
Detecting and Modeling Method-level Hotspots in
Architecture Design Flaws

Ran Mo, Shaozhi Wei, Ting Hu, Zengyang Li
School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning

Central China Normal University
moran@mail.ccnu.edu.cn, wsz@mails.ccnu.edu.cn, 826473959@qq.com, zengyangli@mail.ccnu.edu.cn

Abstract—In large-scale software systems, the majority of
change-prone files are usually architecturally connected, and
their architectural connections often exhibit design flaws, which
propagate change-proneness among files and increase mainte-
nance costs. Complementary to the identification and definition
of the files involved architecture design flaws, the automatic
detection at the method level is important for developers to
understand fine-grained contributors to the architecture flaws
that have incurred high maintenance costs. In this paper, we
propose an approach to identify method-level hotspots. Each
hotspot contains a group of evolutionarily connected methods or
attributes that participate in architecture design flaws and con-
tinuously accumulate maintenance difficulties. Our investigations
on six large-scale projects show that the attributes or methods
captured in method-level hotspots are more change-prone than
the others. The results also show that the growth trend of the
maintenance effort spent on each method-level hotspot could be
modeled and monitored by our approach, which sheds light in
the decision of design refactoring.

Index Terms—Software Architecture, Software Maintenance,
Fine-grained Code Change

I. INTRODUCTION

Software architecture has significant impacts on the main-
tenance of a software project. Numerous studies have been
proposed to investigate the software quality by examining
software architecture. For example, prior studies of Xiao et
al. [18] and Kazman et al. [13] have shown that the majority
of change-prone files are architecturally connected, and design
flaws in these connections could propagate change-proneness
among files. Consequently, it is difficult to eliminate files’
change-proneness without resolving the architecture design
flaws among them. The automatic detection of architecture
design problems has also been studied. Xiao et al. [19] pre-
sented four types of architecture debts which have significant
and long-term impact maintenance costs over time. Mo et
al. [14, 15] formally defined and automatically detected a suit
of architecture design flaws, which have a significant impact
on files’ change-proneness.

However, all of these studies are conducted at the file
level, none of them investigated method-level participants of
architecture design flaws. After identifying the files involved
in architecture design flaws, it is still worth for developers
to explore which attributes and methods are responsible for

DOI reference number: 10.18293/SEKE2020-051

the change-proneness of these involved files, especially, for
the files with hundreds of attributes or methods. This could
raise questions for developers or architects: Which attributes
or methods of the flawed files need to be fixed for maintenance
and refactoring? Can these ‘problematic attributes or methods
be detected automatically? How do the involved attributes or
methods evolve over time?

In this paper, we formally define the concept of Method-
level Hotspot: a group of evolutionarily coupled attributes or
methods that participate in architecture design flaws and con-
tinuously accumulate maintenance costs. To detect a method-
level hotspot, 1) our approach first extracts the attributes or
methods from the files involved in an instance of architecture
flaws that identified by the techniques in [14]; 2) based on
these extracted attributes or methods, and the fine-grained
history output by ChangeDistiller in [3], our approach will
automatically identify a method-level hotspot in a project.
Given a method-level hotspot, our approach will automatically
model its evolution trend in terms of maintenance effort spent
on its involved attributes and methods. We use three typical
regression models, linear, exponential and logarithmic models,
to model each hotspot’ evolution to monitor whether the
hostspot has been accumulating maintenance costs steadily,
dramatically or slowly.

We have validated the effectiveness of our approach by
using six large-scale projects. According to the evaluation
results, we have found that: 1) attributes or methods involved
in method-level hotspots are more change-prone than the other
attributes or methods; 2) most of the detected method-level
hotspots could be modeled by one of the three typical regres-
sion models, the modeling results are useful for developers to
understand the evolution trend for each hotspot.

The rest of this paper is organized as follows: Section II
presents the background concepts. Section III describes the
definition of the method-level hotspots. Section IV presents
our evaluation methods and results. Section V discusses.
Section VI shows related work and Section VII concludes.

II. BACKGROUND

We now introduce the basic concepts and techniques
behind our work.



A. Architecture Design Flaws

In [14], the authors defined and validated a suite of hotspot
patterns, the recurring architectural design flaws in software
systems. They presented that files involved in the detected
design flaws are really change-prone. Using the techniques
in [14], we identify four file-level architecture design flaws:
1) Unstable Interface – a highly influential file have a large
number of dependents and changes frequently with many of its
dependents in the revision history; 2) Modularity Violation –
the structurally independent files frequently change together
as recorded in the project’s revision history; 3) Unhealthy
Inheritance – a super class depends on its sub classes or a
client class depends on both a super-class and its sub classes;
4) Clique – a group of files forming a strongly connected
component are tightly coupled with cyclic dependency. In
general, each instance of the architecture design flaws capture
a group of files, and these detected files have caused high
maintenance costs. From each group of flawed files, we could
extract the attributes and methods that participate in each
architecture design flaw.

B. Method-level Changes

Revision history records maintenance activities of a project.
By examining the change history of attribute and methods, we
could get the data of evolutionary relations among attributes
or methods and investigate how they evolved. Following the
techniques in [3], we extract fine-grained changes from
a project’s revision. Furthermore, we categorize these fine-
grained changes into eight types of method-level change
operations on attributes or methods:

• ATTRIBUTE ADRT CHANGE: Adding, Deleting, Re-
naming an attribute or changing the type of an attribute.

• ATTRIBUTE MODIFIER CHANGE: Changing the mod-
ifier of an attribute, such as changing the accessibility of
an attribute or finalizing an attribute, etc.

• METHOD ADR CHANGE: Adding, Deleting or Renam-
ing a method.

• METHOD MODIFIER CHANGE: Change the modifier
of a method, such as changing the accessibility of a
method or finalizing a method, etc.

• METHOD PARAMETER CHANGE: Adding, Deleting,
Rename parameters, or changing the type or ordering of
parameters.

• METHOD BODY CHANGE: Change the body of a
method.

• METHOD RETURN CHANGE: Adding, Deleting or
Changing the type of a method return.

• DOCUMENT CHANGE: Adding, Deleting or Updating
the documentation of an attribute or a method.

Using the suite of method-level change operations, we capture
how an attribute or method was changed, and by how many
times.

III. IDENTIFICATION AND MODELING

To investigate method-level hotspots, our approach proceeds
as follows: 1) identifying method-level hotspots; 2) modeling

the evolution of identified method-level hotspots; 3) visualiz-
ing the identified method-level hotspots.

A. Method-level Hotspot Definition

Using the concepts and technique in [14], a set of file
groups flawed by architecture flaws will be detected from a
project. Although the attributes or methods in each file group
participate in an architecture flaw, not all of them contribute to
incurring maintenance costs into the group. For each file group
(an instance of architecture flaw [14]), we aim to identifying
their attributes or methods that propagate changes among the
group and cause maintenance costs. Therefore, we define a
Method-level Hotspot to be a group of evolutionarily coupled
attributes or methods that participate in architecture design
flaws and continuously accumulate maintenance difficulties.
The rationale is, first, if an attribute or method could always
be changed independently, then we consider this attribute or
method is not coupled with others in the group, changes
to it won’t influence the others; second, a hotspot should
continuously cause maintenance costs in the system. We don’t
need to worry about the methods or attributes that are inactive
with respect to changes, because they won’t cause maintenance
costs in the future.

Based on the definition, we formally calculate a method-
level hotspot as a sequence of tuples :

M − hotspot = (〈mSet1,mSetCost1〉, 〈mSet2,mSetCost2〉
, ..., 〈mSetm,mSetCostm〉)

(1)
where m is the number of history periods the hotspot has been
evolved through.

B. Method-level Hotspot Identification

Given an instance of architecture flaw, let F to be the set of
involved files, and M to be the universal set of all attributes
and method within these files. To identify the group of
evolutionarily coupled attribute or methods in M, we checked
the co-changes between the attributes or methods in M by
mining a particular period of revision history. If an attribute
or method hasn’t changed together with any other attributes or
methods in M during the period of history, we consider it is
evolutionarily independent to the others in M . Assume mSetk
is the maximal group of evolutionarily coupled attributes or
methods in M , then mSetk contains a subset of attributes and
methods in M , and these attributes or methods should satisfy:

mSetk : ∀mi ∈ mSetk,∃mj ∈ mSetk|cochange(mi,mj)
(2)

where i 6= j, i, j = [1, 2, 3, ..., n], n is the number of attributes
or methods in the mSetk. k means the kth period of history.
cochange(mi,mj) means mi and mj have been changed
together in the same commits. The co-changes between mi and
mj are calculated from the given periodk of revision history.

Based on each M of an architecture flaw instance, we
detected the method-level hotspot consisting of a sequence of
mSet and mSetCost by using different history periods. In
this paper, we back-forwardly decreased the history period by



a 6-month history interval. For example, if we have detected an
architecture flaw instance from a version of project A, which
was released in 2016-07 and its history began in 2015-09. Let
the universal set of attributes and methods involved in this
instance be Ma, to construct the hostpot, we calculated its
mSet sequence by using four history periods: 2015-03 - 2016-
07, 2015-03 - 2016-01, and 2015-03 - 2015-07. The number of
mSet in the hotspot may be less than 3, because attributes and
methods in M may not change together at the early history.
Besides, we also calculated the maintenance costs spent on
the attributes or methods in each mSet to be mSetCost by
using the same history period.

We consider a method-level hotspot that has been accumu-
lating maintenance costs, if two conditions are satisfied: 1)
the hotspot has been involved for an enough long time. In this
paper, since all of the projects have a long history, we required
that a hotspot should have evolved for 3 years, and we sampled
six months as the history interval; 2) attributes or methods
involved in the hotspot should continuously incur maintenance
costs. Let 〈mSet1,mSetCost1〉, and 〈mSetn,mSetCostn〉
be the first and last elements in a method hostopt, mSetCostn
should be larger than mSetCost1, where mSetCosti means
the total number of changes made on the attributes or methods
in mSeti by using corresponding history period.

C. Method-level Hotspots Modeling

Given a method-level hotspot, our approach automatically
models its evolution in terms of maintenance costs. In this
way, we could present the variation trend of these method-level
hotspots in terms of maintenance costs. Our approach uses
the sequence of mSetCost as an input, and searches the best
regression model for it. Since the selected history periods are
cumulative, we applies three typical regression models in our
approach, each type of regression models presents a different
maintenance evolution of method-level hotspots:

• Linear model, which describes the method-level hotspot
accumulates maintenance costs steadily over time.

• Exponential model, which describes the method-level
hotspot accumulates maintenance costs dramatically over
time.

• Logarithmic model, which describes the method-level
hotspot accumulates maintenance costs slowly over time.

D. Method-level Hotspots Visualization

For each method-level hotspot, we proposed a Method-level
DSM (M-DSM) to model each of its mSet. A M-DSM is
extended from the DSM, which is proposed by [1]. A DSM is
a square matrix whose rows and columns are labels with the
same elements in the same order. A cell in a DSM present the
structure or co-change relations between an element in row and
an element in column. Elements in the original DSM could be
files, classes or packages. We used the M-DSM to present the
attributes or methods and their relations. Instead of presenting
the co-change numbers in a cell, the cells in a M-DSM show
method-level co-change pairs. We define a Method-level Co-
change Pair to be a pair of change operations introduced in

Section II. Each co-change pair shows how two attributes or
methods changed together and the number of its occurrence.
Considering a M-DSM contains 2 method, method1 and
method2, 1) these two methods were both involved in a
commit, where method1’s parameter and method2’s body
were changed; 2) these two methods were involved in another
commit, where method1’s parameter and method2’s return
type were changed. Then, the method-level DSM will be
shown as in Figure 1.

Fig. 1: Example of M-DSM showing co-change pairs
MRC: METHOD RETURN CHANGE;

MPC: METHOD PARAMETER CHANGE;
MBC: METHOD BODY CHANGE

IV. EVALUATION

In this section, we report our evaluation subjects, methods
and results.

A. Research Question

To evaluate the effectiveness of our approach, we investigate
the following research questions:

RQ1: Are the attributes or methods involved in method-
level hotspot really change-prone?
A positive answer to this question would demonstrate that the
detected method-level hotspot really capture the change-prone
attributes and methods in the project, which deserve more
actions for refactoring.

RQ2: Could we model the evolution of detected method-
level hotspots? To answer this question, we are attempting
to investigate whether the evolution of method-level hotpots
could be effectively monitored. A positive answer to this will
enable us to understand how the detected method-level hotspts
evolve over time.

B. Subjects

Six Apache open-source projects have been chosen as
the subjects, which differ in size, domain and other project
characteristics: Camel is an integration framework; Cassandra
is a distributed NoSQL database management system; CXF is
a services framework; Hadoop is a tool for distributed Big Data
processor; OpenJPA is a Java persistence project; PDFBox is
a library for manipulating PDF documents.

We list the basic facts for each studied project in Table I.
The column “#Members” presents the total number of at-
tributes and methods in a project. The column “#Commits”
presents the number of revisions over the time period from
the begin to the selected release date for each project. All
projects’ revision histories are extracted from GitHub1. The
column “#History Length” shows the number of months from
the begin to the selected release date.

1https://github.com/



For each project, we first obtained its source code and
chose its stable version as our research subject. Then we
used Understand2 to generate a file dependency report. Given
the revision history and the file dependency file, we used
the toolset in Mo et al.’s work [14] to detected architecture
flaws. We used ChangeDistiller [3] to extract the method-
level revision history. Given all the flaws and method-level
history as inputs, our tool automatically detects all method-
level hotspots and fits them into regression models.

TABLE I: Researched Projects

Release #Members #Commits #History Length
Camel 2.15.5 84,734 24,933 113 months
Cassandra 2.1.13 41,767 19,333 89 months
CXF 3.0.9 54,210 11,160 96 months
Hadoop 2.6.3 70,054 12,506 86 months
OpenJPA 2.4.1 25,896 4,729 123 months
PDFBox 1.8.10 19,236 4,337 102 months

C. Evaluation Results

To quantify the maintenance effort, we use a typical history
measures: Change Frequency (CF), the number of times an
attribute or method has been changed in commits with a
given period of revision history.

RQ1: are the attributes or methods methods captured in
method-level hotspots notably change-prone?

For each project, we calculated the average change
frequency (avg CF) values for all the attributes or methods
involved in method-level hotspots and the attributes or
methods not involved in any method-level hotspot. Table II
reports the comparison results between two sets of average
values. “avg CF” means the average CF for attributes or
methods involved in method-level hotspots, “avg nCF”
means the average CF for the other attributes or methods.
”Inc.” means by how much the average value has increased
by comparing the attributes or methods in hotspot to the
attributes or methods not in hotspots. We calculated the Inc.
of change frequency as:

Inc. = (avg CF − avg nCF )/avg nCF × 100% (3)

From Table II, we can observe that all the avg CF values are
larger than the avg nCF. The greatest increase happens in the
CXF project. 147% means that, in this project, the attributes
or methods involved in method-level hotspots were changed
twice more often than the attributes or methods which are not
involved in any hotspot. The smallest increase is still as high
as 74% in the Cassandra project.

To rigorously validate this observation, we employ the
Wilcoxon signed-rank test, a non-parametric statistical hypoth-
esis test for comparing two related samples, to test whether
the population of avg CF is significantly larger than the

2https://scitools.com/

TABLE II: Comparison between avg CF and avg nCF

avg CF avg nCF Inc.
Camel 1.94 0.85 129%
Cassandra 2.92 1.68 74%
CXF 2.18 0.88 147%
Hadoop 1.98 1.05 89%
OpenJPA 1.85 0.78 138%
PDFBox 2.29 1.17 95%

population of avg nCF over the six projects. We defined the
hypotheses as follows:

Null Hypothesis: H0, the population of avg CF is not
significantly larger than the population of avg nCF.

Alternative Hypothesis: H1, population of avg CF is signif-
icantly larger than the population of avg nCF.

The p-value of this test is less than 0.05, thus H1 is
accepted. The results indicate that there exists statistically
significant differences between avg CF and avg nCF over
all 6 projects. Therefore, we can claim that that attributes
or methods captured in method-level hotspots will be more
change-prone, and hence cause higher maintenance costs in a
project.

RQ2: Could we model the evolution of detected method-
level hotspots?

A method-level hotspot captures a group of evolutionarily
coupled attributes or methods that accumulates maintenance
costs. We investigate this problem to answer whether we can
monitor the growth trend of the maintenance effort spent on
each method-level hotspot over time.

In this paper, we fit a hotspot’s growth trend of maintenance
costs to one of the three models: linear, exponential and log-
arithmic regression models, which indicating the attributes or
methods in a method-level hotspot accumulates maintenance
costs steadily, extremely fast or slowly respectively. For each
method-level hotspot, the regression model with highest R2

will be selected to be the best fit for it. Besides, the P-value of
each fitting model should be less than 0.05, which guarantees
that the derived model is significant.

Following the guidelines in the work of [10, 12], where
the authors described R2 = 0.75, 0.5 and 0.25 as substantial,
moderate and weak models, respectively, we summarized the
fitting results in Table III. Column “#Hotspot” means the
total number of method-level hotspots detected from a project.
Columns “Lin”, “Exp” and “Log” present the number of
hotspots that fit into linear, exponential or logarithmic models
respectively. The following “Pt.” columns show the ratios
to the total number of detected hotspots. In the column of
“0.5 ≤ R2 < 0.75”, “Num” means the number percentage of
hotspots fitted into a regression model with a R2 from 0.5 to
0.75. The last two columns shows the number and percentage
of hotspots which couldn’t or weakly fit into one of the three
regression models.

Using “Camel” as an example, we can see that there are
907 method-level hotspots were detected from this project,



and 69% of these hotspots can be substantially modeled by
the regression models (R2 ≥ 0.75). 48% of all detected
hotspots could fit into a linear model, means these hotspots
accumulate maintenance costs steadily. 8% and 13% of all
detected hotspots could fit into the exponential and logarithmic
models respectively. Only 69 hotspots, 8% of all detected
hotspots, couldn’t fit into a substantial or moderate regression
model.

The last row of Table III presents that, considering all the
detected method-level hotspots over all projects together, 67%
of them could be fitted into a substantial regression model.
52% of all hotspots could be modeled by linear models.
For both exponential and logarithmic models, there are 7%
of all hotspots follow a substantial fitting. Only 8% of all
the detected hotspots can not or weakly fit into a model.
In summary, our approach could model the growth trend of
maintenance costs for each hotspot..

Figure 2 shows the example of a linear fitting. We can
observe that the selected release date of this project is ”2015-
11”, and attributes or methods in this hotspot started to be co-
changed before 2010-07, but after 2010-01, since the history
interval is 6 months. The maintenance costs trend of this
hostspot is fitted into a linear model, which has a R2 = 0.98,
with a formula as: y = 64.2x+ 88.6.

Fig. 2: Hotspot fitted into a linear model
R2 = 0.98; Formula: y = 64.2x+ 88.6

D. Results Summary

Based on the evaluation results, we can positively answer
our research questions as follows:

RQ1: If an attribute or method is involved in a method-level
hotspot, it is more likely to have higher change-proneness.

RQ2: The majority of detected method-level hotspots could
be modeled by one of the three regression models, the mod-
eling results will help developers to understand the evolution
trend for each hotspot.

V. DISCUSSION

A. Threats to validity

First, we can not guarantee that change frequency is the best
proxies for maintenance effort. In our future work, we intend
to use more proxy measures for our analysis, for example, the
bug frequency, the time frame for each issue, the budget spent,

etc. Thus we could further demonstrate the effectiveness of our
approach and tool.

Second, we only applied our research on six Apache open
source projects, hence we can not claim that our results are
generalizable across all software projects. However, we chose
projects with different sizes and domains to partially address
this issue. A larger study employing more projects and more
metric types would improve the validity of our conclusions.

Third, the detection of our method-level hotspot needs to
mine the project’s revision history. We need to examine the
co-changes between attributes or methods. The availability
and accuracy of the method-level history information heavily
depends on the project’s protocols.

Finally, since the history periods are accumulative, we only
used three typical regression models to model the growth trend
of maintenance costs. We can not grantee the completeness of
our applied models. But our tool and our approach are scalable,
which enables easy additions for new regression models.

B. Future Work

We are planning to apply our approach on more projects
to further demonstrate the effectiveness of our approach and
detection tool. We also plan to investigate whether the method-
level DSM could help to examine underlying problems in a
project and help to explore the refactoring opportunities for
each method-level hotspot, such as splitting files, combining
methods, etc.

VI. RELATED WORK

In this section we compare our approach with the following
research areas.

Defect Prediction and Localization: There are numerous
studies [2, 5, 8, 9, 11] aimed at predicting and locating error-
prone/change-prone files by using file metrics, file change
history, or both. For example, Jones et al. [11] obtained the
ranking information of each statement and used the infor-
mation to assist fault location. Nagappan et al. [16] studied
different complexity metrics and demonstrated that a combi-
nation of these metrics are useful predictors for defects and
successful for defect prediction. Cataldo et al. [2] investigated
the density of change coupling and showed that it correlated
with failure proneness. Ostrand et al. [17] demonstrated that
a combination of files metrics and file change history can be
used to effectively predict defects.

However, all these studies treat the error-/change-prone files
individually but don’t consider the architectural connections
among these files. Consequently, even if the predicted files
were modified, the root causes of high-maintenance costs
would still exist there, because architecture design flaws
haven’t been eliminated. Our study focuses on the attributes
or methods participating in architecture design flaws.

Code and Architecture Quality: Gamma et al. [6] intro-
duced commonly occurring software design problems. They
presented design patterns as proven solutions to these recurring
problems. Fowler [4] introduced the concept of a “bad smell”
to identify code problems and provide refactoring references.



TABLE III: Distribution of Architecture flaws’ Regression Models

R2 ≥ 0.75 0.5 ≤ R2 < 0.75 Other
Project #Hotspot Lin Pt. Exp Pt. Log Pt. Total Pt. Num Pt. Num Pt.
Camel 907 437 48% 77 8% 116 13% 630 69% 208 23% 69 8%
Cassandra 737 477 65% 15 2% 16 2% 508 69% 209 28% 20 3%
CXF 712 344 48% 69 10% 43 6% 456 64% 167 23% 89 13%
Hadoop 924 668 72% 63 7% 40 4% 771 83% 121 13% 32 3%
OpenJPA 544 129 24% 15 3% 12 2% 156 29% 289 53% 99 18%
PDFBox 246 76 31% 62 25% 53 22% 191 78% 54 22% 1 0%
Total 4,070 2,131 52% 301 7% 280 7% 2712 67% 1048 26% 310 8%

Garcia [7] investigated and presented some bad smells from
architectural perspectives. These methods presented the con-
cepts and principles for the design solutions or problems, but
still leave much of the effort to developers, and depend on the
skill of the architecture analysts.

Automatic detection of architecture problems has been
widely studied. Mo et al.’s [14, 15] work formally defined
a suite of architecture hotspot patterns—recurring architecture
smells—in a project. Xiao et al.’s [18] work helps to detect
architecture roots, file groups where the constituent files are
architecturally connected and cause high maintenance costs.
However, all of this work focuses on file-level problems. Even
if we found the flawed connections among files, it still worth
for developers or architects to examine the details in the flawed
files. In particular, for large-scale and long-term projects, file
sizes increase as software evolves. What is worse, the larger
and complicated a file, and the more attributes or methods it
will have. In our approach, we automatically detect and model
the group of attributes or methods or fields which participate
in architecture flaws and accumulate maintenance costs.

VII. CONCLUSION

In this paper, we have formally defined the concept of
Method-level Hotspot, a group of evolutionarily coupled at-
tributes or methods that participate in architecture design
flaws and continuously incur maintenance difficulties. Our
approach could automatically detect method-level hotspots
from a project and model the evolution trend of the detected
method-level hotspots in terms of maintenance costs. Our
approach also uses method-level co-change pairs to visualize
the co-change details between attributes or methods in a
method-level hotspot.

From our analysis on six large-scale open source projects,
we have demonstrated that the attributes or methods involved
in method-level hotspots have significantly higher change-
proneness compared to the attributes or methods not involved
in any method-level hotspot. We have also presented that
our approach could model most of the identified method-
level hotspots into one of the three typical regression models.
The modeling results could help developers understand the
evolution trend of each hotspot and provide guidance for the
refactoring decisions.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under the grant No. 61702377, and

the Fundamental Research Funds for the Central Universities
under the grant No. CCNU19TD003, and IBO Technology
(Shenzhen) Co., Ltd., China.

REFERENCES

[1] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of
Modularity. MIT Press, 2000.

[2] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb. Software
dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering, 35(6):864–878, July 2009.

[3] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725–743, 2007.

[4] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, July 1999.

[5] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based
on product release history. In Proc. 14th IEEE International Conference
on Software Maintenance, pages 190–197, Nov. 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[7] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Identifying
architectural bad smells. In Proc. 13th European Conference on Software
Maintenance and Reengineering, pages 255–258, Mar. 2009.

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Predicting fault
incidence using software change history. IEEE Transactions on Software
Engineering, 26(7):653–661, 2000.

[9] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code
using failure-inducing chops. In Proc. 20th IEEE/ACM International
Conference on Automated Software Engineering, pages 263–272, 2005.

[10] J. F. Hair, C. M. Ringle, and M. Sarstedt. Pls-sem: indeed a silver bullet.
Journal of Marketing Theory and Practice, 19(2):139–151, 2011.

[11] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proc. 24thInternational
Conference on Software Engineering, 2002.

[12] J. Joseph F. Hair, G. T. M. Hult, C. Ringle, and M. Sarstedt. A Primer on
Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage,
Thousand Oak, 2013.

[13] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka. A case study in locating the architectural roots
of technical debt. In Proc. 37th International Conference on Software
Engineering, May 2015.

[14] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The
formal definition and automatic detection of architecture smells. In
Proc. 12thWorking IEEE/IFIP International Conference on Software
Architecture, May 2015.

[15] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. Architecture anti-
patterns: Automatically detectable violations of design principles. IEEE
Transactions on Software Engineering, 2019.

[16] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proc. 28th International Conference on Software
Engineering, pages 452–461, 2006.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location
and number of faults in large software systems. IEEE Transactions on
Software Engineering, 31(4):340–355, 2005.

[18] L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A new form of
architecture insight. In Proc. 36rd International Conference on Software
Engineering, 2014.

[19] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. Identifying and
quantifying architectural debt. In Proc. 38thInternational Conference
on Software Engineering, pages 488–498, 2016.


