
A Novel Self-Attention Based Automatic Code
Completion Neural Network
Bohao Wang, Wanyou Lv, Jianqi Shi, and Yanhong Huang*

National Trusted Embedded Software Engineering Technology Research Center,
East China Normal University

{bohao.wang, wanyou.lv}@ntesec.ecnu.edu.cn
{jqshi, yhhuang}@sei.ecnu.edu.cn

Abstract—Code completion is one branch of source code
modeling tasks. Using a deep learning method to implement it has
explored the possibilities of modeling source code with a statistic
language model. Recurrent Neural Network (RNN) is a universal
feature extractor of Natural Language Processing (NLP), which
is used in the code completion field commonly. However, RNN
based models are lack of long-range context dependency and
have a poor performance in training speed. Besides, some
previous models have not handled the issue of out of vocabulary
(OOV) well, which hinders further improvements in prediction
accuracy. This paper presents a novel automatic code completion
neural network, which is based on a self-attention mechanism
with open vocabulary to address issues of OOV, slow training
speed, and lacking long context-dependency. Experiments in
this paper show that our model has a better performance of
predicting tokens compared with the traditional N-gram model
and RNN based model. In the meantime, we reduced training
time significantly. More broadly, the combination of self-attention
and open vocabulary has a potential application in the source
code modeling field.

Index Terms—Code Completion, Self-Attention, Source Code
Modeling, Open Vocabulary

I. INTRODUCTION

As one part of automatic software development, code
completion is always a popular research field in software
engineering. Code completion, which refers to recommending
the next token based on the current context [1], is a technique
that allows us to speed up the coding process and to reduce
spelling errors during coding. Nowadays, most programmers
use Integrated Development Environment (IDE) like Eclipse
and IntelliJ IDEA to write code, enjoying the convenient
service of code completion which is a basic feature of modern
IDE. Traditionally, code completion in IDE relies heavily
on compile-time type information to predict the next token
[2]. This method only does well in suggesting attributes or
methods of classes but fails to predict coding habits of users.
Hindle et al. [3] propose that code has a naturalness and
is likely to be predictable and repetitive, so they introduce
a statistic language model into the field of source code
modeling. In the early stage, the N-gram model used to be
the statistic language model used in source code modeling

*Corresponding Author
DOI reference number: 10.18293/SEKE2020-056.

[1], [3]–[5]. Later, when the Recurrent Neural Network (RNN)
is introduced into Natural Language Processing (NLP) field,
source code modeling has tended to RNN based model [6],
[7]. Because the vanilla RNN’s variants, Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) suppress
the problem of gradient exploding and gradient vanishing,
they are applied to the field of source code modeling [4],
[8]. Although some RNN based deep learning static language
models have achieved good results in source code modeling,
there are still several defects. It is noted that most models can
not predict OOV words, which is called neologisms in [9].
A large number of OOV words will affect the performance
of automatic code completion distinctly. Although [10] in
ICSE 2020 tried to solve this problem, the method they
use aggregates the negative effects of lacking long-range
dependency on prediction performance. These defects affect
the quality and precision of code completion. This motivates
us to propose a novel model to address the issues above. In
summary, contributions of this paper include:

• We propose a novel self-attention based automatic code
completion neural network. The model addresses issues
of unable predicting out of vocabulary tokens, lacking
long-range dependency ability, and slow training speed,
which are defects of current models.

• We evaluate our model in a real word Java code dataset.
Compared with previous work, our model has significant
improvements in the metric of Mean Reciprocal Rank
(MRR) and entropy in three realistic scenarios. In the
meantime, our model spends less time in the training
process.

• We design and implement a self-attention based model
with Open Vocabulary (SABCCOV), a tool to predict
the next token based on current tokens. To the best of
our knowledge, we are the first to combine the self-
attention with the Open Vocabulary mechanisms in code
completion.

The rest of this paper is organized as follows. Section II
details some defects of existing current models and back-
ground knowledge of self-attention mechanism. Section III
presents the design of SABCCOV and training setup. Section
IV demostrates experiment details and evaluations of our

model. We discuss related work in Section V and conclude
in Section V I .

II. PRELIMINARY

In this section, we mainly talk about existing issues of
current models and the basis of self-attention mechanism.
Sec.II-A describes a common problem in code completion.
The issue of Sec.II-B is a critical factor that affects the
performance of the model. And Sec.II-C is an aspect that can
be improved continuously. At the end of this section, we will
describe the self-attention mechanisms.

A. Out of Vocabulary (OOV)

The vocabulary of natural language processing is commonly
formed by top k (assume 50,000) frequency words from a large
corpus, which is closed because it can only present limited
words. And the indexed vocabulary is used to map a word to
the index in the statistic language model. Out of vocabulary
words in NLP will be represented by ‘UNK’. In natural
language, it is feasible that OOV words are replaced by the
UNK identifier. The NLP model is rarely affected by it since
most words are covered by vocabulary. But the programming
language model will be affected seriously on account of many
identifiers such as variable names, class names, and method
names that are defined by the programmer.

B. Long-Range Dependency

Range dependency means that how many context words
does the model need to predict the next word. In [11], LSTM
language models use 200 context words on average, which
has a longer range commonly than Vanilla RNN and GRU.
Empirically, the RNN based model is hard to deal with
long-range dependencies that are common in programming
language [2]. For example, a class is declared at the top of the
file, but it may be used after one hundred lines of declaration.
The dependency range of the LSTM model may be enough in
NLP, but it is not enough for source code modeling.

C. Slow Training Speed

It is noted that the performance of the deep learning model
depends on the scale of data. The more training data, the
better the performance of the model. In the source code
modeling field, it is an advantage that massive amounts of
data are easy to get from some open source communities
such as Github. Vanilla RNN calculates hidden state one by
one to collect sequence information, that is why Vanilla RNN
called Recurrent Neural Network. The architecture of Vanilla
RNN demonstrates that it is doomed not to support parallel
computing, which will have a strong impact on training speed.

D. Self-Attention Mechanism
The self-attention mechanism is proposed in [12]. An at-

tention function can be described as mapping a query and a
set of key-value pairs to an output, where the query, keys,
values, and output are all vectors. The matrix of outputs can
be computed as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

Intuitively, the self-attention function is to help every token
in sequence to calculate how much attention needs to pay
to other tokens. In the multi-head version of self-attention,
the self-attention function takes n different matrices as input
and computed for n times, then output n matrices. Then we
concatenate all these matrices and condense them into one
matric whose dimension is the same as the original self-
attention result.

III. APPROACH

In this section, we describe the procedure of the data
preprocessing, which will get more appropriate data for the
model than the raw source code. Then we will present the
architecture of the overall network from a block perspective
and introduce our training strategy.

A. Dataset and Preprocessing

We use the Gig-token corpus in [13], which has more than
14,000 Java projects from Github. We have a large corpus of
source Java code, but we can not feed it into the model directly.
In the NLP filed, the common way of input data transformation
is mapping some high-frequency token to embedding vectors
or one-hot vectors according to a vocabulary. But it can not
handle the problem of OOV words described in Sec.II-A.
It is hard to solve the issue of OOV completely, but the
Open Vocabulary method [10] can solve it partially. Using
the Byte Pair Encoding (BPE) algorithm, this method learns
a segmentation pattern. BPE is a data compression algorithm
that iteratively finds the most frequent pair of bytes in the
vocabulary appearing in a given sequence, and then replaces
it with a new unused entry [14]. The algorithm is first adapted
for word segmentation in [15], it merges pairs of characters
or character sequences.

As an illustration, we can segment a Java source code
file using a BPE vocabulary file as shown in Fig 1. Some
high-frequency tokens are reserved and some low-frequency
tokens are split into high-frequency sub-tokens followed by

package com.testMain;
public class newClass{
private String someInformation;
public newClass(String someinformation){
this.someInformation = someinformation;

}
}

package com . test@@ Main ;
public class new@@ Class {
private String some@@ Infor@@ mation ;
public new@@ Class (String some@@ infor@@

mation) {
this . some@@ Infor@@ mation = some@@

infor@@ mation ;
}

}

Fig. 1. Java code before/after segmentation with an end-of-subtoken ‘@@’

‘@@’. In such a way, OOV words are decomposed into high-
frequency subword, which means they can be represented by
word embedding vector or one-hot vectors according to the
Open Vocabulary.

TABLE I
DATASET STATISTICS

Full train Small train Test Valid
Projects 13255 107 38 36

Files 1.9M 12K 8.2K 7.1K
Tokens(original) 1.6B 20M 5.9M 4.6M

Toekns(2K) 2.5B 31.9M 9.4M 7.4M
Tokens(5K) 2.2B 27.8M 8.3M 6.5M
Tokens(10K) 2.1B 25.8M 7.7M 6.1M

It is noted that the BPE algorithm needs code to learn
segment patterns and produce a vocabulary file. And the
number of BPE merging operation affect the performance of
the model, so we set three different value, 2k, 5k, and 10k.
As Table I shows, data was divided into four parts: full train,
small train, test, and valid, which is the same as [4] except
moving a small part randomly from the full train projects as
a BPE training corpus. Followed [10], we set the size of BPE
training corpus to 1000 projects. We provide the procedure of
data preprocessing as follows:

1) Remove comments.
2) Replace non-ascii characters with a special identifier (We

use ‘-UNK-’ in experiments).
3) Tokenize the file1, which means every line is one token

(Punctuations such as ‘;’ is also considered as one token).
4) As for BPE data, use the BPE algorithm2 to get a

vocabulary file and a segment pattern file.
5) As for train, test, and valid data, use the BPE algorithm

with the segment pattern file on these corpora and get
segmented files.

6) Add start and end identifiers (We use ‘<s>’ and ‘</s>’)
at the top and bottom of every Java file then integrated all
files in train/test/valid projects into one file as train/test/-
valid file.

After preprocessing, words were split into subwords and
subwords can be represented by word embedding, which
means most words can be dealt with by the model. Due to
the segmentation of the BPE algorithm, we can suppress the
Out of Vocabulary issue effectively. However, it is noted that
the number of tokens has increased at least one-third of the
original after the procession of the BPE algorithm. It will
magnify the negative effects brought by the problem of Long-
Range Dependency.

B. Model Architecture

We proposed a self-attention based model with Open Vo-
cabulary as shown in Figure 2.The input and output of the
model is a fixed-length sequence. The model has three parts
including the input block, the transformer block and the
output block. In the input block, the input sequence will be

1The library we use is https://github.com/SLP-team/SLP-Core
2We use https://github.com/rsennrich/subword-nmt

public static void

Word

public static void

Positional

Multi-head Self-
Attention

Layer Norm

Add

Feed-Forward

Layer Norm

Add

static void main

Output
Block

Input
Block

Transformer
Block

Encoding

Li
n

e
ar

Li
n

e
ar

So
ft

m
ax

&

 A
rg

m
ax

So
ft

m
ax

&

 A
rg

m
ax

Embedding

Nx

Fig. 2. Overall Architecture: Based on the input of ‘public static void
main’, the model predicts ‘static void main’. Rectangles composed of 3 small
rectangles represents the intermediate vector.
represented by the sum of word embedding and positional
encoding, which will be the input tensor of the transformer
block. The transformer block has a masked multi-head self-
attention layer, a position-wise fully connected feed-forward
layer, and some residual connections. The masked multi-head
self-attention layer and feed-forward layer are followed by a
layer normalization. It looks like the encoder part in [12].
Instead, we replace the multi-head self-attention layer with
a masked self-attention layer. The input and output of the
transformer block have the same dimension, so it can repeat
any time we want. Due to the self-attention mechanism, the
transformer block in our model can solve the problems of
Long-Range Dependency and Slow Training Speed. The
output block consists of a linear layer and a softmax layer. The
output sequence is obtained by the output tensor processed by
the argmax function.

As Figure 2 shows, the input is ‘public static void’ and
the model will output the sequence of ‘static void main’.
Predictions for position i can only depend on the known
input at positions less than i. The most critical part of the
whole model is the self-attention mechanism. Benefits of
the self-attention including two aspects. First, the training
process can be shortened observably since the self-attention
mechanism supports parallelized-training. The RNN based
model computes the next hidden units depending on previously
hidden units. Unlike the RNN based model, the self-attention
based model does not need previously results, so it can
be parallelized by vectorization. The second aspect is the
self-attention can learn longer-range dependency than LSTM
based model. In order to capture the information between two
tokens(noted token i and token j), the RNN based model needs
at least |j-i| steps because of the serial computation. And it
may lose some information if the distance is too long. But the

vectorization of the self-attention based model can ignore the
distance between two tokens in the same segment and correlate
them within one step.

The multi-head self-attention layer considers the attention
weight of every position of the input, which means the third
token in the input sequence may be taken into account when
predicting the second position in the output. For example, the
model will take ‘void’ (third token in input) into accounts
when it is predicting ‘void’ (second token in output). But as a
prediction task, it is a cheating trick to consider the context that
has not shown yet. In [12], the masked mechanism guarantees
that the model will not make the prediction based on future
information. And this is the reason we replace it with the
masked multi-head self-attention layer.

The model we proposed is used to predict sub-tokens, which
means it may output part of the correct token (some sub-
token is a complete correct token). Further, we use the beam-
search-like algorithm [10] to predict complete tokens directly.
As Figure3 shows, if the model predicts the token ends with
‘@@’, the model will continue to predict the token until the
next predited token without ‘@@’. Finally, the model will
concatenate all the predited subtokens, delete the ‘@@’ and
the result is the prediction of the model.

C. Training

As Section III-A described, we have two training sets on a
different scale, including small training and full training. Most
setup of two training sets is the same. We fix the length of the
input sequence feed to the network to 512. If the length of the
input is longer than 512, then split it into a few segments and
supplement segment whose length is less than 512 with special
tokens. The batch size is 32 for the small train and 64 for the
full train, respectively. The number of the transformer block is
3, the number of multi-head is 2, and the dropout rate is 0.2.
Other hyperparameter of the transfomer block is the same as
the encoder in the [12]. The loss function is entropy, which will
be discussed in detail in Section IV-B. The optimizer is adam
optimizer with an initial learning rate 0.0003 and a learning
rate decay strategy. The strategy is that the learning rate will
be half if the current epoch’s valid loss is bigger than the last
epoch. Max training epoch is 50 for the small train and 5 for
the full train. If the valid loss of the current epoch has not
been decreased for last 4 epoch, the training process will be
stopped early.

IV. EXPERIMENT

In this section, we will give a description of our experiment
scenarios and evaluation metrics. In these experiments, we
used the popular deep learning framework Tensorflow. We
implemented and evaluated the proposed model on a Linux PC
with an Intel i7-5960X processor @3.0 GHz and an NVIDIA
GTX 1080Ti GPU.

A. Scenarios

In the code completion task, the next token is predicted
based on current tokens. Whether tokens in the current file

package com.testMain ;
public class newClass {
 private String someInformation ;
 public newClass (String someinformation) {
 this.someInformation = ________?_________
 }
}

SABCCOV

some@@Infor@@mation

Infor@@(59%)

String(17.9%)

this(4.8%)

...

Infor@@(59%)

String(17.9%)

this(4.8%)

...

Infor@@(59%)

String(17.9%)

this(4.8%)

...

some@@(27.9%)

class(15.3%)

test@@(7.9%)

...

some@@(27.9%)

class(15.3%)

test@@(7.9%)

...

some@@(27.9%)

class(15.3%)

test@@(7.9%)

...

mation(78.3%)

new@@(13.4%)

com(3.7%)

...

mation(78.3%)

new@@(13.4%)

com(3.7%)

...

mation(78.3%)

new@@(13.4%)

com(3.7%)

...

Predict

Recommended token:

Fig. 3. An example of our model’s prediction.
or other files that belong to the same project can be trained
for the model is a question. Followed [10], there are also 3
test scenarios including Static, Dynamic, Maintenance in our
experiments to check the performance of our model.

Static: This is the basic mode. The model is trained by
the large corpus from the internet only. It provides code
completion service directly without changed or improved in
further usage. In this scenario, local code will not be used
for the further training of the model. It may not guarantee to
provide a high-quality service of the code completion because
everyone has a different code style. The model learned from
the large corpus is only a generalization ability.

Dynamic: In this mode, the model has two stage training
prcess. The second stage is that, based on the Static mode, the
model will be trained by reading the code from the file that the
user is editing currently. We denoted it as a local model. With
the Dynamic strategy, the model will learn the habits of the
coder gradually and prefer to predict the token which reflects
the style of the coder finally. The Dynamic strategy here is
that the model will read every 512 sub-tokens and executes
one step gradient descent to update the model. This mode will
have a better performance than the Static mode. However, it
will read data that may not be allowed by the user because of
security and privacy.

Maintenance: This mode has three stage training process.
Based on the Static mode, the model here will use codes in the
current project files firstly, which is the second training stage.
Lastly, just like Dynamic mode, the model will be trained by
reading the code user is editing currently. It is obvious that the
model trained in this mode has the best performance than the
others since it obtains the largest data set. The disadvantage
of this mode is that uploading data in projects may be strictly
forbidden in most enterprises.

B. Evaluation Metrics

In our experiments, we evaluated both the intrinsic and
extrinsic performance of our model. Intrinsic performance
means that evaluating the predicting ability of a language
model without other task’s inference which may bring some
other information. We use entropy as the intrinsic metric,
which is a standard measure employed in the previous work.
Given a sequence S = {t1, t2, . . . , t{|m|}}, the probability of

TABLE II
ENTROPY RELFECTS THAT THE LOWER ENTROPY, THE MORE REASONABLE THE TOKEN PREDICTED BY THE MODEL.

Entropy Nested Cache N-gram Open Vocabulary NLM [10](2k/5k/10k) SABCCOV(2k/5k/10k)

Small Train
Static - 4.90 / 4.78 / 4.77 2.62 / 2.57 / 2.63

Dynamic 2.57 2.33 / 2.27 / 2.54 1.59 / 1.58 / 1.61
Maintenance 2.23 1.46 / 1.51 / 1.60 1.32 / 1.29 / 1.29

Full Train
Static - 3.59 / 3.35 / 3.15 1.84 / 1.79 / 1.74

Dynamic 2.49 1.84 / 1.72 / 1.70 1.22 / 1.19 / 1.17
Maintenance 2.17 1.03 / 1.06 / 1.04 1.08 / 1.02 / 0.99

TABLE III
MRR REFLECTS THE INVERSE OF THE AVERAGE EXPECTED POSITION IN THE RANK LIST.

MRR Nested Cache N-gram Open Vocabulary NLM [10](2k/5k/10k) SABCCOV(2k/5k/10k)

Small Train
Static - 62.87% / 63.80% / 63.75% 71.54% / 71.79% / 71.59%

Dynamic 74.55% 76.94% / 77.51% / 77.32% 77.54% / 77.72% / 77.45%
Maintenance 77.04% 77.48% / 78.49% / 78.69% 78.15% / 78.94% / 78.97%

Full Train
Static - 68.69% / 69.87% / 70.84% 77.88% / 78.42% / 78.81%

Dynamic 75.0% 78.99% / 79.88% / 80.36% 81.99% / 82.51% / 82.88%
Maintenance 77.3% 78.85% / 80.31% / 81.16% 80.71% / 81.78% / 82.30%

ti is estimated by p(ti|t1, . . . , ti−1). The entropy is defined
as:

Hp(s) = −
1

|m|

|m|∑
i=1

logp(ti|t1, . . . , ti−1) (2)

Entropy corresponds to the average number of bits required in
every prediction. But our model predicts a sub-token other than
a complete token, we follow [10] and change the subformula
in Equation 2 as follows:

p(ti|t1, . . . , ti−1) =

N∏
n=1

p(win|t1, . . . , ti−1, wi1, . . . , wi,n−1) (3)

In Equation 3, we assume that the token ti is split into sub-
tokens ti = {wi1, ..., wiN} . The combination of Equation 2
and Equation 3 is the loss function of the model to check
whether the model is converging.

The extrinsic performance here we use is Mean Reciprocal
Rank (MRR). The reciprocal rank of a query response is the
multiplicative inverse of the rank of the first correct answer.
MRR is the average of reciprocal ranks or results for a sample
of queries Q defined as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(4)

For example, if the correct word ranks first in the option list,
then MRR is 1. If the correct word ranks second, the MRR
is 0.5 and so on. In our experiments, we provide ten most
likely tokens for users to choose, which means the length of
the options list is 10, so the MRR of the predicted word is at
least 0.1 and the unpredicted word is 0.

C. Results

The results demonstrate that our model is particularly better
than the N-gram model [4] and RNN based Open Vocabulary
NLM [10]. Our model has a faster training speed as shown
in Table IV. In the small training dataset, one training epoch
time of our model was almost half of the Open Vocab NLM’s

training time. As for the full training dataset, our model
spent an hour less than the previous work every epoch. Open
Vocabulary NLM only has one layer of RNN but our model
has three transformer blocks, which means our model has
more parameters and is more complicated. But our model was
still a lot faster than their model. It is noted that the model
with a faster training speed is always the first choice when
performance is the same.

Furthermore, our model has not only a fast training speed
but also a better performance. Table II and III shows that
performance comparison statistics of the Open Vocabulary
NLM, the Nested Cache N-gram model and our model. In
the metric of entropy, our model with 5k BPE operations
had the best results among three models in the small training
and our model with 10k BPE operations won in the full
training no matter in which scenarios. Due to the large number
of samples, even minor improvements (e.g., 0.01 bits) in
entropy can be statistically significant in language modeling.
It was almost same in the metric of MRR. In Table III, there
was a great improvement in the Static scenario between our
model and Open Vocabulary NLM and a slight improvement
in Dynamic and Maintenance scenarios. It was declared in
Section IV-A that Dynamic and Maintenance scenarios need
the authorization of reading user code, which may be seen
as an invasion of privacy. Under normal circumstances, the
Static scenario is the most favored option of users. So it is
meaningful to improve the performance of the model in the
Static scenario.

TABLE IV
TRAINING TIME(MIN/EPOCH)

BPE Operations 2k 5k 10k
Small Train Open Vocab NLM 18 16 16

Our model 8 7 8
Full Train Open Vocab NLM 717 669 728

Our model 561 555 628

V. RELATED WORK

Code completion is a basic feature of IDE for a long
time. Traditionally, code completion in IDE relies heavily on
compile-time type information to predict the next token [1].
The deep learning method finds a way that learns the proba-
bility distribution of tokens from a large source code corpora
to improve the accuracy of token prediction. In 2012, Hindle
et al. [3] first proposed that programming languages have
usefully predictable statical properties that can be captured
in statistical language models. Based on Hindle’s work, Tu
et al. [1] put forward that source code has the property of
localness and proposed a cache mechanism to improve pre-
diction accuracy. Hellendoorn et al. [4] enhanced established
language modeling approaches to handle the special challenges
of modeling source code.

Li et al. [2] and Liu et al. [16] proposed that structural
information can also be used to improve the performance
of the model. They predicted the terminal node and the
non-terminal node in source code using the AST tree. It is
critical that the AST tree needed to guarantee both semantic
information and structural information when modeling the
AST tree. In this method, they can predict not only the token
itself, namely the terminal node, but also the token’s structural
information and type which is a non-terminal node. In 2016,
Raychev et al. [17] used the decision tree to model the AST
sequence of code to predict token. Liu et al. [16] showed that
structural information in AST and sequences of the token can
learn mutually and get better results with multi-task learning.

Out of vocabulary words used to be called neologisms [9],
which means unseen identifier names that have not been used
in the training set. In [9], they split OOV words on camel case
and underscores and could only handle part of neologisms.
And [2] tried to solve the OOV problem by augmenting an
RNN with a pointer network [18]. Some researches focused
on the techniques for automatic splitting identifiers [19], [20].
One obvious feature of their splitting technique is that hu-
man can understand the sub-identifers after splitting. Instead,
Karampatsis et al. [10] first proposed Open Vocabulary that
split OOV words to incomprehensible sub-words. Based on
their technique, we proposed a novel network in this paper to
improve the performance and the training speed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a self-attention based code com-
pletion model with Open Vocabulary. First, we alleviated the
OOV problem by adopting the Open Vocabulary mechanism.
Second, We added the self-attention mechanism to address the
issue of sequence augment brought by the Open Vocabulary
method. In the meantime, we speeded up the training process
and improved the performance of the model. To our best
knowledge, we are the first to combine the self-attention with
the Open Vocabulary mechanisms and get significant results in
the code completion field. Besides, we believe our model may
inspire other researchers in the source code modeling field.
Our embedding layer is trained during the training process
now. In the future, we may train the embedding layer using

large corpora in advance. Then we insert it directly into the
model and fine tune this layer during the training process.
And we also plan to improve our model not to predict only
one token but a series of tokens that can present user intent.

ACKNOWLEDGMENT

This work is partially supported by STCSM Projects
(No. 18QB1402000 and No. 18ZR1411600), SHEITC Project
(2018-GYHLW-02012).

REFERENCES

[1] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 269–280.

[2] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code completion with neural
attention and pointer networks,” arXiv preprint arXiv:1711.09573, 2017.

[3] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 837–847.

[4] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 763–773.

[5] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering,
2013, pp. 532–542.

[6] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 2015, pp.
334–345.

[7] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to
recurrent lstm neural networks for language modeling,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 23, no. 3,
pp. 517–529, 2015.

[8] H. K. Dam, T. Tran, and T. Pham, “A deep language model for software
code,” arXiv preprint arXiv:1608.02715, 2016.

[9] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 38–49.

[10] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code != big vocabulary: Open-vocabulary models for source code,” in
International Conference on Software Engineering (ICSE), 2020.

[11] U. Khandelwal, H. He, P. Qi, and D. Jurafsky, “Sharp nearby, fuzzy
far away: How neural language models use context,” arXiv preprint
arXiv:1805.04623, 2018.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[13] M. Allamanis and C. Sutton, “Mining source code repositories at mas-
sive scale using language modeling,” in 2013 10th Working Conference
on Mining Software Repositories (MSR). IEEE, 2013, pp. 207–216.

[14] P. Gage, “A new algorithm for data compression,” The C Users Journal,
vol. 12, no. 2, pp. 23–38, 1994.

[15] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[16] F. Liu, G. Li, B. Wei, X. Xia, M. Li, Z. Fu, and Z. Jin, “A self-attentional
neural architecture for code completion with multi-task learning,” arXiv
preprint arXiv:1909.06983, 2019.

[17] V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for code with
decision trees,” ACM SIGPLAN Notices, vol. 51, no. 10, pp. 731–747,
2016.

[18] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in neural information processing systems, 2015, pp. 2692–2700.

[19] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in 2009 6th
IEEE International Working Conference on Mining Software Reposito-
ries. IEEE, 2009, pp. 71–80.

[20] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker, “An
empirical study of identifier splitting techniques,” Empirical Software
Engineering, vol. 19, no. 6, pp. 1754–1780, 2014.

