
Modeling and Verifying
NDN-based IoV Using CSP

Ningning Chen1, Huibiao Zhu1,∗, Jiaqi Yin1, Lili Xiao1, Yuan Fei2,∗
1Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
2 College of Information, Mechanical and Electrical Engineering,

Shanghai Normal University, Shanghai, China

Abstract—As a crucial component of intelligent transportation
system, Internet of Vehicles (IoV) plays an important role in the
smart and intelligent cities. However, current Internet architec-
tures cannot guarantee efficient data delivery and adequate data
security for IoV. Therefore, Named Data Networking (NDN), a
leading architecture of Information-Centric Networking (ICN), is
introduced into IoV. Although problems about data distribution
can be resolved effectively, the combination of NDN and IoV
causes some new security issues.

In this paper, we apply Communicating Sequential Processes
(CSP) to formalize NDN-based IoV. We mainly focus on its data
access mechanism and model this mechanism in detail. By feeding
the formalized model into the model checker Process Analysis
Toolkit (PAT), we verify four vital properties including deadlock
freedom, data availability, PIT deletion faking and CS caching
pollution. According to verification results, the model cannot
ensure the security of data with the appearance of intruders. To
solve these problems, we adopt a method derived from Blockchain
in our improvement. Through the analysis of the improved model,
we can truly guarantee the security of NDN-based IoV.

Index Terms—NDN, IoV, CSP, Blockchain, Modeling Verifica-
tion

I. INTRODUCTION
Internet of Vehicles (IoV) [1] arouses wide public concern

in both industry and academia sectors files. However, the cur-
rent Internet is a point-to-point communication and channel-
based security model. In IoV, the current Internet architectures
cannot ensure high-efficiency data distribution and sufficient
data security. To resolve this problem, Name Data Networking
(NDN) [2] is introduced into IoV. NDN is a crucial architecture
of Information-Centric Networking (ICN) [3]. NDN uses data
names instead of IP addresses to retrieve and identify data. Due
to this characteristic, NDN can better meet IoV’s demand for
big data processing.

There are some work on the related files of IoV. Abbas et al.
proposed an road-aware estimation model for path duration in
IoV [4]. In order to develop software-defined wireless network
in IoV, Chien et al. created a SFC-based access point switching
mechanism [5]. However, problems about data distribution and
data security still exist. Therefore, NDN was applied to IoV in
some researches. Su et al. presented a novel framework of a
content-centric vehicular network (CCVN) [6]. Chowdhury et
al. created a novel forwarding strategy CCLF [7]. Kalogeiton
et al. defined a geographical aware routing protocol using

∗Corresponding Author. E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu),
yuanfei@shnu.edu.cn (Y. Fei).

directional antennas [8]. From these existing work, we find that
they mainly focus on routing and forwarding. Unfortunately,
there are still many security issues in NDN-based IoV.

In this paper, formal methods are used to verify and analyze
NDN-based IoV. This paper uses Communicating Sequential
Processes (CSP) [9] to formalize the system. Using Process
Analysis Toolkit (PAT) [10], we verify four properties (dead-
lock freedom, data availability, PIT deletion faking and CS
caching pollution). Under the interference of intruders, the
last three verification properties are invalid for the model.
This paper adopts a method based on Blockchain in the
improvement. All properties are satisfied for the improved
model.

The rest of this paper is organized as follows. Section II
presents an overview of NDN-based IoV and Blockchain. In
Section III, we formalize the model of NDN-based IoV. In
Section IV, we verify four properties and give improvement to
the model. Finally, conclusion and future work are described
in Section V.

II. BACKGROUND

This section gives a brief introduction of NDN-based IoV
and Blockchain, especially combinations of them. After that,
we also describe process algebra CSP.

A. NDN-based IoV

Some studies apply NDN to IoV to improve its security and
performance. To further improve its performance, a vehicle
may obtain much data by sending an interest packet. So we
must take separation of interest packets and aggregation of
data packets into consideration. Vehicles could be consumers
or it could be producers of data. This scheme contains the
following entities :
• Consumer and Producer: Consumers are vehicles who

request and consume data packets. As a producer, the
vehicle produces and provides data packets.

• RSU (Road Side Unit): An RSU forwards interest pack-
ets and data packets for vehicles. An RSUC and an RSUP
represent the behavior of an RSU which communicates
with a consumer and a producer separately.

• Router: Routers manage the access processes.
When a consumer wants to get a data packet, the following

sequence of actions occurs:

DOI reference number: 10.18293/SEKE2020-066

• A consumer sends an interest packet containing the
required data names to an RUSC.

• The RSUC transmits the interest packet to a router.
• The router addresses the interest packet with process

Interest Processing. If there is a data packet matching
this interest packet in its CS, the router returns this data
packet. Otherwise, this process goes to next step.

• A router obtains the corresponding data through network
propagation.

• Then it deals with received data packets through process
Data Processing and may forward a data packet made up
of all received data to corresponding RSUC.

• The consumer gets the data packet from the RSUC and
verifies the data packet.

The process of producing data is defined similarly, the
following sequence of actions occurs:
• A router gets an interest packet from the network and

disposes it with process Interest Processing.
• A special case is that the matching data packet can be

got from a producer managed by this router.
• The router sends the interest packet to an RSUP.
• The RSUP obtains the data packet from a producer.
• The RSUP returns it to the router.
• The router addresses this data packet with process Data

Processing.
• According to the verification results of this data packet,

it might be injected into the network.
As shown in Fig.1, the interest packets and data packets

forwarding processes are described as follows:
Interest Processing: Whenever a router receives an interest

packet, it queries CS (Content Store) to find out a data packet
matching received interest packet. If so, the data packet is
returned to the corresponding request entities and the interest
packet is discarded. Otherwise, the router finds matching
entries in PIT (Pending Interest Table). If it finds an entry,
it just adds the incoming interface of the interest packet
to that entry. If not, the router queries its FIB (Forwarding
Information Base) to find the outgoing interface for each data
name. If the router finds out all interfaces, it adds a new entry
to PIT including the data names and incoming interface of
the interest packet. Then it puts the data names of the same
forwarding interface into a new interest packet and forwards
those new interest packets. Otherwise, this received interest
packet is thrown away.

Data Processing: When a router receives a data packet, it
traverses PIT with packet’s name firstly. If there are interest
packets waiting for the data packet, the router saves the packet
into CS. If the router receives all the data required for a PIT
entry, the entry is deleted. The data packet containing all data
is emitted from the interfaces that the entry records. The data
packet is cached into the CS.
B. Blockchain

We bring Blockchain into NDN-based IoV in this paper.
The blockchain generation process contains two parts. On the
one hand, transactions are produced, forwarded and verified.

Fig. 1. Processing of interest and data packets in NDN [2]

Fig. 2. Transaction Fig. 3. Block

On the other hand, entities produce, forward, verify and store
blocks. In Section IV, we give a detailed description for
these two parts. The structures of transactions and blocks are
shown in Fig.2 and Fig.3 respectively. Data Packet represents
the result of our repeated hash calculation of hash values
(Data Name, Data Signature and Data Sign Information). A
producer signs these hash values using its private key. Those
components make up a transaction. A blockchain is composed
of blocks. A block contains Block Hash, Nonce, Previous
Block Hash, Time Stamp and Transaction List. Block hash is
the unique identifier distinguishing a block. All transactions
of this block are stored in Transaction List.

In the improvement of NDN-based IoV, the system under-
goes the following main changes:
• Producers create a transaction for each data packet and

transmit the transaction to other entities.
• If a transaction passes verification, routers store and

forward it.
• A router creates a block containing all transactions what

it has saved so far. Then the router adds the block into
its blockchain and forwards this block.

• According to verification results of a received block,
entities add this block into their blockchains and delete
their transactions that are repeated in this block.

• When an entity receives a data packet, it verifies received
data packet using its blockchain firstly.

C. CSP
This section is used to introduce CSP (Communication

Sequential Process). We give part of CSP syntax as follows:

P,Q ::= SKIP | STOP | a→ P | c?x→ P | c!u→ P | P ;Q |
| P ||Q | P�Q | P CB BQ | P [[a← b]] | P [|c|]Q

Fig. 4. Producer Modeling

• SKIP represents that a process terminates successfully.
• STOP indicates that a process runs into a deadlock state.
• a→ P denotes that a process P executes after event a.
• c?x → P represents that a process receives a value and

assigns it to the variable x before executing process P .
• c!x→ P describes that a process sends a value v through

channel c, then process P is executed.
• P ;Q represents that process Q is executed after process

P terminates successfully.
• P ||Q denotes that process Q and process P are executed

in parallel.
• P�Q stands for general choice. Selecting process P or

process Q depends on external environment.
• P CBBQ is a conditional choice. If boolean expression

B is true, process P will be executed. Otherwise, process
Q is executed.

• P [[a ← b]] indicates that a process changes event a for
event b.

• P [|c|]Q represents that processes P and Q execute the
concurrent events on the set c of channels.

III. MODELING NDN-BASED IOV MODEL
In this section, we model NDN-based IoV by using CSP.

This model is formalized based on Section II.
A. Sets, Messages and Channels

For convenience, this section gives some crucial information
about sets, messages and channels models used in our formula-
tion. Six sets are defined. Entity set contains entities including
Consumer, Producer, RSUC, RUSP and Router. Name set
denotes the names of data. PRKey set is composed of entities’
public keys. PUKey set includes entities’ private keys. The
set SigInfo indicates signature information. Content represents
other message contents.

In order to describe message packets transmitted between
entities, this section defines some messages based on those
definitions. E(k,c) indicates that key k encrypts content c .
Each message includes a tag from the set {msgint, msgdata1,
msgdata2}. The messages are transmitted among entities as
follows :

MSGint = {msgint.a.b.n | a, b ∈ Entity, n ∈ Name}
MSGdata1 = {msgdata1.a.b.n.E(K1−1, c).sigin |

a, b ∈ Entity,K1−1 ∈ PRKey,

n ∈ Name, c ∈ Content, sigin ∈ SigInfo}

Fig. 5. Consumer Modeling

MSGdata2 = {msgdata2.a.b.n1.n2.E(K1−1, c1).

E(K2−1, c2).sigin1.sigin2 |
a, b ∈ Entity,K1−1,K2−1 ∈ PRKey,

n1, n2 ∈ Name, c1, c2 ∈ Content,

sigin1, sinin2 ∈ SigInfo}
MSGdata = MSGdata1 ∪MSGdata2

MSG = MSGint ∪MSGdata

MSGdata and MSGint represent the messages of data
packets and interest packets respectively. MSG denotes the
messages between all entities.

To model the communication among components, we give
the definitions of channels.
• channels between consumers, RSUC, routers and RSUP

described by COM PATH:
ComCC,ComRS,ComRR,ComRP,ComPP

• channels of intruders intercepting consumers, RSUC,
routers and RSUP constituted by INTRUDER PATH:

FakeA, FakeB, FakeC, FakeD, FakeE

The declarations of the channels are as follows :

Channel COM PATH, INTRUDER PATH : MSG

B. Overall Modeling
We define a CSP model System0 without intruders. Sys-

tem0 is composed of SystemC and SystemP. SystemC and
SystemP indicate a system which consumes and produces
data respectively. The SystemC model is made up of three
main entities including Consumer, RSUC and Router. SystemP
model contains Producer, RSUP and Router. To take intruders
into consideration, we create SYSTEM based on System0.

SystemC =df

Consumer[|COM PATH|]RSUC

[|COM PATH|]Router

SystemP =df

Producer[|COM PATH|]RSUP

[|COM PATH|]Router

System0 =df

SystemC[|COM PATH|]SystemP

SY STEM =df

System0[|INTRUDER PATH|]Intruder
Consumer, Producer and Router denote the behavior of

the consumers, producers and routers respectively. RSUC and

RSUP describe the actions of an RSU which communicates
with a consumer and a product respectively. Considering
the existence of intruders, this part defines Intruder which
intercepts and fakes the messages. Fig.4 and Fig.5 describe
interprocesses communication between processes.

C. Router Modeling

In NDN-based IoV, a router is responsible for forwarding
interest packets and getting data packets. A router incisions
and distributes an interest packet on the grounds of its routing
information. For simplicity, each interest packet contains a
maximum of two data names in our formalization. Then the
router aggregates and forwards received data packets on the
basis of verification results. This section formalizes a process
Routerio without intruders.

Routerio(CSTablei, P ITTablei, F IBTablei) =df

Initia{inFIB = false; inCS = false; inPIT = false;

inFIB1 = false; inFIB2 = false; delPIT = false;

addcs = false; ininterface = 0; outface1 = 0; outface2 = 0}
→ ComRSi?B.C.dn1.dn2→ ininterfece := i→ (inCS = true)
C(∃entry ∈ CSTablei • entry.data1name == dn1
∧entry.data2name == dn2)B (inCS = false)

 ;

 (ComRSinterface!C.B.dn1.dn2.CSTablei[CSindex][2]
.CSTablei[CSindex][3].CSTablei[CSindex][4].
CSTablei[CSindex][5].CSTablei[CSindex][6])
C(inCS == true)B (NOCSi)

 ;

Routeri0

There are several variables appeared in the process. i is the
ID of a router and its channels. A router knows its CS table
CSTablei, PIT table PITTablei and FIB table FIBTablei.
inFIB, inFIB2 and inFIB2 represent querying results for FIB.
Similarly, inCS, inPIT and inPIT1 denote searching results
for CS and PIT respectively. delPIT indicates the router
deletes PIT entries. addcs represents the router adds a data
packet into CS. ininterface records the incoming interfaces
of interest packets. outinterface1 and outinterface2 are the
outgoing interfaces of interest packets.

First, the router receives an interest packet including the
names of required data and records the incoming interface
for the interest packet. Then the router checks its CS to find if
there is a data packet matching the interest packet. If the result
is positive, the data packet is returned to the corresponding
request nodes and the interest packet is discarded. Otherwise,
we define process NOCSi to address the situation in which
the desired data packet cannot be obtained from CS.
NOCSi =df

 inPIT = true;
AddPIT (dn1, dn2, entry.index,
interface, PITTablei)


C(∃entry ∈ PITTablei • entry.data1name == dn1
∧entry.data2name == dn2)B

(inPIT = false;NeedForwardi)

 ;

NOCSi traversals PITTablei according to the names in
the interest packet. If NOCSi finds a matching entry, the
router adds incoming interface of the interest packet into the
entry and discards the interest packet. If not, we give process
NeedForwardi to forward the interest packet.

NeedForwardi =df (inFIB1 = true; outface1 = entry2.outface)
C(∃entry2 ∈ FIBTablei • entry2.dataname == dn1)B
(inFIB1 = false;)

 ;

 (inFIB2 = true; outface2 = entry2.outface)
C(∃entry2 ∈ FIBTablei • entry2.dataname == dn1)B
(inFIB2 = false)

 ;

 (SKIP)C (!(inFIB1 ∧ inFIB2))B(
(AddPIT1(dn1, dn2, P IT length,
interface, PITTablei);Forwardi

)  ;SKIP

NeedForwardi queries FIBTablei with the names of the
interest packet. If process NeedForwardi finds an outgoing
interface for each name, NeedForwardi adds a new entry
into PITTablei including the data names and incoming inter-
face of the interest packet. Then we define process Forwardi
to forward the interest packet according to query results
for each name. If NeedForwardi cannot find all outgoing
interfaces, the interest packet is dropped.
Forwardi =df

 ComRRoutface1!msgint.C.D.dn1.dn2→
ComRRoutface1?msgdataD.C.dn1.dn2.
E(prk1 Key, data1).E(prk2 Key, data2).
siginfo1.siginfo2→ Datapacketreceivei


C(outface1 == outface2)B

(ComRRoutface1!msgint.C.D.dn1→
ComRRoutface1?msgdataD.C.dn1.
E(prk1 Key, data1).siginfo1→
ComRRoutface2!msgint.C.D.dn2→
ComRRoutface2?msgdataD.C.dn2.
E(prk2 Key, data2).siginfo2→
Datareceivei




;SKIP

If all data can be got by one outgoing interface, Forwardi
transmits the interest packet from this interface and waits a
matching data packet. If not, Forwardi produces new interest
packets by putting the data names of the same outgoing
interface into a new interest packet. Then Forwardi forwards
each interest packet from corresponding outgoing interfaces
and waits data packets. Datareceivei deals with received data
packets.
Datareceivei =df


inPIT = true;Datasendi(entry3.index);
DelPIT (dn1, dn2, P ITTablei);
AddCS(dn1, dn2, E(prk1 Key, data1),
E(prk2 Key, data2),
siginfo1, siginfo2, CSTablei)
delPIT = true; addcs = true


C(∃entry3 ∈ PITTablei • entry3.data1name == dn1
∧entry3.data2name == dn2)B(

inPIT = false; delPIT = false; addcs = false
)


;

Before introducing process Datareceivei, we define two func-
tions. DelPIT function denotes that the router deletes entries
from the PITTablei according to the input data names. AddCS
function represents that the router adds a data packet into its CS.
When Datareceivei receives data packets, Datareceivei checks
PITTablei. If there is an interest packet waiting for these data
packets, the entry is deleted and these data packets are emitted
through Datasendi(index). Otherwise, the received data packets
are abandoned.

Datasendi(index) =df

Intail{interfacelist = PITTbale[index].interfcelist;

x = 0; y = #interfacelist; } →

(0 ≤ x < y)∗ ComRSinterfecelist[x]!msgdataC.B.dn1.dn2.
E(prk1 Key, data1).E(prk2 Key, data2).
siginfo1.siginfo2→ x = x+ 1

 ;SKIP

Datasendi(index) gets the entry of PTITablei with index
index. Then it records the incoming interface list interfacelist
of the entry. Variables x and y represent entries’ index variables
and lengths of interfacelist respectively. Datasendi(index)
queries interfacelist and sends a data packet, containing all
data, from the incoming interfaces recorded in interfacelist.

Routeri =df

Routerio[[

ComRSi!{|ComRSi|} ← ComRSi!{|ComRSi|},
ComRSi!{|ComRSi|} ← FakeCi!{|ComRSi|},
ComRSi?{|ComRSi|} ← ComRSi?{|ComRSi|},
ComRSi?{|ComRSi|} ← FakeCi?{|ComRSi|},
ComRRi!{|ComRRi|} ← ComRRi!{|ComRRi|},
ComRRi!{|ComRRi|} ← FakeCi!{|ComRRi|},
ComRRi?{|ComRRi|} ← ComRRi?{|ComRRi|},
ComRRi?{|ComRRi|} ← FakeCi?{|ComRRi|}]]

{|c|} denotes the set of all communications over channel
c. Whenever Readerio does an action on channel ComRS,
Readerio will execute actions on channel ComRS or channel
FakeC. Readerio carries out either actions on channel ComRR
or FakeC when Readerio performs actions on channel ComR-
R. Besides, Readeri performs the same actions as Readeri0.

D. Intruder Modeling

In order to take intruders into consideration, this subsection
builds Intruder process. It intercepts or fakes messages in the
communication via channel ComCC, ComRS, ComRR, ComRP
and ComPP.

At first, we define the set of facts which intruders might
learn.

Fact =df Entity ∪MSGout ∪Name

∪ {E(key, c)|key ∈ PRKey, c ∈ Content}

Intruder can derive new facts from the set of facts which
intruders have learned. Symbol F 7→ f is used to indicate that
the fact f can be deduced from the set F of facts.

{K,E(K−1, c)} → c

{K−1, c} → E(K−1, c)

F 7→ f ∧ F ⊆ F ′ =⇒ F ′ 7→ f

The first two rules denote decryption and encryption respec-
tively. The final rule represents that if a intruder can derive the
fact f from the known fact F , the intruder can also deduce
fact f from a larger set F ′.

We define Info function to describe that intruders can obtain
facts from messages, shown as follows

Info(msgint.a.b.n) =df {a, b, n}
Info(msgdata.a.b.n.E(K−1, c).sig) =df {a, b, E(K−1, c), n, sig}
Info(msgdata.a.b.c) =df {a, b, c}

where a, b ∈ Entity, n ∈ Name, K−1 ∈ PRKey,
c ∈ Content, sig ∈ SigInfo

We give a channel Deduce for intruders. Intruders can
deduce new facts via channel Deduce, shown as follows :

Channel Deduce : Fact.P (Fact)

A intruder overheads all messages transmitted between
entities. New facts can be deduced from the intruder’s known
facts. If a intruder gets all sub messages, it can fake some
messages and send those messages to other entities. We
formalize Intruder0 as below:

Intruder0(F) =df

m∈MSGoutFake?m→ Intruder0(F ∪ Info(m))

��m∈MSGout∩Info(m)⊆FFake!m→ Intruder0(F)

��f∈Fact,f /∈F,F 7→fDeduce.f.F → Intruder0(F ∪ {f})
This subsection uses set Fake to represent all channels

of INTRUDER PATH . In the first part, a intruder gets
messages via a channel of Fake. Then the intruder adds those
messages to its knowledge. In the second part, a intruder
fakes some messages according to its knowledge and sends
faking messages to other entities. In the third part, a intruder
can deduce some new facts from its knowledge via channel
Deduce. Then the intruder adds the speculative results to its
knowledge. We define IK to denote the initial knowledge of
the intruder:

Intruder =df Intruder0(IK)
IK =df {A,B,C,D,E, Ipk Key, Irk Key}

IV. VERIFICATION AND IMPROVEMENT

In this section, we use model checker PAT to verify
four properties, including deadlock freedom, data availability,
PIT deletion faking and CS caching pollution. According to
verification results, we improve the system by referencing
Blockchain.
A. Properties Verification

We use System() to denote the original model. This subsec-
tion uses Linear Temporal Logic (LTL) formulas to describe
four security properties. By using LTL formulas in PAT code,
we give some assertions to help our verification.
Property 1: Deadlock Freedom

#assert System() deadlockfree;

System() should not run into a deadlock state. In PAT,
there is a primitive to describe this situation.
Property 2: Data Availability

#define Data Arival Success dataarive == true;

#assert System() reaches Data Arive Success;

In NDN-based IoV, each entity should get the desired data.
In order to guarantee this situation, we give this assertion.
Property 3: PIT Deletion Faking

#define PITdelete Faking

getdatachange == true ∧ delPIT == true;

#assert System() | = []! PIT Deletion Faking;

If a intruder intercepts an interest packet, it returns a faking
data packet. When a router receives this faking packet, the
router deletes corresponding PIT entries. Even though the
router gets the legitimate data packet, it throws the data packet
away. Using always operator [], we define this assertion to
guarantee that routers are not vulnerable to such attacks.
Property 4: CS Caching Pollution

#define CSCaching Pollution

getdatachange == true ∧ addccs == true;

#assert System() | = []! CS Caching Pollution;

Fig. 6. Verification Result of Formalized Model

If a router receives a faking data packet, it may store the
packet. When the router obtains an interest packet which
contains the name of the faking packet, it returns the faking
packet directly. This assertion is given to ensure that a router
cannot store a faking data packet.

As shown in Fig.6, Property 1 (deadlock freedom) is valid.
In other words, model cannot run into a deadlock state.
Property 2 (data availability) is not satisfied for the system.
This means that entities cannot get desired data with intruders
intervention. Property 3 (PIT deletion faking) and Property
4 (CS caching pollution) are invalid. When a router obtains a
faking data packet, it may delete its PIT entities and add the
packet into its CS. Then the router can no longer obtain or
provide a legal data packet which has the same name as the
faking data packet.
B. Improvement

In order to ensure NDN-based IoV model to satisfy Property
2, Property 3 and Property 4, we improve this model by using
a method which is similar to Blockchain.

MSGdata11 = {msgdata.a.b.block,msgdata.a.b.trans |
a, b ∈ Entity, block ∈ Block, trans ∈ Transcation}

A new kind of message MSGdata11 is defined to describe
the transmission of blocks and transactions. After a producer
creates a data packet, it constructs and transmits a transaction
which includes some information about this data packet to an
RSUP. Then the RUSP sends the transaction to a router. If
the verification result of the transaction is positive, the router
stores and forwards it. Meanwhile, the router produces a block
which contains all transactions stored in it so far. Then the
router stores the block and forwards it to other entities. After
verifying this block, an entity adds it into its blockchain.
Then the entity deletes duplicate transactions and forwards
this block to others. Gradually all entities’ blockchains become
synchronous. When an entity obtains a data packets, its verifies
the packet with its blockchain firstly as follows:
Checkhashi(BlockTablei, dnhash, sighash, siginhash) =

dfIntail{check = fasle;x = 0; y = #BlockTablei;

packethash = Hash(dnamehash, sighash, siginhash)}
→ (0 ≤ x < y)∗

translist = BlockTablei[x].transcationlist; (check = true)C (∃transaction ∈ translist•
transaction.datanamehash == dnamehash∧
transaction.packethash == packethash)B
(checkpacket = false)


 ;

When the entity gets the data packet, it computes some
hash values of this data packet. It queries its blockchain
BlockTablei and gains some information about this data
packet. It verifies the received data packet by comparing hash
values obtained by calculation and results of querying. As we
can see from Fig.7, the verification results of all properties are
both valid for this model.

Fig. 7. Verification Result of Improved Model

V. CONCLUSION AND FUTURE WORK

NDN-based IoV is built by applying NDN into Internet of
Vehicles. In this paper, we have formalized NDN-based IoV
using CSP. Feeding the formalized model into PAT, we have
verified four properties (deadlock freedom, data availability,
PIT deletion faking and CS caching pollution). The last three
properties are invalid. It means that the security of data
has been compromised, once intruders appeared. In order to
solve these problems, we improved the model with a method
based on Blockchain. Then we verified the improved model.
According to the verification results, the improved model can
prevent intruders from invading the system.

In our future work, we will take the performance of NDN-
based IoV model into consideration. To ensure the correctness
and preciseness of the research results, formal methods will
be used again in future work. Some related algorithms will be
explored to improve the efficiency of this model.
Acknowledgements. This work was partly supported by Nation-
al Key Research and Development Program of China (grant no.
2018YFB2101300), National Natural Science Foundation of China
(grant no. 61872145), Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (grant no. ZF1213), the
Fundamental Research Funds for the Central Universities of China
and the Opening Project of Shanghai Trusted Industrial Control
Platform (grant no. TICPSH202003007-ZC).

REFERENCES
[1] Juan Contreras-Castillo, Sherali Zeadally, Juan Antonio Guerrero Ibáñez:

Internet of Vehicles: Architecture, Protocols, and Security. IEEE Internet
of Things Journal 5(5): 3701-3709 (2018)

[2] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, Adaptive for-
warding in named data networking, Computer Communication Review,
vol. 42, no. 3, pp. 62C67, 2012

[3] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutsch-
er,Börje Ohlman: A survey of information-centric networking. IEEE
Communications Magazine 50(7): 26-36 (2012)

[4] Muhammad Tahir Abbas, Muhammad Afaq, Wang-Cheol Song: Road-
Aware Estimation Model for Path Duration in Internet of Vehicles (IoV).
Wireless Personal Communications 109(2): 715-738 (2019)

[5] Wei-Che Chien, Hung-Yen Weng, Chin-Feng Lai, Zhang Fan, Han-
Chieh Chao, Ying Hu: A SFC-based access point switching mechanism
for Software-Defined Wireless Network in IoV. Future Gener. Comput.
Syst. 98: 577-585 (2019)

[6] Zhou Su, Yilong Hui, Qing Yang: The Next Generation Vehicular
Networks: A Content-Centric Framework. IEEE Wireless Commun.
24(1): 60-66 (2017).

[7] Muktadir Chowdhury, Junaid Ahmed Khan, Lan Wang: Smart Forward-
ing in NDN VANET. ICN 2019: 153-154

[8] Eirini Kalogeiton, Domenico Iapello, Torsten Braun: A Geographical
Aware Routing Protocol Using Directional Antennas for NDN-VANETs.
LCN 2019: 133-136

[9] C. A. R. Hoare: Communicating Sequential Processes. Prentice-Hall
1985, ISBN 0-13-153271-5

[10] PAT, PAT: Process analysis toolkit. [Online]. Available:
http://pat.comp.nus.edu.sg/

