
Trends in Software Reverse Engineering

Dr. Rehman Arshad

Research Associate, The Hut Group

M90 3DP, Manchester, United Kingdom

rehman.khan@thehutgroup.com

Abstract
The polymorphic domain of software reverse engineer-

ing varies since 90s due to multiple reasons. Some of the
primary reasons include the acceptance of new program-
ming languages, underlying technique of reverse engineer-
ing and the desired output notation of the reverse engineer-
ing that varies with evolution of software. The purpose of
this paper is to provide a trend-based taxonomy of reverse
engineering that can classify the differences and similari-
ties in the reverse engineering throughout the years.

Key Words —Reverse Engineering, Softwrae Comprehension1

1. Introduction
”Reverse engineering can be viewed as a process of

analysing a system to identify the system's components and
their interrelationships” [14]. This process is used to com-
prehend, or analyse a system in order to extract an archi-
tecture/notation for various purposes e.g., re-structuring of
legacy systems [2, 6, 31], understanding the code traces
[23], find out the feature locations [37, 51] and develop-
ing understanding of the systems with poor documentation
[19].

The purpose of this paper is to analyse the pros and cons
and to reason about the changes in the nature of reverse en-
gineering throughout the years. This paper can be used as
a reference document to understand the factors and reasons
that change the nature of software reverse engineering since
90s.

There are few factors that are responsible for the change
in nature of reverse engineering throughout the years i.e.,
targeted programming language, underlying technique to
reverse engineer software and the output notation of reverse
engineering. Most reverse engineering approaches try to
tackle the programming language that is considered legacy

1DOI reference number: 10.18293/SEKE2020-061

for a specific domain OR better upcoming options are on
the horizon for that particular domain. Therefore, most of
the approaches from 90s to early 2000s were applied on
COBOL and C code bases [18, 21] whereas, most of the
current ones are being applied on Java [6, 44]. Secondly,
the notation of retrieved output after reverse engineering
started as system documentation/comprehension [12] and
went through the concept-lattices/graphs and code traces
[9, 13] that can help in understanding the composition of
a system. Nowadays, reverse engineering is moving to-
wards architectural retrieval that can enable reusability of
resources [2, 29].

This paper only covers those approaches that deal with
transformation of source code from one notation to another.
The succeeding sections will discuss the framework of clas-
sification and discuss the reverse engineering approaches
with respect to the timeline since 90s.

2. Framework of Classification
The proposed framework and the approaches that we

cover are presented in Table. 12. The stated table has fol-
lowing parameters of classification.

• Timeline: Timeline has been classified into five inter-
vals. Starting from an interval of ten years3 followed
by the four intervals of five years each.

• Approaches: This column shows the total number of
reverse engineering approaches that we have covered
during each phase.

• Approach Name and Reference: As the name sug-
gests, these columns will show all the appraoches
along with their references.

2Table 1 Legend:
F: Feature Model, C: Re-structured Code, NEC: Non-Explicit Components
EC: Explicit Components, VB : View Based G: Concept-Lattices/Graphs, CT: Rank-Based Map-
ping/Code Trace
CO: COBOL, LI: Language Independent, J: Java, OO: Object-Oriented

3First interval consists of a decade rather than five years due to a smaller number of approaches
proposed in that specific timeframe.



Timeline Approaches Approach Name Reference
Technique Retrieved Notation Programming Language

Parsing
Based

Plan
Based Transformational Translational F C NEC EC VB CO C C++ LI J OO

G CT

90s-2000 5 RECAST [18] 3 3 3
Sub-System Identifi-
cation

[36] 3 3 3

Ward and Bennet’s
Approach

[48] 3 3 3

Burd and Munro’s
Approach

[12] 3 3 3

Design Components [29] 3 3 3

2001-2005 9 Concern Graphs [40] 3 3 3
Favre et al. [25] 3 3 3
Systematic Method
Approach

[31] 3 3 3

Dynamic Feature
Traces

[23] 3 3 3

Concept Analysis [21] 3 3 3
Trace Dependency
Analysis

[19] 3 3 3

Software Evolution
Analysis

[27] 3 3 3

Locating Features in
Source Code

[22] 3 3 3

Automatic Genera-
tion

[39] 3 3 3

2006-2010 21 Dependence Graph [40] 3 3 3
Javacompext [6] 3 3 3
Chouambe at al. [15] 3 3 3
Antoun et al. [2] 3 3 3
L2CBD [30] 3 3
CORE [32] 3 3 3
Bunch Tool [35] 3 3 3
Natural Language
Parsing

[1] 3 3 3

Source Code Re-
trieval

[34] 3 3 3 3

Combining FCA
with IR

[38] 3 3 3

STRADA [20] 3 3
Call-Graph [9] 3 3 3 3
Focused-view on Ex-
ecution

[10] 3 3 3 3

Scenario-Driven Dy-
namic Analysis

[42] 3 3 3

Featureous [37] 3 3 3
Static and Dynamic
Analysis

[41] 3 3 3

Heuristics Based Ap-
proach

[8] 3 3 3

Landmark and Barri-
ers

[47] 3 3 3

SNIAFL [52] 3 3 3
Cerberus [17] 3 3 3
Concern Identifica-
tion

[45] 3 3 3

2011-2015 13 RecoVar [51] 3 3 3
Semi-Automatic Ap-
proach

[46] 3 3 3

Archimetrix [16] 3 3 3
Quality-centric
Approach

[28] 3 3 3

Memory-constrained
Environment

[49] 3 3 3

Erdemir et al. [24] 3 3 3
Product Variants [50] 3 3 3
Evolutionary Algo-
rithms

[33] 3 3 3

Software Configura-
tions using FCA

[3] 3 3 3

Reverse Engineering
Feature Models

[44] 3 3 3

Component Oriented
Architecture

[4] 3 3 3

MoDisco [11] 3 3
Language Indepen-
dent Approach

[53] 3 3 3

2016-Current 3 Shatnawi et al. [43] 3 3 3
Alshara et al. [5] 3 3 3
RX-MAN [7] 3 3 3

Table 1: Trends in Software Reverse Engineering



• Technique: The parameter Technique is further classi-
fied based on the Gannod’s and Cheng’s framework as
follows [26]:

– Parsing Based: approaches use parsers like AST
(Abstract Syntax Tree) to capture a code base for
reverse engineering without losing any detail.

– Plan Based: approaches use heuristics and de-
fine abstraction models to capture the source
code.

– Transformational: techniques transform one no-
tation of semantics into another by specifying a
formal context.

– Translational: ones translate a program into an
equivalent formal specification e.g., creation of a
directed graph from source code.

• Retrieved Notation: shows us the output that each ap-
proach offers. This parameter has been classified into
feature models, restructured code, non-explicit com-
ponents (no defined composition), explicit components
(components that follow a component model) and view
based output (further classified into code traces and
concept-lattices/graphs).

• Programming Language: represents the targeted lan-
guage of a reverse engineering approach. The lan-
guages are classified into COBOL, C, C++, Java, OO
(work on any object-oriented code) and LI (language
independent approaches).

3. Trends in Software Reverse Engineering
Based on the proposed framework and 51 approaches

that we have covered in this paper (Table. 1), there is a
clear pattern that shows the variation of software reverse
engineering since 90s.

Almost all the covered approaches from 90-2000s are
parsing-based i.e., heuristics and plan-based reverse engi-
neering was not developed enough to conduct the process
of reverse engineering. All the approaches were applied
and designed for COBOL and C/C++ code bases i.e., Java
was becoming popular in late 90s and was not considered
because its code bases did not reflect legacy code in that
era. The popular notations of the output of reverse engineer-
ing were components or graphical representations that can
help in code comprehension although, the components’ no-
tations were not specified by some component model. Com-
ponents in that era were usually defined as loosely coupled
code chunks without proper definition of composition.

From 2001-2005, translation-based reverse engineering
was the preferred way instead of parsing-based reverse en-
gineering. Most of the approaches targeted object-oriented
legacy code4. An important change in this phase is the pre-
ferred output of reverse engineering i.e., code trace that can
help in finding the feature locations in a code base. Most

4Such approaches can be applied on any object-oriented code though most of them chose Java
as the targeted language.

approaches (e.g., [23] [27]) conducted dynamic reverse en-
gineering to map legacy code bases in terms of the features
of software.

From 2006-2010, the domain of reverse engineering was
all about heuristics i.e., reverse engineering was based on
plan-based or translation-based (translation via heuristics)
methodologies. This was the era of visualisation-based re-
verse engineering i.e., all the approaches produced either
code traces or concept lattices to visualise the dependencies
e.g., [9] [40]. Many established domains like IR (informa-
tion retrieval) and NLP (natural language parsing) were in-
volved in reverse engineering to produce better results from
heuristics (e.g., [1] [38]). In this phase, 61% of the covered
approaches targeted Java i.e., the trend moved specifically
towards Java rather than general OO. It was justified due to
the fact that by the end of this phase, many enterprise java
code-bases were started to be considered legacy code.

From 2011-2015, the parsing-based reverse engineering
was again on the rise i.e., 42% approaches from this phase
were based on parsing. It was due to the fact that most ap-
proaches extracted ADL-based components/architectural-
notations from the legacy code-bases. Such architectural
notations demand preservation of the functionality of an
original code base and heuristics cannot guarantee lossless
extraction of architecture. 21% of the covered approaches
were plan-based and a few of the approaches extracted fea-
tures/feature models (e.g., [3] [44]). 53% approaches con-
sidered object-oriented code-bases.

The current phase (2016-current) of software reverse
engineering still revolves around architectural re-usability.
Software reverse engineering is moving away from graphs
and code traces towards components. OO code in general
and Java in particular is the favourite choice of current ap-
proaches. Table. 15 shows the overall statistics of the trends
in software reverse engineering.
4. Conclusion

In this paper, we have covered more than 50 approaches
to determine the trends and variations in software reverse
engineering since 90s. Our framework shows that re-
verse engineering is moving from code comprehension and
graphs towards components and architectural notations.

The adaptation in the techniques of reverse engineer-
ing went through phases of parsing-based, translational and
plan-based reverse engineering whereas, most of the recent
reverse engineering approaches are again in favour of pars-
ing with an aim of architectural retrieval that requires the
preservation of syntactic code structure.
References

[1] Surafel Lemma Abebe and Paolo Tonella. Natural language
parsing of program element names for concept extraction. In
18th International Conference on Program Comprehension
(ICPC), 2010 IEEE, pages 156–159. IEEE, 2010.

5MoDisco is a framework and L2CBD is a methodology rather than concrete approaches there-
fore, no programming language/Technique is specified for them respectively.



[2] Marwan Abi-Antoun, Jonathan Aldrich, and Wesley Coelho.
A case study in re-engineering to enforce architectural con-
trol flow and data sharing. Journal of Systems and Software,
80(2):240–264, 2007.

[3] R Al-Msie’Deen, Marianne Huchard, A-D Seriai, Christelle
Urtado, and Sylvain Vauttier. Reverse engineering feature
models from software configurations using formal concept
analysis. In CLA 2014: Eleventh International Conference
on Concept Lattices and Their Applications, volume 1252,
pages 95–106, 2014.

[4] S. Allier, S. Sadou, H. Sahraoui, and R. Fleurquin. From
object-oriented applications to component-oriented applica-
tions via component-oriented architecture. In 2011 Ninth
Working IEEE/IFIP Conference on Software Architecture,
pages 214–223, June 2011.

[5] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tiber-
macine, Hinde Lilia Bouziane, Christophe Dony, and Anas
Shatnawi. Migrating large object-oriented applications into
component-based ones: Instantiation and inheritance trans-
formation. SIGPLAN Notices, 51(3):55–64, October 2015.

[6] Nicolas Anquetil, Jean-Claude Royer, Pascal Andre, Gilles
Ardourel, Petr Hnetynka, Tomas Poch, Dragos Petrascu, and
Vladiela Petrascu. Javacompext: Extracting architectural el-
ements from java source code. In 16th Working Conference
on Reverse Engineering, 2009. WCRE’09., pages 317–318.
IEEE, 2009.

[7] Rehman Arshad and Kung-Kiu Lau. Reverse engineering en-
capsulated components from object-oriented legacy code. In
Proceedings of The 30th International Conference on Soft-
ware Engineering and Knowledge Engineering, 2018. KSI
Research Inc., 2018.

[8] Fatemeh Asadi, Massimiliano Di Penta, Giuliano Antoniol,
and Yann-Gaël Guéhéneuc. A heuristic-based approach to
identify concepts in execution traces. In 14th European
Conference on Software Maintenance and Reengineering
(CSMR), 2010, pages 31–40. IEEE, 2010.

[9] Johannes Bohnet and Jürgen Döllner. Analyzing feature
implementation by visual exploration of architecturally-
embedded call-graphs. In Proceedings of the 2006 interna-
tional workshop on Dynamic systems analysis, pages 41–48.
ACM, 2006.

[10] Johannes Bohnet, Stefan Voigt, and Jurgen Dollner. Locating
and understanding features of complex software systems by
synchronizing time-, collaboration-and code-focused views
on execution traces. In The 16th IEEE International Confer-
ence on Program Comprehension, 2008. ICPC 2008., pages
268–271. IEEE, 2008.

[11] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric
Madiot. Modisco: A model driven reverse engineer-
ing framework. Information and Software Technology,
56(8):1012–1032, 2014.

[12] Elizabeth Burd and Malcolm Munro. Investigating
component-based maintenance and the effect of software
evolution: a reengineering approach using data clustering. In
Proceedings of International Conference on Software Main-
tenance, 1998., pages 199–207. IEEE, 1998.

[13] Kunrong Chen and Václav Rajlich. Case study of feature
location using dependence graph, after 10 years. In 18th In-

ternational Conference on Program Comprehension. IEEE,
2010.

[14] Elliot J. Chikofsky and James H Cross. Reverse engineering
and design recovery: A taxonomy. IEEE software, 7(1):13–
17, 1990.

[15] Landry Chouambe, Benjamin Klatt, and Klaus Krogmann.
Reverse engineering software-models of component-based
systems. In 12th European Conference on Software Main-
tenance and Reengineering, 2008. CSMR 2008., pages 93–
102. IEEE, 2008.

[16] Markus Detten, Marie Christin Platenius, and Steffen
Becker. Reengineering component-based software systems
with archimetrix. Software Systems Model., 13(4):1239–
1268, October 2014.

[17] Marc Eaddy, Alfred V Aho, Giuliano Antoniol, and Yann-
Gaël Guéhéneuc. Cerberus: Tracing requirements to source
code using information retrieval, dynamic analysis, and pro-
gram analysis. In The 16th IEEE International Conference
on Program Comprehension, 2008. ICPC 2008., pages 53–
62. IEEE, 2008.

[18] Helen M. Edwards and Malcolm Munro. RECAST: Reverse
engineering from COBOL to SSADM specification. In Pro-
ceedings of 15th International Conference on Software En-
gineering, 1993, pages 499–508, May 1993.

[19] Alexander Egyed. A scenario-driven approach to trace de-
pendency analysis. IEEE Transactions on Software Engi-
neering, 29(2):116–132, 2003.

[20] Alexander Egyed, Gernot Binder, and Paul Grunbacher.
Strada: A tool for scenario-based feature-to-code trace de-
tection and analysis. In Companion to the proceedings of
the 29th International Conference on Software Engineering,
pages 41–42. IEEE Computer Society, 2007.

[21] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon.
Derivation of feature component maps by means of concept
analysis. In Fifth European Conference on Software Main-
tenance and Reengineering, 2001., pages 176–179. IEEE,
2001.

[22] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Lo-
cating features in source code. IEEE Transactions on Soft-
ware Engineering, 29(3):210–224, 2003.

[23] Andrew David Eisenberg and Kris De Volder. Dynamic fea-
ture traces: Finding features in unfamiliar code. In Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance, 2005. ICSM 2005., pages 337–346. IEEE,
2005.

[24] Ural Erdemir, Umut Tekin, and Feza Buzluca. Object ori-
ented software clustering based on community structure. In
2011 18th Asia-Pacific Software Engineering Conference,
pages 315–321, Dec 2011.

[25] Jean Marie Favre, Frederic Duclos, Jacky Estublier, Remy
Sanlaville, and Jean Jacques Auffret. Reverse engineering
a large component-based software product. In Proceedings
Fifth European Conference on Software Maintenance and
Reengineering, pages 95–104, 2001.

[26] Gerald C Gannod and Betty HC Cheng. A framework for
classifying and comparing software reverse engineering and
design recovery techniques. In Proceedings of Sixth Work-
ing Conference on Reverse Engineering, 1999., pages 77–88.



IEEE, 1999.
[27] Orla Greevy, Stéphane Ducasse, and Tudor Girba. Analyzing

feature traces to incorporate the semantics of change in soft-
ware evolution analysis. In Proceedings of the 21st IEEE
International Conference on Software Maintenance, 2005.
ICSM 2005., pages 347–356. IEEE, 2005.

[28] S. Kebir, A. D. Seriai, S. Chardigny, and A. Chaoui. Quality-
centric approach for software component identification from
object-oriented code. In 2012 Joint Working IEEE/IFIP Con-
ference on Software Architecture and European Conference
on Software Architecture, pages 181–190, Aug 2012.

[29] Rudolf K Keller, Reinhard Schauer, Sébastien Robitaille, and
Patrick Pagé. Pattern-based reverse-engineering of design
components. In Proceedings of the 21st international confer-
ence on Software engineering, pages 226–235. ACM, 1999.

[30] Haeng-Kon Kim and Youn-Ky Chung. Transforming a
legacy system into components. In Marina Gavrilova, Os-
valdo Gervasi, Vipin Kumar, C. J. Kenneth Tan, David
Taniar, Antonio Laganá, Youngsong Mun, and Hyunseung
Choo, editors, Computational Science and Its Applications
- ICCSA 2006, pages 198–205, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[31] Soo Dong Kim and Soo Ho Chang. A systematic method to
identify software components. In 11th Asia-Pacific Software
Engineering Conference, pages 538–545, Nov 2004.

[32] Sameer Kumar and Promma Phrommathed. Research
methodology. Springer, 2005.

[33] Roberto Erick Lopez-Herrejon, José A Galindo, David Be-
navides, Sergio Segura, and Alexander Egyed. Reverse en-
gineering feature models with evolutionary algorithms: An
exploratory study. In Search Based Software Engineering,
pages 168–182. Springer, 2012.

[34] Stacy K Lukins, Nicholas A Kraft, and Letha H Et-
zkorn. Source code retrieval for bug localization using La-
tent Dirichlet Allocation. In Reverse Engineering, 2008.
WCRE’08. 15th Working Conference on, pages 155–164.
IEEE, 2008.

[35] Brian S. Mitchell and Mancoridis Spiros. On the automatic
modularization of software systems using the bunch tool.
IEEE Transactions on Software Engineering, 32(3):193–
208, March 2006.

[36] Hausi A Müller, Mehmet A Orgun, Scott R Tilley, and
James S Uhl. A reverse-engineering approach to subsystem
structure identification. Journal of Software: Evolution and
Process, 5(4):181–204, 1993.

[37] Andrzej Olszak and Bo Nørregaard Jørgensen. Featureous: a
tool for feature-centric analysis of java software. In 18th In-
ternational Conference on Program Comprehension (ICPC),
2010, pages 44–45. IEEE, 2010.

[38] Denys Poshyvanyk and Andrian Marcus. Combining for-
mal concept analysis with information retrieval for concept
location in source code. In 15th IEEE International Confer-
ence on Program Comprehension, ICPC 2007., pages 37–48.
IEEE, 2007.

[39] Martin P Robillard. Automatic generation of suggestions for
program investigation. In ACM SIGSOFT Software Engi-
neering Notes, volume 30, pages 11–20. ACM, 2005.

[40] Martin P Robillard and Gail C Murphy. Concern graphs:

finding and describing concerns using structural program de-
pendencies. In Proceedings of the 24th international confer-
ence on Software engineering, pages 406–416. ACM, 2002.

[41] Abhishek Rohatgi, Abdelwahab Hamou-Lhadj, and Juergen
Rilling. An approach for mapping features to code based on
static and dynamic analysis. In The 16th IEEE International
Conference on Program Comprehension, ICPC 2008., pages
236–241. IEEE, 2008.

[42] Maher Salah, Spiros Mancoridis, Giuliano Antoniol, and
Massimiliano Di Penta. Scenario-driven dynamic analy-
sis for comprehending large software systems. In Software
Maintenance and Reengineering, 2006. CSMR 2006. Pro-
ceedings of the 10th European Conference on, pages 10–pp.
IEEE, 2006.

[43] Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui,
and Zakarea Alshara. Reverse engineering reusable software
components from object-oriented apis. Journal of Systems
and Software, 131:442–460, 2017.

[44] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wa-
sowski, and Krzysztof Czarnecki. Reverse engineering fea-
ture models. In 2011 33rd International Conference on Soft-
ware Engineering (ICSE), pages 461–470. IEEE, 2011.

[45] Mircea Trifu. Improving the dataflow-based concern identi-
fication approach. In 13th European Conference on Software
Maintenance and Reengineering, CSMR 2009., pages 109–
118. IEEE, 2009.

[46] Marco Tulio Valente, Virgilio Borges, and Leonardo Pas-
sos. A semi-automatic approach for extracting software
product lines. IEEE Transactions on Software Engineering,
38(4):737–754, 2012.

[47] Neil Walkinshaw, Marc Roper, and Murray Wood. Feature
location and extraction using landmarks and barriers. In Soft-
ware Maintenance, 2007. ICSM 2007. IEEE International
Conference on, pages 54–63. IEEE, 2007.

[48] MP Ward and KH Bennett. A practical program transforma-
tion system for reverse engineering. In Reverse Engineering,
1993., Proceedings of Working Conference on, pages 212–
221. IEEE, 1993.

[49] Hironori Washizaki and Yoshiaki Fukazawa. Extracting
components from object-oriented programs for reuse in
memory-constrained environments. 2014.

[50] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. Feature
location in a collection of product variants. In 19th Working
Conference on Reverse Engineering, (WCRE). 2012, pages
145–154. IEEE, 2012.

[51] Bo Zhang and Martin Becker. Recovar: A solution frame-
work towards reverse engineering variability. In 4th Inter-
national Workshop on Product Line Approaches in Software
Engineering, (PLEASE), 2013, pages 45–48. IEEE, 2013.

[52] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang.
Sniafl: Towards a static noninteractive approach to feature
location. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15(2):195–226, 2006.

[53] Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal
Ziane, and Yves Le Traon. Towards a language-independent
approach for reverse-engineering of software product lines.
In Proceedings of the 29th Annual ACM Symposium on Ap-
plied Computing, pages 1064–1071. ACM, 2014.


