as si =
[x1, x2, ..., xn], Where n represents the nth word embedding
vector. we use BiGRU (Bi-directional Gated Recurrent Unit)
to process the input word sequence.After reading the words of

the sentence, we update its word representation xji =
[−→
hji ;
←−
hji

]
.

We use matrix X to represent the input vector.Get the sentence
vector by summing the word vectors in the sentence.

Then the sentence vector is input to the second layer of
BiGRU, and then calculated by the sigmoid function to obtain
sentence-level weight βn, The extractor loss is calculated using
the following cross-entropy loss.

Lext = −
1

n

N∑
n=1

(gnlogβn + (1− gn)log(1− βn)) (1)

In the above formula, gn is the n-th sentence a summary,
the value belongs to 1 and the value does not belong to 0.To
get ground truth labels g = {gn}n.We use the unsupervised
method proposed by Nillan et al. [5] to get extracted labels.

B. Generating Model

The benchmark model in this paper uses Transformer. We
will extract the vector Z = [z1, z2, ..., zm, ...] of the first
layer GRU encoding output in the model as the input of the

Transformer layer, we think zi contains word information and
location information.

[Q;K;V ] =WZ · Z +BZ (2)

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (3)

Where WZ and BZ are training parameters. We obtain
the query, key, and value vectors through Equation 10, dk
represents the size of the key value.

MultiHead (Q,K, V ) = Concat (head1, ..., headh)W
O

(4)

where headi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
(5)

We represent the output of the Encoder layer as E and
denote the output of the Decoder layer as D.We calculate
the attention weight between the encoder and decoder and
take it out to calculate the probability pgen, which determines
whether the word is copied from the original text or generated
in the dictionary.Enter the last layer of the decoder into
softmax to get the probability of getting words from the
vocabulary pvocab.In the end, we use Beam-search with the
Beam-size set to 3.

Pvoacb = softmax(V ′ (V ·D4 + b) + b′) (6)
[KE ;VE ] =WE · E +BE (7)
Qd =Wd ·D1 +Bd (8)

Ct =MulAttn(Qd,KE , VE) (9)

We use the following formula to calculate pgen, where X
is the input vector and C is the context text. The pointer



generator network is a hybrid between our baseline and the
pointer network, because it can both copy words by pointing
and generate words from a fixed vocabulary.

pgen = σ(WT
e E +WT

d D +WT
CCt + bptr) (10)

Next, we calculate the probability of the final word through
the probability pvocab and pgen, where Ct is the output of the
encoder and decoder mutual attention matrix at time t.

P (w) = pgenPvocab + (1− pgen)Ct (11)

losst represents the loss function at time t, and
Labsrepresents the loss function of the generated model part.

losst = −logP (W ∗t ) (12)

Labs =
1

T

T∑
t=0

losst (13)

C. Dynamic word-level mechanism

The dynamic word-level mechanism is to reduce the word-
level attention through the sentence’s attention weight, so that
the generative summary can pay more attention to a certain
sentence to generate a word, which also makes the sentence
weights of the same information different, which reduces the
repeatability of the generated words to a certain probability.

This article uses a BiGRU to obtain sentence-level weights
in the sentence extraction model. It needs to be added to the
word-level weights. The obtained sentence-level weights are
the matrix Asent formed by β, and a sentence vector Ẽt4
obtained by multiplying the word-level attention matrix and
value according to the multi-head attention mechanism , And
then obtain the updated encoding matrix using the following
formula.

Et4 = (WsentAsent +Bsent))Ẽ
t
4 +BE (14)

In order to ensure that the two levels of attention can be kept
consistent during the training process, a unified loss function
is added here. We use the Lsw loss function to represent the
error function calculated between sentences and words. Where
m(n) is a mapping relationship between words and sentences.

Lsw = − 1

T

t=1∑
T

log(
1

κ
)
∑
n∈κ

Etn ×Am(n)) (15)

Where κ is the set of the first κ participating words and t is
the number of words in the abstract. The loss of inconsistency
helps our unified model for end-to-end training benefit both the
extractor and the abstractor, and also helps to generate longer
digest lengths. Through sentence-level extraction, an improved
Transformer generation layer, and a swap mechanism, we
finally generate a training loss function Lsum

Lsum = ε1Lext + ε2Labs + ε3Lsw (16)

where ε1, ε2, ε3 are hyper-parameters. In our experient, we
give Lext a bigger weight (e.g., ε1 = 5) when end-to-end
training with Lsw since we found that Lsw is relatively large
such that the extractor tends to ignore Lext.

IV. EXPERIMENTS

A. Datasets and Settings

We use three datasets for model evaluation: CNN / Daily
Mail, Papers, and DUC-2004.The Papers dataset is a private
dataset that we build. We use the introduction of the article
as the original information and the multi-sentence abstract of
the article as the abstract.

In preprocessing, we use byte pair coding (BPE) algorithm
[13] to segment words. In this model, we set the vocabulary
size to 50,000. The baseline Transformer model is trained
using the same hyperparameters as the basic model in Ashish
[14]. The number of heads in the Transformer is 8, the size of
the feedforward network is 2048, and the training batch size is
8. We use 256-dimensional in BiGRU, which are stitched into
512-dimensional inputs to the Transformer. During the test,
we used a beam search with a size of 3 to generate summary,
performed 100,000 iterations, saved a basic model every 1000
times, and dropout is 0.5. We limit the maximum output length
to 20 and 30, respectively.

B. CNN/Daily dataset

As shown in Table I, we divide the model into Transformer,
TPABS (Transformer added pointer mechanism), and TP-
EABS. On CNN/Daily dataset, we can see that our model
TP-EABS is about 1.7 percentage points higher than Pgen
at ROUGE-1. Later, we compared this model with our own
baseline model. It was found that before these mechanisms
were added, the evaluation index obtained by our model
Transformer was not higher than the baseline model, indicating
that these mechanisms have improved the summary quality to
a certain extent. The ROUGE score is affected by the short
length of the generated summary. We are difficult to know
why the model gets a low summary score. To evaluate this
hypothesis, we randomly select 40 pairs (articles, abstracts)
from a fixed test set for manual evaluation. Articles and
model-generated summary were submitted to three relevant
professionals for evaluation. Each worker has two model-
generated summaries, one from the TP-EABS model and one
from the PGen model. Workers were asked to choose a better
summary according the four different quality metrics from
Celikyilmaz et al. [11]. The results are shown in Table II.
Interestingly, compared to the PGen model, the summary of
TP-EABS is more favored by humans.

In the experiment, we tried two strategies of location in-
formation superposition(1) Direct superposition form (ADD):
The bidirectional GRU encoding layer information is directly
added on the input vector of the Transformer. (2)Learning
Strategy (MLP): Add a layer of neural network to let this
layer of neural network learn how to superimpose position
information and word vector information.As shown in Table I,
it is found that the two superimposed effects have slightly
higher learning strategies, but the difference is not large. To
reduce the amount of calculation, we add the position vector
directly to the model.



TABLE I: ROUGE F1 results for various models and ablations
on the CNN/Daily Mail test set.

Model ROUGE-1 ROUGE-2 ROUGE-L
Attn-S2S [6] 32.75 12.21 29.01
PGen [4] 36.44 15.66 33.42
PGen+Cov [4] 39.53 17.28 36.38
Key informa-
tion [10]

38.95 17.12 35.68

Transformer 35.26 14.12 31.08
TPABS 36.75 15.89 33.15
TP-EABS(MLP) 38.12 17.36 36.45
TP-EABS(ADD) 38.14 17.29 36.52

TABLE II: Head-to-head comparison between test set outputs
of PGenand TP-EABS. Analyses done on summaries for
Papers.

Model PGen same TP-EABS
Non-redundancy 65 62 182
Coherence 180 42 145
Focus 140 36 176
Overall 160 41 170

C. Papers and DUC-2004

In Papers data set, the length of the article is long, and
its summary is mostly not in the original text. We mainly
test our improved Transformer model, as shown in Table III.
After adding the pointer mechanism, the model obtains The
result is 2 percentage points higher than the Pgen model,
which proves that the Transformer model is richer in obtaining
context information than the recurrent neural network in the
language model. On this data set, we set the parameters of
Pgen from See et al[4].We did ablation experiments to evaluate
the contributions of different mechanismsTransformer, TEABS
(Transformer on the extraction model), TPABS (Transformer
with a pointer mechanism added), and TP-EABS.The experi-
mental results of the four models are shown in the Table III.

As shown in Table III, our method has made some progress
on the current benchmark on DUC-2004 dataset, and ROUGE-
1 and ROUGE-L scores have improved the RAS-LSTM model
by absolute 0.3 and 1.5 percentage points, respectively. We
also compare the model with Feats. We can see that our model
still performs better without introducing external information
and reinforcement learning. TPEABS improves the data set

TABLE III: ROUGE F1 results for various models and abla-
tions on the Papers and DUC-2004.

Model R-1 R-2 R-L R-1 R-2 R-L
ABS [15] 24.32 7.32 19.24 26.55 7.06 22.05
ABS+ [15] 25.24 7.64 20.32 28.18 8.49 23.81
FeatS2S [7] 26.89 9.52 23.76 28.61 9.42 25.24
RAS-LSTM [8] 28.42 10.77 22.46 28.97 8.26 24.06
PGen [4] 29.70 13.19 27.32 – – –
Transformer 28.54 12.04 24.92 – – –
TPABS 29.32 12.58 25.45 – – –
TEABS 29.46 13.21 26.15 – – –
TP-EABS 31.69 14.52 28.18 29.27 9.95 25.54

by 0.13 percentage points and 0.4 percentage points over
TPABS. Considering the sequence context information, our
model can capture important information and generate high-
quality abstracts.

V. CONCLUSION

We propose a joint abstract generation model based on
improved Transformer. Most importantly, we improved the
Transoformer model so that it has the ability to copy words
from the original text. After adding sequence information and
extraction stages, the model in this paper can obtain more
complete summary information in the uniformly distributed
original text, and it will not ignore its importance because the
key information is located later. Through end-to-end training
of our model, we conducted experiments on three datasets and
conducted reliable human evaluation on private datasets, prov-
ing that the model has good summary information significance.

REFERENCES

[1] Piotr Bojanowski, Edouard Grave,Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135–146, 2017.

[2] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner:
A recurrent neural network based sequence model for extractive summa-
rization of documents. In Proceedings of Thirty-First AAAI Conference
on Artificial Intelligence (AAAI-17), pages 3075–3081.

[3] Jadhav A , Rajan V . Extractive Summarization with SWAP-NET:
Sentences and Words from Alternating Pointer Networks[C]// Proceed-
ings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2018.

[4] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the
point: Summarization with pointergenerator networks. In Proceedings
of the 55th Annual Meeting of the Association for Computational
Linguistics.

[5] Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui Min, Jing Tang,
and Min Sun. A unified model for extractive and abstractive summariza-
tion using inconsistency loss. arXiv preprint arXiv:1805.06266,2018.

[6] Cao Z, LiW, Li S et al (2016) Attsum: joint learning of focusing and
summarization with neural attention[J].arXiv preprint arXiv:1604.00125

[7] Nallapati, R., Zhou, B., dos Santos, C., Gulcehre, C., Xiang, B.:
Abstractive text summarization using sequence-to-sequence RNNs and
beyond.

[8] Sumit, C., Michael, A., Rush, A.M.: Abstractive sentence summarization
with attentive recurrent neural networks. Human Language Technolo-
gies, pp. 93–98 (2016)

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008.

[10] Ramesh Nallapati, Bowen Zhou, and Mingbo Ma. 2016a. Classify
or select: Neural architectures for extractive document summarization.
arXiv preprint arXiv:1611.04244

[11] Shashi Narayan, Shay B Cohen, and Mirella Lapata. 2018. Don’t give me
the details, just the summary! topic-aware convolutional neural networks
for extreme summarization. In EMNLP

[12] Yen-Chun Chen and Mohit Bansal.Fast abstractive summariza-
tion with reinforce-selected sentence rewriting. arXiv preprint
arXiv:1805.11080,2018.

[13] Sebastian Gehrmann, Yuntian Deng, and Alexander M Rush. Bottom-up
abstractive summarization. arXiv preprint arXiv:1808.10792, 2018.

[14] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating
Copying Mechanism in Sequence-to-Sequence Learning. In ACL, 2016.

[15] Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstrac-
tive sentence summarization. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 379–389 (2015)


