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Abstract

We present the results of a small eye-tracking study of
novice and experienced programmers asked to deduce
the output of Python and Java code snippets. We observe
experienced programmers paying more visual attention
to code comments, and when the comments provided are
purposefully misleading, the experienced programmers
are more likely to incorrectly describe the code output
than their novice counterparts. While preliminary, these
results suggest that experienced programmers, who are
well-trained in the importance of documentation as part
of the software development process, may have an initial
tendency to put too much confidence in code comments
when faced with program comprehension tasks.
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1. Introduction

As part of their formal training, software engineers
learn that well-commented, easily comprehensible code
is equally as important as code that runs efficiently and
correctly. This is reinforced in professional practice,
where software deliverables are accompanied by substan-
tial amounts of documentation, both inside the source code
as comments, and outside the source code as API specifica-
tions and reference manuals. Such documentation provides
valuable insight into the function and usage of code, and be-
comes a critical resource for programmers who must thor-
oughly understand pieces of existing code as part of soft-
ware development activities. This leads to two natural ques-
tions.

• How much attention do programmers pay to source
code comments when tasked with comprehending a
piece of code they did not write?
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• Does experience level impact the level of reliance or
confidence a programmer has in comments when faced
with a program comprehension task?

We conducted a small sample (N=14) eye-tracking study
to gain further insight into how developers read Python and
Java code and, in particular, what captures their visual at-
tention as part of program comprehension tasks. We ob-
served that when experienced programmers are presented
with code and asked to determine its output, they often fo-
cus on comments before moving on to code to formulate
their response. In contrast, novice programmers often fo-
cus on the source code itself. When subsequently asked to
verbally describe the purpose of a code snippet they had
just read, experienced programmers in our study were more
likely to base their answer on the comments accompanying
the code, even if the comments were wrong! In this pa-
per, we present some visual attention patterns of program-
mers of different skill levels from our study and explore
whether experience with programming and comfort reading
code can lead to too much faith in source code comments.
Our results, while preliminary, indicate that, on average, ex-
perienced programmers spend a significantly longer amount
of time focusing on documentation during a program com-
prehension task relative to novices and are more likely to be
initially mislead by comments that are technically incorrect.

2. Experimental Design and Data Collection

We recruited a convenience sample of 14 programmers
from a computer science department at a University. Hence,
all of our participants have had formal training in program-
ming and software development at the collegiate level. We
segmented our participants into two groups: novice and
experienced programmers. We defined a novice coder as
someone who has been coding for less than four years and
has not had industry experience as a software engineer. We
defined an experienced coder as someone who has had more
than four continuous years of programming usage and has
had industry experience as a software engineer. Our sample



was evenly split between novice and experienced program-
mers but, there was only one female programmer in each of
the categories.

All of the participants were comfortable with coding in
Java and Python. Our experts averaged 29 years in age
with an average coding experience of 12.3 years (median
= 7 years) and reported spending around 10 hours of their
free time coding per week. The novice coders averaged 21
years in age with an average coding experience of 1.9 years
(median = 1 year) and reported spending around 2 hours of
their free time coding per week.

To begin, each participant of the study took a survey
which included questions pertaining to their demographics,
educational background, and programming experience. Af-
ter answering the survey, each participant was set up at a
computer monitor where the test would take place and their
eyes were calibrated on the EyeLink 1000 Plus eye-tracker.
After this, a small set of instructions was read to the partici-
pant and the test began. There were four questions of inter-
est in our study, all of which contained a block of code with
an in-line comment. Three of the four questions had com-
ments which were intentionally misleading. Other types of
coding questions were randomly dispersed throughout the
test as well. Before viewing each block of code, the partic-
ipants read instructions which prepared them for what they
were about to see and how they were expected to answer.
The participants moved at their own pace, clicked through
the questions, and they answered verbally when they were
ready to move on. Their responses were recorded via a mi-
crophone. This allowed them to read the code at their own
speed and with their natural eye-gaze patterns, without any
time pressure or the need to write anything down.

The EyeLink 1000 Plus is a fast, high-precision, video-
based eye-tracking device which follows a person’s pupils
and tracks their eye-gaze. This data is then available for
data visualization via the EyeLink DataViewer. This data
allowed us to gather information beyond the verbal answers
given to us by the participants. We were able to observe,
for instance, if they ignored the comments and only looked
at the code or if they read both but, based on their verbal
answers, decided to put their trust in one over the other.
Ultimately, the data we collected was a compilation of the
eye-tracker data and the recorded responses from the partic-
ipants.

3. Analysis and Discussion

We asked our participants to describe the output of some
code snippets; what they did not know is that some of the
code had misleading comments. When inspecting the code,
novice coders tended to read both the code and the com-
ments before answering the prompt. Although some based
their answer on the misleading comments at first, most of

them either quickly backtracked their answer correcting it
or, after the first question, caught on to the fact that the
comments were not correctly describing the function of the
code. Some novice coders did fall for the comments ev-
ery time. This, we deduce, is because they either were not
making a concerted effort to correctly answer the questions,
or that they were unable to deduce the output of the code
regardless of the comments.

The experienced coders, on the other hand, were ex-
tremely confident in their answers and moved on as soon as
they answered for the first time. Furthermore, none of them
called out the misleading comments at any point in the ex-
periment. When discussing the experiment after it was over,
some expert coders claimed that they never read comments,
even though they had just responded to the questions in ac-
cordance with the comments.

Table 1

Question Proportion of Coders that were Mislead

Experts Novices

1 100.000% 57.143%

2 71.429% 28.571%

3a N/A N/A

4 85.714% 28.571%

a. this question was not misleading

Table 1 shows the percentage of participants who an-
swered each question according to the comments. The ma-
jority of experts followed the cues given by the comments
every time, whereas most of the novices did not. It is impor-
tant to note that this reflects the percentage of coders who
based their answer on the comments, not whether they got
the question wrong. Some participants answered incorrectly
but without using the comments.

When deciding whether a programmer based their an-
swer on the comments or not, we considered their verbal re-
sponses. Our misleading comments were either the opposite
of what the program was doing (figure 1) or contained unre-
lated keywords such as ”checking for prime numbers” that
were in fact not pertinent to the function of the code (figure
2). In the first case, if the participant said the program prints
a list of even numbers, we determined that they were mis-
led by the comment. In the second case, if the programmer
used these spurious keywords in their answer, it suggested
that they were basing their response on the comments. This
is because the keywords were chosen to be orthogonal to the
true function of the code being presented. Therefore, there
was no reason that the program should have triggered these



Figure 1: Example of a misleading comment being the op-
posite of the truth

Figure 2: Example of a misleading comment being com-
pletely different than the actual code

responses.
Our observations are further supported by looking at a

series of statistics from our participants. When looking
at the average proportion of time spent on comments ver-
sus the ”meat” of the code for each of the two groups, we
can see a big difference (Table 2). In all of the questions,
experts spent as much as 13.9% more time on comments
than novices. This is a big difference, especially when con-
sidering that experts spent less time, on average, on every
question. When looking at the average over all questions,
experts spent over 7% more time reading comments than
novices. It is notable to point out that although most novices
did not fall for the comments after the first question, they
still read the comments in every question. This could be
because they were curious to see if they were correct about
them being wrong.

The emphasis put on comments by our experienced par-
ticipants is further visualized by the aggregate heat maps
produced. Using EyeLink DataViewer, we produced heat
maps for the images inspected by each of the subjects. To
create these heat maps, we applied a two-dimensional Gaus-
sian distribution to each of the fixations. The center is
the location of the fixation. The width is regulated by a
sigma value of degrees of visual angle, making it so that the
area affected by the fixation increases as the sigma value
increases. The duration of the individual fixations then

Table 2

Question Relative Time Spent on Comments

Experts Novices Difference

1 63.519% 49.541% 13.978%

2 27.057% 26.936% 0.121%

3a 26.090% 15.242% 10.848%

4 17.461% 13.687% 3.774%

Average 33.532% 26.352% 7.180%

a. this question was not misleading

weighs the height of the Gaussian. This 2D Gaussian is
added to an internal map by adding weight to that area of
the map. This process is then applied to all fixation points
and is normalized.

Experts

Novices

Figure 3: Heat map showing where experts (top) and
novices (bottom) spent the most time looking for question 1

Figure 3 is the aggregate heat map for experienced and
novice coders for question 1. In this graph, it is quite ap-
parent that the experts paid significant attention to the com-
ment while paying little to no attention to the core of the
program. This bias toward the comment becomes more ap-
parent when we compare this map to the aggregate map for



the novice coders. In the novices map, we can appreciate the
attention that the subjects put on the source code as opposed
to the comments. The experts clearly read all three com-
ments and came up with their answer, whereas the novices
read the whole snippet but paid more attention to the func-
tioning parts of the code. Since these heat maps are for
question 1, the novices had not discovered that the com-
ments were misleading. If we look at the aggregate maps
for question 2, we see an even bigger difference in the vi-
sual pattern, although the proportion of time spent does not
differ much between the two groups.

Experts

Novices

Figure 4: Heat map showing where experts (top) and
novices (bottom) spent the most time looking for question 2

Figure 4 is the aggregate heat map for the experts and
novices for question 2. Here, it is clear that the experts
read the comment and scanned the code whereas the novices
spent most of their time on the actual code. Further, in
this specific question, it appears the experts read the first
few lines of code and the comment, and then they felt con-
fident enough to answer without analyzing the rest of the
code. The most common answer given by expert coders for
this question was “this program gives you every non-prime
number between n1 = 81 and n2= 153”. Taking a look at the
code it is obvious that this program is not checking whether

a number is prime or not. It is calculating the greatest com-
mon denominator of n1 = 81 and n2= 153. We determined
if a coder was misled by the comment if their answer con-
tained either of the key words “prime” or “non-prime”.

These results, while based on a small sample, are both
important and surprising. Before starting the experiment,
we hypothesized that the experts would look at the short
code snippets and would be able to easily determine their
functionality. We also thought that novices would be more
inclined to look at the comments because they are less com-
fortable with coding in general and would want the help
and insights that comments typically provide. Our obser-
vations indicated the contrary. These results are evidence
of the emphasis put on comments in a work environment.
Although all students are taught that comments are impor-
tant in their computer science classes, this importance does
not necessarily materialize in school-based activities cen-
tered on small-scale programming tasks. When in school,
students usually only look at and work on their own code.
In this style of working, code comments are not impera-
tive to integration activities. Comments become critical in
industry, however, where developers are expected to work
on code that they did not write, or code that they them-
selves wrote a long time before. Therefore, it makes sense
that professional developers would be more prone to look at
comments to guide their answer. This inclination to look at
comments is a good thing, so long as the comments are ac-
curate and up to date. Our results emphasize the importance
of updating comments when editing code, and to write accu-
rate comments when programming, as developers are quick
to trust comments that are technically unsound.

4. Related Works

Eye-tracking has been extensively used in modeling how
programmers visually process source code as part of soft-
ware development activities. In a survey paper exploring 63
studies published between 1990 and 2017 regarding eye-
tracking in programming, researchers found that the ma-
jority of eye-tracking studies could be categorized into five
general topics: code/program comprehension, debugging,
non-code comprehension, collaboration, and traceability
[9]. Additionally, researchers uncovered a pattern showing
that many of the published studies using eye-tracking are
based on the same concepts being retested with new data.
Our research incorporates each of these five themes, while
also introducing a new topic of inline comments.

A similar paper analyzed the various approaches to con-
ducting and using eye movement data in the context of
source code [5, 6]. When designing studies using eye
movement data, researchers concluded that methods yield-
ing qualitative data were just as important as methods yield-
ing quantitative data. Our research supports similar method-



ologies discussed in the paper by the utilization of eye-
tracking data as well as vocal recordings of each partici-
pant’s thought process. Another example in the research
compared expert and novice programmers and how linearly
they read source code [3]. The study found that while nat-
ural language is read linearly, novice programmers read
the source code less linearly, and expert programmers even
less linearly. Similarly, our research compared expert and
novice programmers, mainly focusing on how susceptible
programmers are to misleading comments.

Previously, researchers found that programmers review-
ing code skim the file until a snippet of code prompted them
to slow down and review a section more thoroughly. These
triggers included identifiers, inconsistent code changes, and
other confusing or incorrect code [2]. They also found a
correlation between the time of the initial scan of a program
and the efficiency of identifying errors within code reviews
[13]. The researchers concluded that programmers are of-
ten not thorough when reviewing code. Their findings show
that the eye tends to follow the source code left to right,
scan for methods, and jump around to keywords [11]. Ad-
ditionally, many programmers read about 73% of the code
within the first 30% of the review time. Those who took
more time scanning were able to identify the errors more
efficiently [13].

Another study found that the way a programmer read
code appeared to be done in a sequence of patterns such as
scanning, jumping ahead and back to look and verify details
[8]. This pattern is similar to how individuals read natural
text, with the exception that some programmers parse code
bottom to top opposed from top to bottom [11]. A workshop
analyzing how novices comprehend code also concluded
that the participants would approach the code as natural text
at first but then utilize more sophisticated patterns as they
become more familiar with Java [7].

Moreover, a study comparing differences in reading code
found that programmers were more likely to read from top
to bottom when they had formed a hypothesis about the
code and its function and from bottom to top when they
had no understanding of the code and needed to sift through
it. The expert programmers tended to focus more on a
broader block of code while the novice programmers read
line by line [1]. This is corroborated by our study where
novices read the whole code snippet, including comments,
even when they knew they were misleading. Opposed to
our experts that seemed to answer after reading a few lines
and the comments. In another study focused on analyzing
eye movement when reading Java code, researchers found
that the lines with a method call, an if statement, or a vari-
able were fixated on the most [10]. Moreover, attention was
focused on the understanding of operators, keywords, and
literals, while minimal time was spent on separators [4].

Researchers have been looking for a way to analyze the

cognitive processes of developers while they interact with
software artifacts. Eye-tracking allows for the visualization
of gaze pathways as programmers review code, but it lacks
a way to map physiological data to the source code. The
developers of VITALISE created a Javascript program that
allows researchers the ability to record biometric data from
EEG, fMRI, fNIRS, and other measurement devices, map-
ping it against data recorded in the form of heatmaps from
an eye-tracking device. This application of neuroimaging
opens doors to understanding the cognitive load on devel-
opers as they program [12].

5. Future Work

Due to the nature of the study, some limitations should
be noted. First, we used a convenience sample size of both
experienced and novice coders from the same institution.
It is possible that this sample is not representative of the
entirety of the target population and cannot be generalized
to other subject groups. Second, while the experiment was
conducted in a uniform manner across all 14 subjects, the
reality is that the small sample size is a restriction on the
certainty with which we are able to say that experienced
coders visually pay more attention to comments while read-
ing code snippets. Although we saw a statistically signifi-
cant difference in the percentage of experienced coders and
novice coders who were mislead by the comments, a larger
sample size will be necessary to further validate the prelim-
inary results reported here. These limitations are motivation
for continuing work in this area.

The results we obtained from this experiment have left
the door open for future adaptations and extensions of this
study. Using short, simple functions with single in-line
comments, we found that experienced coders have a ten-
dency to place a large amount of trust in comments, while
novice coders rely more on code. Would these results, how-
ever, remain the same if we changed the scope of the code
or the commenting style?

It could be interesting to investigate if the programmers
would utilize the comments in the same way if the scope
of the code changed from the short functions we used in
this experiment to longer, more complex programs. For in-
stance, it is possible that we would see that the same novice
coders who relied on the code in this experiment might be-
gin to rely more and more on comments as the code shifts
from straight-forward to increasingly more complex. How
much time and effort needs to be put into reading code be-
fore a coder who usually relies on code alone decides to
put their trust into comments? A future study revealing
whether there is a point in which the length or complexity
of a program changes the way a programmer utilizes com-
ments may produce informative results.

The scope of a program, however, may not be the only



factor worth investigating. It could also be noteworthy to
see if commenting style plays a role in the trust program-
mers place in comments. Would our experiment have pro-
duced the same results if we used descriptive block com-
ments at the top of each function instead of single, in-line
comments? Future works could lead us to exploring if com-
menting style is simply a preference and that comments are
ultimately utilized in the same way, by the same people, or
if it affects who reads them and the extent of which they are
trusted.

Finally, it may also be interesting to look into how aware
coders are of how they use comments. If at the conclu-
sion of this study, for example, we asked each participant
about how important comments are to them and how heav-
ily they rely on them, would their responses align with how
they performed? Perhaps experienced coders are so famil-
iar with reading code and comments that, especially when
the code is fairly straight forward, it becomes somewhat of
a mindless activity and they are not fully aware of the extent
to which they are using them. This would be yet another in-
teresting adaptation of this study which could provide more
information into why we obtained the results that we did.

6. Conclusion

We conducted a small study to gain insight into how pro-
grammers read code. In particular, we aimed to find how
much a coder relies on and, ultimately, trusts comments,
and whether this behavior is related to experience. Using
a research-grade, we found that experienced coders in our
sample were quick to base their knowledge of a program
according to the accompanying comments, even when the
comments are wrong. In some cases, they appeared to ne-
glect looking at source code completely. Novice coders,
on the other hand, were more likely to accurately describe
a program, as they prioritised scanning through and read-
ing the source code, even if they had previously read the
comments. Our experiment, while small, has shown that
experienced coders feel more confident in relying on com-
ments when working through a program comprehension
task, while novice coders tend to be more cautious and use
comments in careful conjuction with the source code itself.
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