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Abstract—Before any online controlled experiment, a hypoth-
esis has to be formulated. Moreover, the design, execution, and
analysis have to be planned. Given that the definition of an exper-
iment varies considerably amongst experimentation platforms,
no common experiment definition exists. Furthermore, there is
to the best of the authors’ knowledge no platform-independent
experiment definition model proposed in the literature.

Thus, we aim to propose an experimentation definition lan-
guage and evaluate its usefulness and ease of use. Therefore,
we developed a domain-specific language based on the results
of a previous study and conducted a technology acceptance
model study with 30 participants. It revealed that the proposed
experiment definition language is considered useful amongst the
majority of participants. Moreover, most of the participants rated
the language easy to use. Participants without prior knowledge of
the domain-specific language’s host language (JSON – JavaScript
Object Notation) rated the language considerably less easy to use.

To conclude, the proposed experimentation definition lan-
guage supports practitioners in their experimentation process
by providing them a structure and pointing them out to experi-
ment characteristics that could be considered. Furthermore, the
machine-readable definition of experiments represents a first step
for many research directions, like the automated verification of
experiments, or the development of an experiment knowledge
base.

Index Terms—continuous experimentation, domain-specific
language, technology acceptance model, online controlled exper-
iment definition

I. INTRODUCTION

Online controlled experimentation of software features al-
lows to quickly assess ideas and to make data-driven decisions
about them [1]. Furthermore, the technique of deploying a
change, exposing it to a subset of the users and collecting
telemetry about it, has the potential to be a vehicle for
software quality assurance [2] of modern technologies like
machine learning or the internet of things (IoT) that are
challenging for offline software quality assurance techniques
[3] like traditional software testing. Given the potentially large
impact of decisions that are based on experiments, the correct
execution and therefore, the reliability of experiments are of
great importance to organizations. Recent empirical studies
[4], [5] found that the majority of practitioners use in-house
built experimentation platforms. Thus, they use self-built tools
to execute their experiments. Although this seems to be a
reasonable choice to adapt the experimentation process to the
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respective needs of an organization, it complicates the knowl-
edge and experience exchange within the community and the
development of platform-independent techniques. A platform-
independent experimentation definition language would repre-
sent a foundation for a more structured experiment definition,
static experiment verification, and software quality assurance
for modern technologies like machine learning or IoT –
independent of the concrete used experimentation platform.
Thus, this paper presents a tool-independent experimentation
definition language (EDL) based on the findings of [5]. The
language is evaluated on its usefulness and ease of use using
the technology acceptance model by Davis et al. [6].

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed experimentation definition lan-
guage. Section III discusses the applied research methods and
their threats to validity. Section IV presents the findings and
discusses them. Finally, Section V concludes the paper.

II. AN EXPERIMENTATION DEFINITION LANGUAGE (EDL)

A domain-specific language to define online controlled
experiments needs to describe an experiment through all
its lifecycle phases to provide a complete definition of an
experiment. Fabijan et al. [4] present an experiment lifecycle
with three phases (see Fig. 1).

Fig. 1. Experiment lifecycle by Fabijan et al. [4].

In the first phase called the ideation phase, ideas are
formalized as treatment descriptions and their success crite-
ria (minimal viable hypotheses). Based on a hypothesis the
treatment is developed as a minimal viable product. Thus, the
implementation is tailored to meet the experiment’s require-
ments.
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Fig. 2. Experiment definition characteristics taxonomy [5].

In the next phase, the design and execution of an experiment
are addressed. The design of an experiment includes amongst
others, the segmentation of the customers and the size and
duration required for reliable findings. During the execution
of an experiment monitoring is necessary to detect harmful
experiments (e.g. through alert conditions).

Finally, in the last phase, the results are analyzed, decisions
based on the findings are made and lessons from an experiment
are shared. Therefore, the collected data of an experiment is
analyzed and metrics are computed. After the comparison of
the success criteria with the outcome of the experiment, data-
driven decisions are made. Finally, the lessons learned about
the experimentation process (e.g. execution) and the influence
of the change on metrics are shared within an organization.

Authors in [5] assembled a taxonomy of characteristics (see
Fig. 2) that is used to describe online controlled experiments
in each phase of the experimentation lifecycle. It contains in
comparison to other experiment models (e.g. [4]), properties
that define the experiment design for each phase. The study
considered the literature on online controlled experimentation,
experimentation platforms, and the opinions of industrial ex-
perts. The developed taxonomy consists of 17 characteristics
(e.g. experiment owner) and their properties (e.g. name, role,
contact). Based on these findings and the observations made
during the research, an experimentation definition language
was developed. The described taxonomy of experimentation
characteristics served as a domain model for the development
of the domain-specific language.

The analysis of open-source as well as proprietary exper-
imentation platforms in [5] revealed that the data exchange
format JSON was the preferred data format of most platforms.
Thus, it seemed reasonable to use JSON as host language given
its widespread use in the community and its mature support by
all common programming languages. As a result, the domain
model based on the taxonomy was translated into a JSON
schema that describes the experimentation definition language,

its objects, and properties. This decision has the advantage
that definitions written in the domain-specific language (DSL)
are not only machine-readable, but they can be validated with
standard JSON tools too. Listing 1 of an experiment defined
in the language shows that the structure follows the taxonomy
closely.

Listing 1. Structure of an experiment written in EDL.
{
"Ideation":{
"Hypothesis":...,
"Owners":...

},
"Design":{
"Variants":...,
"Segmentation":...

},
"Execution":{
"AlertingAndShutdown":...

},
"Analysis":{
"SuccessMetrics":...,
"GuardrailMetrics":...

}
}

Given that the taxonomy already considers the experimenta-
tion lifecycle, the structure of the taxonomy was transferred to
the language. Furthermore, the lifecycle-oriented arrangement
of the characteristics gives guidelines during the planning of
an experiment.

The second main technology used for the implementation
of the language, is the — according to the Stack Overflow
Developer Survey1 — popular code editor Microsoft Visual
Code2. It has a mature support for both JSON and JSON
schemas, including additional JSON schema constructs to add
online documentation, auto-completion of predefined partial
templates and instant validation of the JSON document accord-
ing to a JSON schema. Hence, in addition to the JSON schema,
online documentation, and partial templates for all properties
were developed. As a result, the editor allows language users
to explore the language through auto-completion (e.g. what
could be written at this location?) and provides rapid feedback
on the syntactical validity of the defined experiment (e.g. is
the experiment valid against the schema?).

As a result, the experiment definition language has the
following key characteristics:

• Human-readable: Given that experimentation involves
stakeholders from different functional expertise (e.g. UX
design, software engineering, business), the experiment
definition has to be easy to understand and readable
independent of the reader’s expertise.

• Machine-readable: The definition of an experiment is
based on a common data exchange format that can be
processed with standard tools.

• Living documentation: The definition of an experiment
should be the single point of truth concerning the respec-
tive experiment. Thus, it should serve the stakeholders as
a discussion base and plan of action, and it should provide

1https://insights.stackoverflow.com/survey/2019#development-
environments-and-tools, accessed 2020-02-25.

2https://code.visualstudio.com/
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all necessary properties for the experiment platform to
execute the experiment.

• Knowledge sharing: Lessons learned from the design,
execution, and analysis of the experiment are valuable
knowledge that should be captured and shared. There-
fore, the definition of an experiment includes comments,
decisions, and the reasoning behind them. Moreover,
properties like tags improve the structured archival of
experiment definitions.

III. RESEARCH METHOD

To evaluate the proposed language, the technology accep-
tance model (TAM) by Davis et al. [6] was applied. It is a
model based on the theory of reasoned action (TRA) [7] that
allows to assess the user’s technology acceptance behavior.
The used sets of questions (see Table I) were adapted from
[6], [8], and [9]. They measure the three main constructs
perceived usefulness, ease of use, and self-predicted future
use (see Fig. 3).
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Fig. 3. Model of usefulness, ease of use, and self-predicted future usage
(TAM). Abbreviations are defined in Table I.

A. Objective

The experiment was performed for two reasons. First,
to evaluate the usefulness of a platform-independent and
machine-readable experimentation definition language. Sec-
ond, to evaluate the ease of use of the proposed experimenta-
tion definition language.

B. Variables

The following variables were considered in this study:
• Perceived usefulness is the degree users expect that the

system will improve their job performance.
• Perceived ease of use is the degree users expect that the

system will be free of effort.
• Self-predicted future usage is the degree users expect to

use the system in the future.

C. Subjects

The subjects of the experiments were 30 graduate students
of the University of Innsbruck (Austria) that were enrolled
in a course on advanced concepts and techniques of software
engineering. The course is part of the computer science as well
as information systems master’s (where some students did a

TABLE I
SCALE ITEMS.

Perceived Usefulness
U1 Using the software in my job would enable me to accomplish

tasks more quickly.
U2 Using the software would improve my job performance.
U3 Using the software in my job would increase my productivity.
U4 Using the software would enhance my effectiveness on the job.
U5 Using the software would make it easier to do my job.
U6 I would find the software useful in my job.
Perceived Ease of Use
E1 Learning to operate the software would be easy for me.
E2 I would find it easy to get the software to do what I want it to

do.
E3 My interaction with the software would be clear and understand-

able.
E4 It was easy to become skillful using the software.
E5 It is easy to remember how to perform tasks using the software.
E6 I would find the software easy to use.
Self-predicted future usage
S1 Assuming the software would be available on my job, I predict

that I will use it on a regular basis in the future.
S2 I would prefer using the software to other forms for defining

experiments.

bachelor in business administration) program. Thus, the stu-
dents had a mixed background in computer science and busi-
ness. Given that online controlled experimentation involves
multiple stakeholders with different professional backgrounds,
either more technical or more business-oriented, the setting
seemed to be advantageous to represent potential users of the
language. To further classify the subjects, some demographic
questions about their prior knowledge on key technologies
used by the experimentation definition language were asked
(see Fig. 4). The results indicate that most participants (76%)
mentioned that they know JSON. In contrast, only a quarter of
all participants stated that they know the code editor Microsoft
Visual Code.
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Fig. 4. Participants prior knowledge about the technologies JSON and
Microsoft Visual Code.

D. Running the experiment

Given that the students already learned about experimen-
tation in software engineering as part of the lecture, only a
quick repetition of this topic was given. Thereafter, current ap-
proaches to experimentation (e.g. experimentation platforms,
best practices) were discussed. After that, the development



and purpose of the experimentation definition language was
presented. Finally, a short introduction of the tool (Microsoft
Visual Code) was given. The language itself was introduced
by some example experiment definitions. Next, all students
received the same task to model an experiment in the language
based on a written description of an experiment. Finally,
the students submitted their written experiment definition and
filled out a questionnaire containing demographic questions,
the adapted TAM questions (see Table I), and a comment
question.

E. Threats to validity

Potential threats of the study’s validity [10] were considered
and minimized whenever possible.

Construct validity was improved by considering the technol-
ogy acceptance model [6] to evaluate the usefulness and ease
of use of the experimentation definition language. Moreover,
best practices and lessons learned from similar technology
acceptance model studies (e.g. [8]) were considered.

Internal validity threats are caused by faulty conclusions
that could for example happen because of mistakes in the
statistical analysis. To mitigate this, the statistical analysis
considers more than one measure (e.g. Pearson product cor-
relation and Spearman rank-order correlation). Besides, the
measurement instrument itself was analyzed regarding its
reliability (Cronbach’s alpha). Furthermore, the participants’
demography was considered during the statistical analysis to
draw more detailed conclusions of observations.

External validity covers to which extend the generalization
of the results is justified. Given that experiments with students
are usually considered to be of low external validity [11], the
possibility to generalize the results of the study is limited.
Nevertheless, this threat was slightly mitigated by considering
graduate students from a course that addresses the subject
online controlled experimentation and that have varying back-
grounds (computer science, business) that reassembles teams
in practice.

Reliability was improved by recording every step and deci-
sion of this study carefully and reporting the most important
decisions as well as the reasoning behind them. Moreover, all
questions of the study are reported.

IV. RESULTS AND DISCUSSION

A. Reliability

To test the reliability of the questionnaire, Cronbach’s alpha
is used commonly in empirical studies. Values above 0.8 are
typically considered indicating the questionnaire as a highly
reliable measurement instrument [12]. The analysis of the
answers revealed a Cronbach’s alpha of 0.967 for usefulness
and 0.962 for ease of use. This indicates that our questionnaire
is a reliable measurement instrument.

B. Factorial validity

In factor analysis it is examined whether the two factors ease
of use and usefulness form distinct constructs (see Table II).
The analysis clusters the variables together that tend to be

TABLE II
FACTORIAL ANALYSIS.

Usefulness Ease of use
Quick (U1) 0.92 0.03
Performance (U2) 0.96 -0.01
Productivity (U3) 0.92 -0.08
Effectiveness (U4) 0.91 0.03
Easy (U5) 0.91 -0.04
Useful (U6) 0.84 0.12
Easy to learn (E1) -0.05 0.91
Easy to do (E2) 0.00 0.89
Clear (E3) 0.13 0.90
Skillful (E4) 0.24 0.81
Remember (E5) -0.17 0.94
Easy to use (E6) -0.03 0.95

correlated and assigns them a factor loading that describes
the correlation of the variable to the factors. In Table II the
results for all variables are given. Like correlations, the factor
loading ranges from -1 (negative correlation) to +1 (positive
correlation). A variable should have at least a factor loading
of 0.7 to be a meaningful factor [13]. The results in Table II
indicate that there are two factors on which the variables
load. All variables associated with questions about usefulness
tend to be loaded on the factor usefulness. The same can be
observed for ease of use. The questions about ease of use tend
to load on the factor ease of use. Thus, the result confirms that
there are two factors ease of use and usefulness in the data.

C. Usefulness

In Fig. 5 the results for usefulness are shown. It presents
a box plot for each usefulness variable by the Likert scale
value that ranges from 1 (extremely unlikely) to 7 (extremely
likely). Note that according to the suggestion of Laitenberger
et al. [8] the middle option 4 (neither) was omitted because
this answer option would not give any information about
the direction a participant leans to. The summative results
range between 21 and 42 (ignoring the two outliers with
the sums 6 and 7) with a mean and median of about 33.
Given that the maximum possible rating is 42, the results
suggest that the participants consider the definition language
useful. Figure 5 gives a more detailed picture of the ratings.
It shows that across all six variables (U1 - U6) the median
rating is between 5 and 6. There are also some outliers visible
that show ratings below the Likert score value of 3 (slightly
unlikely). A more detailed analysis of these answers revealed
that two participants rated all variables with 1 (extremely
unlikely) or 2 (quite unlikely). All other participants’ ratings
were 3 (slightly unlikely) or above. In the final comments
question one of the two participants mentioned problems
with understanding the task description. The other participants
provide unfortunately no final comments. Given that their
responses differ considerably from the majority of participants,
the problem with the task description is not considered a
possible threat to all answers.
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D. Ease of use

The results for ease of use are summarized in Fig. 6. The
summative results (excluding two outliers with a sum of 6
and 9) range between 15 and 42 (maximum score) with a
median of 34 and a mean of 31. These findings suggest that
the participants consider the presented solution easy to use.
However, the widespread of the summative results indicate
that the participants’ opinion on this varies.
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Fig. 6. Ease of use results.

The lowest rating were given easy to learn (E1), clear
(E3), and easy to use (E6). Reasons for this could be the
short introduction of the language by examples before to the
experiment.

Nevertheless, the majority of participants (see Fig. 6) gave
high ratings for the language to be easy to express experiments
(E1), easy to become skillful in it (E4) and easy to remember
how to perform tasks (E5). This seems to suggest that the
domain model fits well with the domain concepts.

A more detailed analysis of the answers revealed that the
ease of use ranking correlates with the participants’ prior
knowledge on the data interchange format JSON. Calculating
the correlation coefficients (see Table III) revealed that there
is a strong positive correlation between the participant’s prior
knowledge of JSON and the ease of use. Figure 7 shows the
influence of the participants’ prior knowledge of JSON on the
ease of use rating. Participants with prior JSON knowledge
rated every variable with a median of 6, whereas participants
without prior knowledge of JSON rated with a median of 3.
Also, the large spread of the ratings for participants without
JSON knowledge could indicate that there is some unknown
variable (maybe demographic) that could explain the data

TABLE III
PEARSON PRODUCT / SPEARMAN RANK ORDER CORRELATION

COEFFICIENTS OF THE RESPECTIVE SUMMATIVE RESULTS.

Usefulness Ease of use Self-pred. JSON
Usefulness 1.00 / 1.00 0.23 / 0.30 0.60 / 0.56 0.43 / 0.30
Ease of use 0.23 / 0.30 1.00 / 1.00 0.62 / 0.68 0.56 / 0.57
Self-pred. 0.60 / 0.56 0.62 / 0.68 1.00 / 1.00 0.75 / 0.67
JSON 0.43 / 0.30 0.56 / 0.57 0.75 / 0.67 1.00 / 1.00

more. Thus, it seems that the selection of the host language (in
our case JSON) has a strong influence on the user’s perceived
ease of use of the developed DSL. In the case of JSON
the researchers could observe during the experiment that the
concept of the brackets was difficult to some participants,
despite the provided auto-completion.
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Fig. 7. Ease of use results by the participant’s knowledge about JSON. The
variables are from left to right: easy to learn (E1), easy to do (E2), clear (E3),
skillful (E4), remember (E5) and easy to use (E6).

E. Correlations

The analysis of usefulness (see Section IV-C) and ease of
use (see Section IV-D) showed that the participants seem to
consider the language useful and most of them consider it easy
to use too. Next we want to investigate the users’ acceptance
of the language by considering the correlations between the
factors’ usefulness, ease of use, and self-predicted future usage
(see Fig. 3). In addition, we considered the influence of
the participants’ prior knowledge of JSON on those factors.
Therefore, we want to investigate the correlation between the
summative results of usefulness, ease of use, self-predicted
future usage, and JSON knowledge. Table III shows the results
of this analysis. It contains the Pearson product correlation
coefficients together with the Spearman rank-order correlation
coefficients between the summative results.

Usefulness is relatively low positively correlated with ease
of use, which could mean that users that find the language
useful not necessarily find it ease to use. This interpretation
is supported by the observations made in Section IV-C and
Section IV-D that although almost all find the language useful,
not all participants find it easy to use.

Both factors usefulness and ease of use are similarly strong
positively correlated with self-predicted future usage. One
interpretation could be that both factors, the usefulness of
the software and its ease of use are strong drivers for the
participants to adapt the language. It seems that participants



TABLE IV
SIGNIFICANCE OF THE CORRELATIONS REPORTED BY THE P-VALUES
(PEARSON PRODUCT MOMENT CORRELATIONS / SPEARMAN RANK

ORDER CORELLATION COEFFICIENT). COMMON STAR NOTATION [15].

U(sefulness) E(ase of use) S(elf-pred.) J(SON)
U - ns/ns ***/** */ns
E .202 / .102 - ***/*** **/***
S <.001 / .001 <.001 / <.001 - ***/***
J .015 / .105 .001 / <.001 <.001 / <.001 -

can find the language useful, but not easy to use (and vice
versa) and still give a high rating for self-predicted future
usage. Thus, usefulness could compensate faults in ease of use
and vice versa. This would also explain the still high rating
of self-predicted future usage, although some participants did
not find the language easy to use.

An interesting fourth factor to include in the correlation
analysis is the participants’ prior knowledge of JSON. The
analysis showed that there is a positive correlation between
JSON knowledge, usefulness and ease of use. One explanation
for this result could be that the usefulness of a language
is more independent of the participants’ prior knowledge of
JSON than the ease of us. However, it also indicates the strong
influence of a host language for an internal DSL project.
The strong correlation between JSON and self-predicted future
usage further supports this interpretation.

In addition to the calculation of the correlation coefficients,
the significance of correlation among the four factors were
analyzed (see Table IV). They indicate that the correlation
between usefulness and ease of use is not significant, which
is consistent with the results of King et al. [14]. Furthermore,
all correlations to self-predicted future usage were statistically
significant. Thus, it seems that these factors are indicators of
the users’ acceptance of the language. Moreover, it supports
further the impact of the host language on the users’ accep-
tance of an internal DSL.

As a result the analysis of the answers suggests that the
participants consider the language useful and most of them
easy to use too. Besides, most of the participants would use
the language in the future and prefer it over other solutions.

F. Limitations

Even though possible threats to validity were considered
during the design and execution of the study, the findings of
this experiment have to be interpreted within their limitations.
The main limitation of the study is the selection of students
instead of practitioners as participants. This is in general con-
sidered to make results less generalizable. However, in the case
of this experiment the particular students have considerable
similarities with relevant industrial stakeholders, given their
mixed background of computer science and business as well
as their prior knowledge about experimentation in general and
the domain of experimentation in particular.

V. CONCLUSIONS

For organizations that practice experimentation, the relia-
bility of its experiments are of great importance, given the

large potential impact their results can have. Therefore, the
definition of an experiment as documentation and plan of
action is an important artifact for reliable experimentation.
Therefore, we proposed an experiment definition language
based on recent research about the definition of experiments.
Moreover, we conducted a technology acceptance study to
validate the usefulness and ease of use of it. The results
show that the majority of participants found the language
useful and most found it easy to use too. Interesting future
research directions are the development of a tool-chain for
this language. These tools could apply static analysis on an
experiment definition (e.g. answering whether for every variant
a segmentation is properly defined), synchronize the definition
with an experimentation platform, and even conduct some
dynamic analysis like interference with other experiments on
the experimentation platform.
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