
An Ensemble Approach to Detect Code Comment
Inconsistencies using Topic Modeling

Fazle Rabbi, Md. Nazmul Haque, Md. Eusha Kadir, Md. Saeed Siddik and Ahmedul Kabir
Institute of Information Technology
University of Dhaka, Bangladesh

Email: {bsse0725, bsse0635, bsse0708, saeed.siddik, and kabir}@iit.du.ac.bd

Abstract—In modern era, the size of software is increasing, as
a result a large number of software developers are assigned into
software projects. To have a better understanding about source
codes these developers are highly dependent on code comments.
However, comments and source codes are often inconsistent in a
software project because keeping comments up-to-date is often
neglected. Since these comments are written in natural language
and consist of context related topics from source codes, manual
inspection is needed to ensure the quality of the comment associ-
ated with the corresponding code. Existing approaches consider
entire texts as feature, which fail to capture dominant topics
to build the bridge between comments and its corresponding
code. In this paper, an effective approach has been proposed
to automatically extract dominant topics as well as to identify
the consistency between a code snippet and its corresponding
comment. This approach is evaluated with a benchmark dataset
containing 2.8K Java code-comment pairs, which showed that
proposed approach has achieved better performance with respect
to the several evaluation metrics than the existing state-of-the-art
Support Vector Machine on vector space model.

Index Terms—Source Code, Code Comment, Topic Modeling,
Software Artifact Analysis

I. INTRODUCTION

Code comments with its corresponding source code are the
main artifact of any software systems. For the management
of software evolution and maintenance, developers provide
comments with a code fragment which give insightful infor-
mation about a software system. Comments are very important
as they are more natural, descriptive and easy to understand
than source code [1], [2]. In large projects, new developers
are highly dependent on code comments to understand its
corresponding source codes. Researchers found that code and
comments evolve over time [3] and this evolved codes and
comments become inconsistent to each other. Because of
changing codes frequently and keeping corresponding com-
ments same, comments become invalid or inconsistent with
corresponding source code.

Tracking the inconsistency of source code and its comment,
several diverse approaches have been proposed. Where most
of the approaches apply Information Retrieval (IR) techniques
to collect lexical information with the assumption that the
textual information of source code and comment are same.
However, that assumption can be violated [4] in several cases,
for example, the vocabulary developers use to write source

DOI reference number: 10.18293/SEKE2020-062.

code can be different from the vocabulary of comment (e.g.
synonym). Nevertheless, there is no sufficiently rich litera-
ture to track this inconsistency because of lacking standard
datasets. A benchmark dataset has been provided [5] with
a proposal to measure the coherence between source code
and comment. Lexical similarity has been collected by using
Vector Space Model to classify the text using tf-idf [6] and
finally the code-comment inconsistency is measured using
Support Vector Machine (SVM). However, this approach uses
all of the vocabulary as features which can take a huge
execution time.

By analyzing existing literature, some insights of source
code and comments have been found, which are concluded
below as the research direction in this domain.

• A single word (topic) is more important than a large
number of similar words (features). For example, if a bag
of words is found from a java method like, “dropdown”,
“chrome”, “menu”, “http” or “browser”, a topic related
to “browser” can represent these words.

• The size of comments is less than the size of source code.
So, the source code and comment need to be represented
into a fixed-sized common topic.

• Synonymous words have been chosen by developers
while writing comment with respect to source code. So,
to capture the semantic information between source code
and comment, the vocabulary information needs to be
incorporated.

To capture these insightful information, several Research
Questions (RQ) have been raised to propose an efficient
inconsistency detection approach, which are listed below.

• RQ1: How to comprehend the insight meaning of a code
and comment pair?

• RQ2: How to measure the relation between the code
and comment pair?

We focused on the above research questions as our objec-
tives and tried to answer them throughout the newly proposed
code comment inconsistency detection technique. This paper
proposes an automated approach to identify the inconsistency
of source code with its respective comments. The breakdown
of the contributions of this paper are listed as follows.

• Datasets are pre-processed to capture more meaningful
information about source code and comments, e.g., de-



velopers defined simple name.
• Latent Dirichlet Allocation (LDA) has been used for

representing the similar words into topics.
• A fusion approach (ensemble Random Forest) has been

proposed for measuring the probability of the inconsis-
tency between code and comments, where SVM is used
to discriminate consistent and inconsistent comments.

• The proposed approach has been compared with state of
the art baseline classification approaches and it is evident
that this approach performs better in terms of Accuracy
and Area Under Precision-Recall Curve (AUCPR).

In section II, an overview of the methods are briefed which
are important to understand the proposed method. Dataset
parsing and pre-processing is discussed in section III-A.
Proposed method is explained in section III-B. The dataset
description and experimental results are presented in section
IV. Related works are reviewed in section V, and finally this
work has been concluded in section VII.

II. BACKGROUND

To understand the proposed approach, knowledge about
Topic Modeling, Random Forest (RF) and Support Vector
Machine (SVM) is needed which are briefly discussed here.

A. Topic Modeling
Topic Modeling is a subfield of Machine Learning and

Natural Language Processing. It is one type of statistical model
which follows unsupervised machine learning technique to
provide abstract topics for a given document. Latent Dirichlet
Allocation (LDA) is a type of topic modeling which is used in
this paper. LDA is trained using a set of documents and with
a given number of topics. It provides a probability distribution
of words for a topic and a probability distribution of topics
for a document as output.

B. Random Forest
Random Forest [7] is an ensemble learning approach for

classifying data. In training time, it builds a multitude of
decision trees. Each decision tree predicts a class label of a
new input data pattern and RF merges them together to get a
more accurate and stable prediction. RF is a fast, simple and
flexible machine learning algorithm. In this paper RF receives
the topic distribution gained from LDA as input and produces
output for the next procedure.

C. Support Vector Machine
A Support Vector Machine [8] is a discriminative classifier

formally defined by a separating hyperplane. While training
this classifier, it finds the maximum-margin hyperplane that
separates the group of data points into two classes. A new
incoming pattern is classified in the class according to the
side of the hyperplane.

III. PROPOSED APPROACH

The proposed ensemble approach to detect code comment
inconsistency is described in this section thoroughly. Before
training, the way of pre-processing code and comment pairs
is also discussed here.

Fig. 1. Topic Modeling (LDA).

A. Code-Comment Parsing

The raw code comment pairs need to be processed to create
features for training. The two steps which are followed to make
the features during pre-processing are described next.

1) Process Code and Comment Pairs: The pairs of codes
and comments need to be parsed into tokens to execute the
next steps. At the beginning, all newlines, tabs and special
characters like braces, semicolons, full-stops are removed.
Extra whitespaces are also removed from the remaining code
and comments. Words are also split based on camel cases.
After tokenizing, every code and comment is turned into a
bag of word tokens. Finally each of the words are lemmatized
into root words.

2) Create vectors from code and comments: After pro-
cessing the code-comment pairs into bag of word tokens, two
corpora for codes and comments are built. Each of these
corpora turns a code/comment into an index vector. These
index vectors of code/comment is passed into its corresponded
Latent Dirichlet Allocation (LDA) model. There are two
identical LDA models for training code and comment index
vectors separately. For every k number of topic, these LDA
models provide two separate probability distributions for a
pair of code and comment which are concatenated to produce
feature vector using Eq. (1).

concatenatedfeaturek = LDAk(code)⊕LDAk(comment) (1)

Here, k is the number of topics and ⊕ is used for concatenating
vectors. This features vector is now ready to be used for
Inconsistency Detector described in the next section. The
overview of preparing feature vector is illustrated in Fig. 1.

B. Inconsistency Detector

As discussed above, the extracted feature vector of k number
of topics is fed into a random forest as input. Based on this
input features, the random forest model produces a consistency
score for a code-comment pair. A random forest built from k
topics, RFk, provides a consistency score, scorek derived in
Eq. (2).

scorek = RFk(concatenatedfeaturek) (2)

As the number of topics for both comment and code can be
varied, it is needed to incorporate different number of topics
to find the informative and effective features. For different



Fig. 2. Overall process of the proposed method.

TABLE I
DESCRIPTIVE STATISTICS OF THE DATASET

Application Files Classes Methods Methods with comments Coherent Non-Coherent Total Not Included
CoffeeMaker 7 7 51 47 (92%) 27 20 47 0
JFreeChart-0.6.0 82 83 617 485 (79%) 406 55 461 24
JFreeChart-0.7.1 124 127 807 624 (77%) 520 68 588 36
JHotDraw-7.4.1 575 692 6414 2480 (39%) 762 1025 1787 693
All 788 909 7889 3636 (46%) 1715 1168 2883 753

number of topics ranging from i to j on interval 1, different
random forest models are built. Each random forest model
returns a consistency score for a code-comment pair. These
consistency scores derived from m different random forests are
needed to be fused. Here, SVM is used to fuse the consistency
scores provided by m random forests and predict the outcome
using Eq. (3).

Ŷ = SVM(⊕j
k=iscorek) (3)

Fig. 2 describes the overall procedure of proposed method.

IV. EXPERIMENTS & RESULT ANALYSIS

We used a dataset provided by Corazza et al. [9] in this
experiment. Four versions of three java projects CoffeeMaker1,
JFreeChart2 and JHotDraw3 are used in this dataset. Some
descriptive statistics of these projects are reported in Table I.

We split the dataset randomly into 90% training and 10%
testing set. After training finished, we run our model on testing
set. The result is evaluated based on two evaluation metrics
namely Accuracy and Area Under Precision-Recall Curve
(AUCPR). Table II and III report the performance comparison
of our proposed method with other methods in terms of
accuracy and AUCPR. We report the average performance by
applying 10 fold cross-validation. To find the outputs of the
existing approach, we re-implemented it.

From Table II, it can be observed that, the accuracy of the
proposed method is better than the existing approach [5] for
all of the projects except JHotDraw-7.4.1. At first a single
Random Forest having 10 features (RF 10) is used to classify
consistent and inconsistent code-comment pairs. As the result

1agile.csc.ncsu.edu/SEMaterials/tutorials/coffee maker
2www.jfree.org/jfreechart
3www.jhotdraw.org

TABLE II
PERFORMANCE COMPARISON IN TERMS OF ACCURACY

Dataset RF-10 Coherence Proposed
CoffeeMaker 0.830 0.873 0.895
JFreeChart-0.6.0 0.879 0.835 0.918
JFreeChart-0.7.1 0.876 0.875 0.898
JHotDraw-7.4.1 0.743 0.811 0.801
All 0.803 0.837 0.841

of this approach was not satisfactory, an ensemble RF with
SVM (Proposed) is used. By using this, the accuracy increases
for all of the projects and looks very promising.

In Table III, the result is showed based on AUCPR which
also denotes that, the result of the proposed approach performs
better than the existing one. It can also be observed that,
AUCPR values are improved when using the ensemble of RFs
for different number of topics instead of a single Random
Forest with constant number of topics (e.g. RF 10).

TABLE III
PERFORMANCE COMPARISON IN TERMS OF AUCPR

Dataset RF-10 Coherence Proposed
CoffeeMaker 0.878 0.943 0.975
JFreeChart-0.6.0 0.938 0.909 0.941
JFreeChart-0.7.1 0.924 0.941 0.962
JHotDraw-7.4.1 0.837 0.882 0.855
All 0.888 0.888 0.912

We also found that the proposed approach is promising
while comparing the training time with state-of-the-art method.
For small projects training time is almost same in both cases.
However, the proposed approach trains faster than the existing
approach for large projects.



V. RELATED WORKS

There have been some previous works in this field related
to code comment relation. The earliest work related to code
comment inconsistency that we studied is “iComment: Bugs
or Bad Comments” [10]. In this work, authors proposed an
approach to detect code comment inconsistency in locking and
calling mechanism. They limited their scope to the comments
related to programmers’ assumptions and requirements.

Another work for testing Javadoc comments was proposed
by Tan et al. to detect comment-code inconsistencies called
@TCOMMENT [11]. The authors considered method proper-
ties for null values and related exceptions. They set some rules
for @param tags in javadoc comments and null pararamer
exception statement to detect inconsistencies between codes
and comments using Natural Language Processing. The scope
of their work is limited to only comments related to null
reference and throwing exceptions.

Ratol et al. proposed an approach to detect invalid comments
while renaming identifiers in source code [12]. The authors
created guidelines to link comments and their responsive
codes and defined the scope of comments in a project to link
identifiers.

While the above works are related to detect inconsistencies
between code and comment, there are some other works to
measure the code comments quality. Steidl et al. presented a
semi automatic approach for quality analysis and assessment
of code comments [13]. Their focus was to evaluate comments
quality to improve the readability of source codes. They
used machine learning technique to classify comments into
categories and based on these categories they developed a
comment quality model.

Corazza et al. published a benchmark dataset of java
method-comment pairs with corresponding coherent values
which they inspected manually [5]. Later they investigated
if it is possible to predict whether a code-comment pair is
coherent or not. They used Vector Space Model to represent a
method or comment based on their tf-idf score. Initially they
used lexical similarity to measure the coherence value and
later they trained a SVM with grid search algorithm to adjust
parameters.

Wen et al. presented a large scale study [14] on code
comments and found that, code and comments co-evolve over
time. Besides, some approaches are proposed to generate
natural language summary or comments from source codes
[15], [16]. As per our knowledge, none of the approaches use
the insight dominating topics to detect if a code and comment
pair conveys the same meaning or not.

VI. THREATS TO VALIDITY

The most important threat is external validity which is
related to the software applications considered in the dataset.
All the applications in experimented dataset were implemented
in Java which could bias the results. For example, Java is more
verbose than other programming languages (e.g., C, C++ etc.)
and then the developers of the applications in the dataset could
have paid inadequate attention on commenting methods.

VII. CONCLUSION

This paper proposed a new ensemble approach to mea-
sure the effectiveness of detecting code comment inconsis-
tencies. In this approach, features are extracted from codes
and comments using topic modeling. Afterwards, proposed
model fuses the coherence scores obtained by different sources
(Random Forests) to provide the probability of inconsistency
between a code and comment. This approach was evaluated
in a benchmark dataset of java projects and the result was
prominent and satisfactory. This approach can also be applied
to detect inconsistencies between code comment pairs of other
languages as a future work.

REFERENCES

[1] T. Tenny, “Program readability: Procedures versus comments,” IEEE
Transactions on Software Engineering, vol. 14, no. 9, pp. 1271–1279,
1988.

[2] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of modu-
larization and comments on program comprehension,” in Proceedings of
the 5th international conference on Software engineering. IEEE Press,
1981, pp. 215–223.

[3] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE 2007). IEEE,
2007, pp. 70–79.

[4] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code
vocabulary,” in 2010 17th Working Conference on Reverse Engineering.
IEEE, 2010, pp. 3–12.

[5] A. Corazza, V. Maggio, and G. Scanniello, “Coherence of comments
and method implementations: a dataset and an empirical investigation,”
Software Quality Journal, vol. 26, no. 2, pp. 751–777, 2018.

[6] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to informa-
tion retrieval. Cambridge University Press Cambridge, 2008, vol. 39.

[7] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[8] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995. [Online]. Available:
https://doi.org/10.1007/BF00994018

[9] A. Corazza, V. Maggio, and G. Scanniello, “On the coherence between
comments and implementations in source code,” in 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications. IEEE,
2015, pp. 76–83.

[10] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or
bad comments?*,” in ACM SIGOPS Operating Systems Review, vol. 41,
no. 6. ACM, 2007, pp. 145–158.

[11] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@ tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation. IEEE, 2012, pp. 260–269.

[12] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in Pro-
ceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 2017, pp. 112–122.

[13] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in 2013 21st International Conference on Program
Comprehension (ICPC). Ieee, 2013, pp. 83–92.

[14] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE,
2019, pp. 53–64.

[15] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[16] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for
automatic comment generation,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2015, pp. 380–389.


