
Revisiting Dependence Cluster Metrics based Defect Prediction

Qiguo Huang∗,Xiang Chen∗†,Zhengliang Li∗,Chao Ni∗,Qing Gu∗‡
∗State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
†School of Computer Science and Technology, Nantong University, Nantong 226019, China

Abstract—A dependence cluster is a set of program el-
ements that all depend upon each other. Prior empirical
studies have found that the dependence cluster based metrics
are useful in effort-aware defect prediction. However, it is
still unknown whether they are useful in non-effort-aware
defect prediction. In this paper, we perform empirical studies
to investigate this issue. We use the product, process, and
network metrics to build the “B” model (baseline model),
and then use the product, process, network and dependence
cluster metrics to build the “B+C” model. Our experimental
results, based on five well-known open-source systems, show
that the dependence clusters are useful for non-effort-aware
defect prediction. These findings help us better understand
how dependence clusters influence non-effort-aware defect
prediction.

Index Terms—dependence cluster, metrics, defect predic-
tion, revisiting, non-effort-aware

I. Introduction
A dependence cluster is a set of program elements that

all depend upon each other [1], [2]. Prior studies showed
that large dependency clusters are widely existed in all
kinds of source code. The existence of the large dependent
clusters will result in ripple effects — a code change in
one element of the dependent cluster will produce potential
impact on other elements of the cluster [1], [2]. A high-
quality software system should reduce or even eliminate
large dependency clusters since they not are easier to
develop, maintain, and reuse. Therefore, The detection and
analysis of dependency clusters is the key point. Binkley
et al. [1] used the technology of program slicing to solve
this problem by defining the program system dependence
graph. Based on their observation, dependence clusters can
influnence software quality. Yang et al. [3] first applied
dependence cluster metrics to software defect prediction,
and their empirical studies have found that the dependence
cluster based metrics are useful in effort-aware defect
prediction. However, it is still unknown whether they are
useful in non-effort-aware defect prediction. In this paper,
our study attempts to fill this gap.

‡Corresponding Author, Email: guq@nju.edu.cn
DOI reference number: 10.18293/SEKE2020-060

Based on this motivation, we investigate the effective-
ness of dependence cluster based metrics in terms of
non-effort-aware performance indicators. Our main con-
tributions are the following:1) We investigate whether
dependence clusters are useful for non-effort-aware defect
prediction. Our results show that the dependence clusters
are still useful for non-effort-aware defect prediction. 2)
We examine whether our conclusions change if the po-
tentially confounding effect of module size is excluded.
The results show that the “B+C” model still performs
better than the “B” model. 3) We examine whether our
conclusions change if the class imbalanced method is used.
The results show that the “B+C” model still performs
better than the “B” model.

The rest of this paper is organized as follows. In
Section II, we summarize related work. In Section III, we
present the research questions and research method. We
describe experiment setup, including studied projects, data
collection, and performance indicators in Section IV. In
Section V, we report out experimental results. Section VI
discusses our findings. Finally, we conclude the paper and
direct future work.

II. Related Work
In this section, we summarize related work on non-

effort-aware defect prediction and dependence clusters.

A. Non-effort-aware Defect Prediction
The non-effort-aware defect prediction is also called

traditional defect prediction [4]. It includes within-project
defect prediction and cross-project defect prediction. For
within-project defect prediction, Hall et al. [5] investigated
the effect of model independent variables and model
techniques on the performance of defect prediction model.
Their results showed that simple modeling techniques,
such as Logistic Regression, tended to perform well. For
cross-project defect prediction, To the best of our knowl-
edge, the earliest study on CPDP(Cross-Project Defect
Prediction) was performed by Briand et al. [6], they used
logistic regression to build defect prediction models based

on the Xpose project. The results showed that the CPDP
model is better than the random model, but lower than
the within-project defect prediction performance. Ulike the
above stduies, we investigate whether dependence clusters
have practical value in non-effort-ware defect prediction.

B. Dependence Clusters

The concept of dependency clusters based on program
slicing at the statement level was first proposed by Binkley
et al. [1]. The dependence cluster is a set of program
elements that all depend upon each other. Later, Harman
et al. [2] extended Binkley’s study to modules with
coarser granularity. Their results showed that the accuracy
of the “same slice size” method proposed by Binkley is
very high. In addition, they found that large dependency
clusters are widely existed in analyzed software projects.
Yang et al. [3] first applied dependence cluster based
metrics to effort-aware software defect prediction. Their
empirical result showed the combination of the product,
process, network and dependence cluster metrics produce
more effective models for the prediction of post-release
defect than the combination of the product, process and
network metrics alone. Our study is different from their
studies, we study the defect prediction model in non-effort-
aware evaluations with respect to within-project and cross-
project.

III. RESEARCH METHODOLOGY
In this section, we first introduce the research questions,

then give the research method for the research questions.

A. Research Questions

In order to be easily understand research questions,
we use the system dependence clusters shown in Fig-
ure 1 [3] to illustrate the questions. In Figure 1, the
nodes indicate functions and the directed edges indicate
dependencies between functions, which includes the data
dependencies and the function call dependencies. Such
as, from f1 to f16 are functions, labeled “d” and “c”
indicate data dependencies and function call dependen-
cies, respectively. In this dependency graph, there are 16
functions and 3 dependency clusters which are dc1, dc2
and dc3. In Figure 1, the functions are divided into two
groups: functions inside dependence clusters and functions
outside dependence clusters. Such as, from f1 to f4 are
functions inside dc1, and from f12 to f16 are functions
outside dependence clusters. Functions inside dependence
clusters and functions outside dependence clusters form
the subgraphs SubGin and SubGout, respectively.

Based on the above the preliminary knowledge, we aim
to investigate whether dependence clusters are useful for
non-effort-aware defect prediction Therefore, our research
questions are set up as follows:

Fig. 1: An SDG with dependence clusters

RQ1. In the scenario of within-project defect prediction,
are dependence cluster based metrics useful for non-effort-
aware prediction?

RQ2. In the scenario of cross-project defect prediction,
are dependence cluster based metrics useful for non-effort-
aware prediction?

These research questions are important to both software
researchers and practitioners, as they help us better un-
derstand the effects of dependence clusters on software
quality.

B. Research Method

In order to answer RQ1 and RQ2, we use AIC(Akaike
Information Criterion) as the criteria to perform a forward
stepwise variable selection procedure to build the following
two types of multivariate logistic regression models: (1) the
“B” model (using product, process and network metrics);
(2) the “B+C” model (using product, process, network and
dependence clusters metrics). The logistic regression has
been widely used for building defect prediction models [7],
[8]. We choose the forward stepwise variable selection
rather than the backward stepwise variable selection be-
cause the forward stepwise variable selection is less time
consuming on stepwise variable selection especially for
plenty of independent metrics. The AIC criteria is a widely
used variable selection [9].

IV. EXPERIMENTAL SETUP
In this section, we first introduce the projects used in

our study and the method of collection the data. Then,

we give a description of the performance indicators in this
study.

A. Experimental Subjects

We use the five well-known open source projects
to investigate the predictive capability dependence clus-
ters based metrics for non-effort-aware defect prediction:
Gstreamer (GSTR), Glibc (GLIB), Gimp (GIMP) and Bash
(BASH). They are all GNU projects. In Table I, from the
second to seventh columns are respectively the version
number, the release date, the total source lines of code
in the each studied project, the number of functions, the
number of faulty functions, and the percentage of faulty
functions. From eighth to the ninth columns are the pre-
vious version number and the release date of the previous
version, which used to compute the process metrics. The
last two columns are the fixing version number and the
release date of the fixing release, which are used to
determine the faulty or not faulty label for each function.

B. Data Collection

We used the Understand1 tool and R package igrah2 to
collect the data from the above-mentioned five projects.
Metrics for each project consist of: 1) 16 product metrics
(i.e. SLoC metrics); 2) 3 process metrics (i.e. code churn
metrics); 3) 21 network metrics (i.e. Ties metrics); 4)
Collected the dependence clusters for each system ; 5)
Collect the importance metrics for dependence clusters [3];
and 6) the faulty or not-faulty labels of the functions after
version release.

Table II describes the dependence clusters in the ex-
perimental systems. The second to the fifth columns re-
spectively show the number of functions, the number of
clusters, the percentage of functions inside dependence
clusters, and the size of the largest cluster in each experi-
mental system. We can see that there exist many clusters
in these systems from Table II. Table III describes the
importance metrics for dependence clusters in the exper-
imental systems. These metrics are widely used network
metrics [10].

C. Performance Indicators

At present, most of the existing research work regards
the problem of the defect prediction as a binary classi-
fication problem. We set defective functions as positive
and non-defective functions as negative. We combine the
real results of function with the predicted results of model
and divide into true positive (TP), false positive (FP), true
negative (TN) and false negative (FN). Let TP, FP, TN
and FN denote the corresponding numbers of functions,
respectively. These values are stored in the confusion

1https://scitools.com/
2https://igraph.org/r/

matrix, and the confusion matrix is used to compute the
Precision, Recall, and F-measure performance indicators.
These indicators are defined as follows:

• Precision: The ratio of correctly predicted defective
functions over all the functions predicted as being
defective. It is calculated as:

Precision =
TP

TP + FP
(1)

• Recall: The ratio of correctly predicted defective
functions over all of the true defective functions. It
is calculated as:

Recall =
TP

TP + FN
(2)

• F-measure: The indicator is harmonic mean of the
precision and recall. It is calculated as:

F −measure = 2× precision× recall
precision+ recall

(3)

These indicators are widely used for non-effort-aware
defect prediction [11].

V. EXPERIMENTAL RESULTS
In this section, we first describe the models (“B” model

and “B+C” model), then we present the experimental
results for RQ1 and RQ2.

A. The Models

Figure 2 [3] provides an overview of analysis method
for RQ1 and RQ2. In order to answer RQ1 and RQ2, we
first use the procedure described in section 3.2 to build “B”
model and “B+C” model on each data set, respectively. The
introduction of “B” and “B+C” models as follows:

(1) The “B” model. It is the baseline model, which
is built with product, process, and network metrics.
These metrics are described in Table IV. We choose
the metrics as the baseline metrics since they are
widely used in defect prediction [12].

(2) The “B+C” model. The functions are divided into
two groups: functions inside dependence clusters and
functions outside dependence clusters, the “B+C”
model is segmented model which consists of two
independent models. They are the “B+Cin” model
and the “B+Cout” model. “B+Cin” and “B+Cout”
models are respectively used for predicting the prob-
ability that a function inside and outside dependence
clusters are faulty. They are both built with prod-
uct, process, network and the importance metrics
described in Table III. After building the models,
we can verify RQ1 and RQ2.

TABLE I: Studied projects and version information

System name Subject release Previous release Fixing release
Version number Release Date Total SLoC # functions # faulty functions % faulty functions Version Release Date Version Release Date

Gstreamer 1.0.0 2012-09-24 75985 3946 146 3.70% 0.11.90 2011-08-02 1.0.10 2013-08-30
Glibc 2.1.1 1999-05-24 172599 5923 417 7.04% 2.0.1 1997-02-04 2.1.3 2000-02-25
Gimp 2.8.0 2012-05-12 557436 19978 818 4.10% 2.7.0 2009-08-15 2.8.16 2015-11-21

Gcc-core 4.0.0 2005-04-21 422182 13612 430 3.16% 3.4.0 2004-04-20 4.0.4 2007-01-31
Bash 3.2 2006-10-11 49608 1947 68 3.49% 3.1 2005-12-08 3.2.57 2014-11-07

“B+Cin” model

“B+Cout” model
Predicted risk 2

Evaluate

Combined
predicted risk

Performances

Test set(f’s inside DCs)

Training set(fs inside DCs)

Training set(fs outside DCs)

Test set(f’s outside DCs)

“B+C”model

Our segmented model

ComparreResult

Predicted risk 1

Product+Process+network

metrics

Predicted risk

Evaluate

Test sets

Training sets

“B” model

Performances

The baseline model

Product+process+network +

importance metrics

Product+process+network +

importance metrics

P+P+N+I

metrics

Product+Process+network

metrics
Training

Training

Training P+P+N +I

metrics

Fig. 2: Overview of the analysis method for “B” VS “B+C” in within-project and “B” VS “B+C” in cross-project

TABLE II: The dependence clusters in experimental sys-
tems

System name # functions # clusters
% functions

Inside clusters
Size of

Largest cluster

Gstreamer 3946 59 15.2 170
Glibc 5923 105 11.6 277
Gimp 19978 363 14.2 158

Gcc-core 13612 139 34.9 4083
Bash 1947 41 46.2 483

TABLE III: The importance metrics for dependence clus-
ters

Metrics Description

Betweenness # shortest paths through the vertex
Centr betw Centrality score according to betweenness
Centr clo Centrality score according to the closeness
Centr degree Centrality score according to the degrees
Centr eigen Centrality score according to eigenvector
Closeness How close to other vertices
Constraint The Burt’s constraint
Degree # v’s adjacent edges
Eccentricity Maximum graph distance to other vertices
Page rank Google page rank score

TABLE IV: Baseline metrics in this study

Category Description

Product SLOC, FANIN, FANOUT, NPATH Cyclomatic, CyclomaticModified, Cy-
clomaticStrict, Essential, Knots, Nesting,MaxEssentialKnots, MinEssen-
tialKnots, n1, n2, N1, N2

Process Added, Deleted, Modified
Network Size, Ties, Pairs, Density, nWeakComp, pWeakComp, 2StepReach, Reach-

Effic, Broker, nBroker, EgoBetw, nEgoBetw, effsize, efficiency, constraint,
Degree, Closeness, dwReach, Eigenvector, Betweenness, Power

B. Experimental Result
In the following, we describe the experimental results

for RQ1 and RQ2, respectively.

(1) RQ1. In the scenario of within-project defect pre-
diction, are dependence cluster based metrics useful for
non-effort-aware prediction?

For RQ1, we use 30 times 3-fold cross-validation to
evaluate the effectiveness of the prediction models. We use
the same training/test set to train/test our segmented model
(i.e., the “B+C” model) and the baseline model (i.e., the
“B” model). On each fold, we first divide the training set
into two groups: functions inside dependence clusters and
functions outside dependence clusters. Then, we train the
“B+Cin” model and the “B+Cout” model, respectively. We
also divide the test set into two groups and subsequently
use the “B+Cin” model and the “B+Cout” model to predict
the probability of those functions that contain faults. After
that, we combine the predicted values to derive the final
predicted values to compute the performance indicators.

Based on F-measure predictive values, we use the
Wilcoxon’s signed-rank test to examine whether two mod-
els have a significant difference in their predictive effec-
tiveness. Then, we use the Bonferroni correction method
to adjust p-values to examine whether a difference is sig-
nificant at the significance level of 0.05 [13].Furthermore,
we use Cliff’s δ to examine whether the magnitude of
the difference between the prediction performances of two
models is important from the viewpoint of practical appli-
cation [14]. By convention, the magnitude of the difference
is considered either trivial (|δ| < 0.147), small (0.147-

0.33), moderate (0.33-0.474), or large (|δ| > 0.474) [15]
. From Table V, we find that the “B+C” models have
larger F-measure values than the “B” model in all the
five systems except in Gcc-core , and most of cliff’s |δ|
values are more than 0.147 except in Gcc-core .That is to
say, the dependence cluster based importance metrics are
useful for non-effort-aware prediction under within-project
evaluation.

(2) RQ2. In the scenario of cross-project defect pre-
diction, are dependence cluster based metrics useful for
non-effort-aware prediction?

TABLE V: The experimental results for RQ1

Projects ”B” ”B+C” %↑ |δ|

Gstreamer1.0.0 0.139 0.166 19.4% 0.153
√

Glibc2.1.1 0.068 0.180 164.7% 0.997
√

Gimp2.8.0 0.065 0.159 144.6% 0.992
√

Gcc-core4.0.0 0.094 0.086 -8.5% 0.111
Bash3.2 0.187 0.229 22.5% 0.556

√

Average 0.111 0.164 68.5% 0.562

Cross-project defect prediction uses a predicted model
trained on one project to predict defect in another projects
[8]. From Table VI, we find that the “B+C” models have
larger F-measure values than the “B” model, and the
cliff’s δ values are more than 0.147. That is to say, the
dependence cluster based importance metrics are useful for
non-effort-aware prediction under cross-project evaluation.

TABLE VI: The experimental results for RQ2

Source Target “B” “B+C” ↑% |δ|

Gimp2.8.0

Glibc2.1.1 0.132 0.135

18.5% 0.203
√

Gstreamer1.0.0 0.071 0.075
Gcc-core4.0.0 0.061 0.067

Bash3.2 0.067 0.062

Glibc2.1.1

Gimp2.8.0 0.107 0.051
Gstreamer1.0.0 0.111 0.080
Gcc-core4.0.0 0.159 0.069

Bash3.2 0.027 0.012

Gstreamer1.0.0

Gimp2.8.0 0.079 0.159
Gcc-core4.0.0 0.061 0.106

Bash3.2 0.021 0.026
Glibc2.1.1 0.132 0.143

Gcc-core4.0.0

Gimp2.8.0 0.025 0.042
Bash3.2 0.011 0.052

Glibc2.1.1 0.014 0.067
Gstreamer1.0.0 0.101 0.099

Bash3.2

Gimp2.8.0 0.021 0.078
Glibc2.1.1 0.023 0.081

Gstreamer1.0.0 0.013 0.064
Gcc-core4.0.0 0.059 0.066

Overall, the above experimental results show that the
non-effort-aware defect prediction capability of “B+C”
model is better than that “B” model under the settings
of within-project and cross-project prediction.

VI. DISCUSSION
In this section, we further discuss our findings. First, we

analyze whether our conclusions will change if the poten-
tially confounding effect of module size is excluded for the
“B” and the “B+C” models. Then, we analyze whether we
have similar conclusions if the class imbalanced method
is used.

(1) Will our conclusions change if the potentially
confounding effect of module size is excluded?

In our study, we did not take into account the potentially
confounding effect of function size on the associations
between those metrics with fault-proneness [16], when
building a fault-proneness prediction model. Therefore, it
is not readily known whether our conclusions will change
if the potentially confounding effect of module size is
excluded. In the following, we use the method proposed
by Zhou et al. [16] to remove the confounding effect of
module size and then rerun the analyses for RQ1 and RQ2.
From Table VII, we find that the “B+C” models have
larger F-measure values than the “B” model in all the five
systems except in Gcc-core based on Within-Project Defect
Prediction and most of cliff’s δ values more than 0.147
except in Gcc-core. Table VIII, we find that the “B+C”
models have most of larger F-measure values than the “B”
model based on Cross-Project Defect Prediction ,and the
cliff’s δ values are more than 0.147. This indicates that
“B+C” model still performs better than the “B” model.

TABLE VII: F-measure values after excluding the poten-
tially confounding effect of module size: the “B” model vs
“B+C” model based on Within-Project Defect Prediction

Projects “B” “B+C” %↑ |δ|

Gstreamer1.0.0 0.106 0.162 52.8% 0.875
√

Glibc2.1.1 0.070 0.176 151.4% 0.923
√

Gimp2.8.0 0.085 0.155 82.3% 0.728
√

Gcc-core4.0.0 0.084 0.072 -14.2% 0.187
Bash3.2 0.161 0.221 37.2% 0.421

√

Average 0.101 0.157 61.9% 0.627

TABLE VIII: F-measure values after excluding the poten-
tially confounding effect of module size: the “B” model
vs “B+C” model based on Cross-Project Defect Prediction

Source Target “B” “B+C” ↑% |δ|

Gimp2.8.0

Glibc2.1.1 0.096 0.123

18.2% 0.303
√

Gstreamer1.0.0 0.084 0.101
Gcc-core4.0.0 0.051 0.092

Bash3.2 0.043 0.098

Glibc2.1.1

Gimp2.8.0 0.073 0.091
Gstreamer1.0.0 0.091 0.072
Gcc-core4.0.0 0.087 0.057

Bash3.2 0.082 0.107

Gstreamer1.0.0

Gimp2.8.0 0.052 0.087
Gcc-core4.0.0 0.077 0.052

Bash3.2 0.042 0.031
Glibc2.1.1 0.081 0.102

Gcc-core4.0.0

Gimp2.8.0 0.072 0.056
Bash3.2 0.052 0.071

Glibc2.1.1 0.081 0.067
Gstreamer1.0.0 0.103 0.071

Bash3.2

Gimp2.8.0 0.041 0.071
Glibc2.1.1 0.057 0.101

Gstreamer1.0.0 0.036 0.052
Gcc-core4.0.0 0.043 0.087

(2) Will our conclusions change if the class imbal-
anced method is used?

We did not take into account removing the imbalanced
data in our study, when building a fault-proneness predic-
tion model. Therefore, it is not readily known whether our
conclusions will change if removing imbalanced data. In
the following, we use the random under-sampling method
proposed by Kamei et al. [17] to remove imbalanced data
and then rerun the analyses for RQ1 and RQ2. From

Table IX, we find that the “B+C” models have larger F-
measure values than the “B” model except in Gcc-core
based on Within-Project Defect Prediction ,and most of
cliff’s δ values are more than 0.147 except in Gcc-core.
Table X, we find that the “B+C” models have most of
larger F-measure values than the “B” model, and the cliff’s
δ values are more than 0.147. This indicates that “B+C”
model still performs better than the “B” model.

TABLE IX: F-measure values after removing the imbal-
anced data: the “B” model vs “B+C” model based on
Within-Project Defect Prediction

Projects “B” “B+C” %↑ |δ|

Gstreamer1.0.0 0.177 0.190 7.34% 0.256
√

Glibc2.1.1 0.203 0.276 36.0% 0.421
√

Gimp2.8.0 0.168 0.198 17.9% 0.556
√

Gcc-core4.0.0 0.156 0.152 -2.6% 0.187
Bash3.2 0.122 0.134 9.8% 0.375

√

Average 0.165 0.190 13.7% 0.359

TABLE X: F-measure values after removing the imbal-
anced data: the “B” model vs “B+C” model based on
Cross-Project Defect Prediction2

Source Target “B” “B+C” ↑% |δ|

Gimp2.8.0

Glibc2.1.1 0.132 0.207

12.1% 0.215
√

Gstreamer1.0.0 0.091 0.196
Gcc-core4.0.0 0.102 0.201

Bash3.2 0.097 0.182

Glibc2.1.1

Gimp2.8.0 0.155 0.087
Gstreamer1.0.0 0.186 0.205
Gcc-core4.0.0 0.113 0.067

Bash3.2 0.105 0.109

Gstreamer1.0.0

Gimp2.8.0 0.079 0.127
Gcc-core4.0.0 0.062 0.102

Bash3.2 0.061 0.112
Glibc2.1.1 0.131 0.192

Gcc-core4.0.0

Gimp2.8.0 0.202 0.162
Bash3.2 0.167 0.134

Glibc2.1.1 0.236 0.195
Gstreamer1.0.0 0.232 0.195

Bash3.2

Gimp2.8.0 0.160 0.201
Glibc2.1.1 0.203 0.171

Gstreamer1.0.0 0.177 0.181
Gcc-core4.0.0 0.103 0.105

VII. CONCLUSION AND FUTURE WORK
In this paper, we investigate whether dependence clus-

ters are useful for non-effort-aware defect prediction. We
use the product, process, and network metrics to build the
“B” model (baseline model), and use the product, process,
network and dependence cluster metrics to build the “B+C”
model. Our experimental results, based on five well-known
open-source systems, show that the dependence clusters
are useful for non-effort-aware defect prediction. In the
future, we plan to build the model for dependence clusters
at different granularities and examine their effectiveness.

References
[1] D. Binkley and M. Harman, “Locating dependence clusters and

dependence pollution,” in 21st IEEE International Conference on
Software Maintenance (ICSM’05). IEEE, 2005, pp. 177–186.

[2] M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke,
“Dependence clusters in source code,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 32, no. 1, pp.
1–33, 2009.

[3] Y. Yang, M. Harman, J. Krinke, S. Islam, D. Binkley, Y. Zhou, and
B. Xu, “An empirical study on dependence clusters for effort-aware
fault-proneness prediction,” in 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE,
2016, pp. 296–307.

[4] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu,
and H. Leung, “Effort-aware just-in-time defect prediction: simple
unsupervised models could be better than supervised models,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 157–
168.

[5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1276–1304, 2011.

[6] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the applicability
of fault-proneness models across object-oriented software projects,”
IEEE transactions on Software Engineering, vol. 28, no. 7, pp. 706–
720, 2002.

[7] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, H. Leung,
and Z. Zhang, “Are slice-based cohesion metrics actually useful in
effort-aware post-release fault-proneness prediction? an empirical
study,” IEEE Transactions on Software Engineering, vol. 41, no. 4,
pp. 331–357, 2014.

[8] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the” impre-
cision” of cross-project defect prediction,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 2012, pp. 1–11.

[9] F. Rahman and P. Devanbu, “How, and why, process metrics
are better,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 432–441.

[10] S. Wasserman, K. Faust et al., Social network analysis: Methods
and applications. Cambridge university press, 1994, vol. 8.

[11] X. Chen, Y. Mu, Y. Qu, C. Ni, M. Liu, T. He, and S. Liu, “Do
different cross-project defect prediction methods identify the same
defective modules?” Journal of Software: Evolution and Process,
10 2019.

[12] T. Zimmermann and N. Nagappan, “Predicting defects using net-
work analysis on dependency graphs,” in 30th International Con-
ference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, 2008.

[13] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of
the Royal statistical society: series B (Methodological), vol. 57,
no. 1, pp. 289–300, 1995.

[14] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evaluate
fault prediction models,” Journal of Systems and Software, vol. 83,
no. 1, pp. 2–17, 2010.

[15] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Ap-
propriate statistics for ordinal level data: Should we really be using
t-test and cohen’sd for evaluating group differences on the nsse
and other surveys,” in annual meeting of the Florida Association of
Institutional Research, 2006, pp. 1–33.

[16] Y. Zhou, H. Leung, and B. Xu, “Examining the potentially con-
founding effect of class size on the associations between object-
oriented metrics and change-proneness,” IEEE Transactions on
Software Engineering, vol. 35, no. 5, pp. 607–623, 2009.

[17] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using
cross-project models,” Empirical Software Engineering, vol. 21,
no. 5, pp. 2072–2106, 2016.

