
Formal Modelling and Verification of
MCAC Router Architecture in ICN

Junya Xu1, Huibiao Zhu∗1, Lili Xiao1, Jiaqi Yin1, Yuan Fei∗2, Gang Lu1
1Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
2 School of Information, Mechanical and Electrical Engineering,

Shanghai Normal University, Shanghai, China

Abstract—As Information Center Network (ICN) becomes a
candidate for the future Internet architecture, its security and pri-
vacy issues have aroused extensive attention. Mandatory Content
Access Control (MCAC) router architecture, which extends the
existing mainstream ones with hardware-rooted trust, is proposed
to implement MCAC protocol to protect privacy. Therefore, it
is necessary to study the security of this architecture from the
perspective of formal methods.

In this paper, we use the process algebra Communicating
Sequential Processes (CSP) to model and analyze MCAC router
architecture in ICN. By adopting model checking tool Process
Analysis Toolkit (PAT), we verify five important properties,
namely Deadlock Freedom, Key Faking, Level Mechanism, Data
Availability and Data Leaking. The results of verification show
the correctness and security of MCAC router architecture, from
which it can be concluded that this architecture is reliable.

Index Terms—MCAC Router Architecture, ICN, CSP, Model-
ing, Verification

I. INTRODUCTION

Information Centric Network (ICN) has been proposed as a
candidate for future Internet architecture [1]. It breaks the host-
centric pattern, replacing the traditional approach with end-
to-end connectivity and unique named data based on content
distribution architecture. Due to the fact that named data is
isolated from physical locations in the network, caching and
replication of data in ICN can more easily support network
storage and forwarding [2], [6]. Since ICN is attracting more
and more attention, security and privacy have also become the
important concern [7]. Some security and privacy issues have
been identified with current ICN architectures. For instance, as
one of the ICN architectures, Content-Centric Network (CCN)
[2] has been found that it still leads to data leaks, since it
allows that routers in the forwarding path can cache contents.

The traditional Mandatory Access Control (MAC) [1] pro-
vides confidentiality for the network by security level labels
mechanism. MAC is usually valid in a system, but not common
in large-scale distributed systems. Thus, it is difficult to be
applied in ICN. In order to address the issue, Li et al. [4]
have proposed Mandatory Content Access Control (MCAC) to
provide security protection for each component in ICN. Sim-
ilar to MAC, MCAC also provides security level mechanism
for different components to realize the security and privacy

∗Corresponding Authors. E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu),
yuanfei@shnu.edu.cn (Y. Fei).

for data in ICN. Subjects including processes in routers and
objects such as contents and contest requests in MCAC, are
respectively labeled into four levels {h, n, d, p}, where the
relationship of label’s level is defined: h > n > d > p. In other
words, subjects in MACA can only read the objects with the
labels equal or lower than themselves.

Since MCAC policies are implemented by content routers
in ICN, Li et al. [4] proposed a design of MCAC router
architecture. This router architecture is based on the existing
router architecture and hardware-rooted trust, with the addition
of an authentication protocol. In previous work, A. Datta et
al. [11] have only verified the authentication protocol by using
cord calculus, but this architecture has not yet been modeled
and verified by using formal methods. In this paper, we
propose a formal verification of the security-related properties
of this architecture. First, we use CSP [8], [10] to model
MCAC router architecture in ICN. Then, we choose PAT
[5] to verify some properties of our system. The results of
verification show that the security of MCAC router architecture
is still guaranteed despite the presence of the intruder.

This paper is organized as follows. Section II gives a brief
introduction to MCAC router architecture and CSP. In section
III, we model the modules of one router in MCAC router
architecture in CSP. In section IV, we use PAT to implement
the model and verify five properties. Finally, we conclude this
paper and make a discussion on the future work in section V.

II. BACKGROUND

In this section, we give an overview of MCAC router
architecture and a brief introduction to CSP.

A. MCAC Router Architecture

To implement MCAC policies, routers need to make for-
warding decisions based on each content request and have the
function of storage to implement content caching. It mainly
consists of the following modules.
• Trusted Storage Module (TSM) is responsible for nego-

tiating secret keys with TSM on neighbor routers and
writing the secret keys into module TEM. In addition,
TSM also handles caching contents.

• Trusted Labeling Module (TLM) checks whether each
read operation and cache operation are legal by reading
the labels in content packets.

DOI reference number: 10.18293/SEKE2020-048

• Trusted Enforcement Module (TEM) provides private pro-
tection for some contents by encrypting the contents. In
addition, it also reclassifies the content labels according
to the reclassification rules.

The procedures of router communication based on MCAC
router architecture can be mainly divided into two stages: key
negotiation (Fig. 1) and transmission of content packets (Fig.
2).

Fig. 1. Process of Key Negotiation

As shown in Fig. 1, identity authentication is added to M-
CAC router architecture during the process of key negotiation.
In the beginning, all the modules should be verified for integri-
ty. Then TSM retrieves the private key ki. R1 as an initiator
sends the Diffie-Hellman exponent composed of private key to
R2. After receiving the message, the responder R2 sends its
own Diffie-Hellman exponent and signature including mutual
exponent and R1’s ID to R1. Then R1 replies a message with
signature to complete the authentication. R1 and R2 can get
the same key S by calculating the Diffie-Hellman exponents.
After generating their session keys, routers deliver these keys
to the corresponding TEM modules.

Fig. 2. Transmission of Content Packets

ContentProvider (CP) categorizes contents into four tag
levels before sending them. Thus each router in MCAC router
architecture needs to handle these contents in four situations
as shown in Fig. 2.
• In case (1), CP generates the content with label h and

sends the content to R1. After receiving the content, TLM

in R1 needs to check the label embedded in the content
at first. Because the label is h, the content is not sent to
TSM but directly forwarded to R2 after TEM encrypts it
using the key S. When R2 receives the content, it firstly
decrypts the content and repeats the process like R1.

• In case (2), the content labeled with n is provided by
CP for R1. TLM checks the label and sends the content
to TSM since the label is lower than h. Then, TEM
reclassifies the content by changing the content label from
n to h and encrypts the content before delivering to R2.
That is to say, R2 receives the content with label h and
performs actions like R2 in case (1).

• In case (3), CP generates the content with label d and
sends it to R1. After checked the label by TLM, the
content with label d means that the content is sent to
TSM and directly forwarded to R2 without encryption.
R2 performs the same actions in the process of the
communication.

• Case (4) is similar to case (3), the only difference is that
the content with label p can also be delivered to all the
applications.

B. CSP
CSP is a process algebra proposed by C. A. R. Hoare.

The language is mainly designed to describe and analyze
the behavior of concurrent systems and processes, which has
been successfully applied in modeling and verifying various
concurrent systems and protocols [3], [9].

We give the syntax of the CSP language used to describe
the process in this paper, where P and Q are processes, a
denotes the event and c represents the name of channel.

P,Q = Skip | Stop | a→ P | c?x→ P | c!x→ P |
P � Q | P ‖ Q | P C bBQ | P ;Q | P [|X|]Q

• Skip represents the process which does nothing but
terminates successfully.

• Stop denotes that the process does nothing and it is in
the state of deadlock.

• a→ P describes an object which first performs the event
a and then behaves like P .

• c?x → P receives a message through channel c and
stores the value in variable x and then the behavior is
like process P .

• c!x → P sends message x through channel c and then
behaves like process P .

• P � Q stands for the choice between process P and
process Q. The election is decided by the environment.

• P ‖ Q denotes that processes P and Q execute concur-
rently and are synchronized with the same communica-
tion events.

• P C b B Q indicates if condition b is true, the process
behaves like P , otherwise like Q.

• P ;Q describes that processes P and Q execute in se-
quence.

• P [|X|]Q denotes that the parallel composition of P and
Q performs the concurrent events on set X of channels.

III. MODELING

In this section, we formalize the model of MCAC router
architecture in Information Centric Networks.

A. Sets, Messages and Channels

In order to model the communication of routers and the
behaviors of the modules in a router, we give the definitions
of sets, messages and channels we use in this paper.

First, we introduce some sets we use in the model. Modules
set is composed of modules in the router including TSM, TEM
and TLM. Nonce set represents Diffie-Hellman exponents.
Key set consists of keys. Content set includes the contents
transmitted between the modules or routers. Label set defines
level of the content. ID set is the identity information of
routers, and Ack set contains acknowledgements.

Then, we define an encryption function E and a decryption
function D:

E(k,msg); D(k, emsg)

where the function E makes use of a key to encrypt the
message msg while the function D uses a key to decrypt the
encrypted message emsg. Therefore, we can get the following
conclusion:

D(k,E(k,msg)) = msg

Based on the above sets and functions, we describe the
following messages:

MSGdatE = {msge.g,msge.c,msge.E(k, c),msge.E(k, g, r)

| g ∈ Nonce, k ∈ Key, r ∈ ID, c ∈ Content}
MSGdatM = {msgm.m.n.k, msgm.m.n.c, msgm.m.n.l.c |

m,n ∈Module, c ∈ Content, l ∈ Label}
MSGack = {msgack.x | x ∈ Ack}
MSGpro = {msgpro.E(k1, g, r1).k.r, msgpro.E(k1, c1).k |

g ∈ Nonce, k ∈ Key, r ∈ Name, c ∈ Content}
MSGin = MSGack ∪MSGpro

MSG = MSGdatE ∪MSGdatM ∪MSGin

Here, MSGdatE represents messages transmitted between
the modules in adjacent routers. MSGdatM consists of mes-
sages sent between the modules in the same router. MSGpro

denotes messages delivered to a processing process and
MSGack represents the set of feedback information from the
processing process.

Next, we give the definitions of channels in this paper.
• channels of honest routers, using COMR PATH to rep-

resent:
ComTEM, ComTSM,

• channels of honest modules in the same router, using
COMM PATH to represent:

KeySet, ContentProcess, ContentCache
• channels of intruders who perform intercepting or faking

behaviors, defined by INTR PATH:
FakeTEM, FakeTSM

• channels of processing messages and feedback messages,
represented by PROC PATH:

CheckKey, GetData
• In addition, channels of normal communications, repre-

sented by COM PATH:
COM PATH = COMR PATH ∪COMM PATH

The declarations of channels are as follows:
Channel COM PATH, INTR PATH :

MSGdatE ∪MSGdatM

Channel PROC PATH : MSGin

B. Overall Modeling

In this paper, we focus on the messages transmission of
the modules inside a router and the external information
transmission with the modules on neighbor routers. Mean-
while, we also consider the presence of intruders in normal
communications. Note that in this paper, we allow intruders
to eavesdrop on or intercept communication messages between
routers, but these intruders are unable to obtain communication
message between modules within the same router. Fig. 3 shows
the communication between routers without intruders and Fig.
4 shows the communication with an intruder.

Fig. 3. Communication between Routers without Intruders

Fig. 4. Communication between Routers with an Intruder

Fig. 5. Communication between Modules in a Router

Since the structure and communication function of each
router are the same in MCAC router architecture, now we
present the model of one router. Therefore as described in
Fig. 5, any router can be abstracted as a system consisting
of three modules including TSM, TEM, TLM and a process
for internal information processing. That is to say, we do not
consider other internal components of the router in this router
architecture in this paper.

In order to take full account of the system security issues,
we also define the process INTRUDER to simulate intruders
who eavesdrop and tamper messages.

Based on the above descriptions, we formalize the whole
models System and SystemI as follows.

System() =df PROCESS() [|PROC PATH|] TEM0()

[|COM PATH|] TSM0() [|COM PATH|] TLM0()

SystemI() =df System() [|INTR PATH|] INTRUDER

Process System is composed of processes TSM0, TLM0,
TEM0 and PROCESS, which perform the concurrent events
on the sets PROC PATH and COM PATH of chan-
nels. Process SystemI consists of processes System and
INTRUDER, which perform the concurrent events on the
set INTR PATH of channels.

C. TSM Modeling
First, we formalize process TSM0 to describe the behaviors

of Trusted Storage Module in a router.

TSM0() =df Init{k = false,m = true} →
ComTSM !msge.g

k1 →
ComTSM?msge.g

k2 .E(k−1RB , (g
k1 , gk2 , RA))→

ComTSM !msge.E(k−1RA, (g
k1 , gk2 , RB)){kSA := (gk2)k1}

→ KeySet!msgm.s.e.kSA →
CheckKey!msgpro.E(k−1RB , (g

k1 , gk2 , RA)).kRB →
CheckKey?msgack.ack → (KeyFakingSuccess{k = true} → Skip)
Cack == Y ESB
(KeyFakingError{k = false} → Skip)

 ;

ContCache?msgm.l.s.c{l := GetLabel()} → (LevelMechanismErr{m = false} → Skip)
Cl == hB
(LevelMechanismCor{m = true} → Skip)

; TSM0()

The initial state of TSM0 is defined as m = true and k =
false, where m indicates whether the level mechanism is safe
and k expresses whether key is fake. The following actions
correspond to two parts including key negotiation and content
caching. By channel CheckKey, we check if the session key is
faked and GetLabel() is used to get the level labels of contents.

We need to take the possibility of intruder actions into
consideration, therefore, the messages on channel ComTSM
can be faked or intercepted. We apply the renaming to pro-
cess TSM0. TSM0 performs an action only on the channel
ComTSM , but TSM can perform an action either on channel
ComTSM or on channel FakeTSM .

TSM() =df TSM0()[[

ComTSM?{|ComTSM |} ← ComTSM?{|ComTSM |},
ComTSM?{|ComTSM |} ← FakeTSM?{|ComTSM |},
ComTSM !{|ComTSM |} ← ComTSM !{|ComTSM |},
ComTSM !{|ComTSM |} ← FakeTSM !{|ComTSM |}]]

D. TLM Modeling
TLM is responsible for identifying the labels in different

content packets. We formalize process TLM0 to describe the
behavior of Trusted Labeling Module in a router.

TLM0() =df ConPro?msgm.e.l.c {l := GetLabel()};
ConPro!msgm.l.e.h.c
Cl == hB

ContCache!msgm.l.s.c→ ConPro!msgm.l.s.n.c
Cl == nB
ConPro!msgm.l.s.c

;TLM0()

After receiving a content packet, TLM0 makes a judgement
about the label of the content packet and performs the corre-
sponding actions. Here, GetLabel() is used to get the level
labels of contents.

E. TEM Modeling
The process TEM0 describes the behavior of Trusted

Enforcement Module in a router which is formalized as follow.

TEM0() =df Init{a = false} → KeySet?msgm.s.e.kSA → (ComTEM?msge.E(kSB , c)
{c := D(kSA, E(kSB , c))} → ConPro!msgm.e.l.c)
�(ComTEM?msge.c→ ConPro!msgm.e.l.c)

 ;

GetData!msgpro.E(kSB , c)→ GetData?msgack.ack1→ (DataAcqcquisitionSuccess{a = true} → Skip)
Cackl == Y ESB
(DataAcqcquisitionError{a = false} → Skip)

 ;

(ConPro?msgm.l.e.h.c→
ComTEM !msge.E(kSA, c))
�(ConPro?msgm.l.e.n.c {n := h} →

ComTEM !msge.E(kSA, c))
�(ConPro?msgm.l.e.c→ ComTEM ! msge.c)

; TEM0()

We define the initial state of TEM0 as a = false, where
boolean variable a expresses data availability. At first, TEM0

receives a message including the negotiated secret key kS from
TSM0. Then if TEM0 receives the encrypted message from
its neighbor router, it makes use of the negotiated secret key
to decrypt the message and sends the content in the message
to TLM0 . If the content is not encrypted, it forwards the
content directly to TLM0. TEM0 can also check whether
the modules can get what it expects by channel GetData. In
addition, TEM0 needs to complete message encryption and
reclassification functions.

Similarly for TEM, we do this renaming to process TEM0.

TEM() =df TEM0()[[

ComTEM?{|ComTEM |} ← ComTEM?{|ComTEM |},
ComTEM?{|ComTEM |} ← FakeTEM?{|ComTEM |},
ComTEM !{|ComTEM |} ← ComTEM !{|ComTEM |},
ComTEM !{|ComTEM |} ← FakeTEM !{|ComTEM |}]]

F. PROCESS Modeling

Ultimately, we give PROCESS to simulate the internal
information processing procedure in a module.

PROCESS() =df

CheckKey?msgpro.E((k−1R1), gk1 , gk2 , R1).kR2 (CheckKey!msgack.Y ES → PROCESS())
CkR1 == kR2 && gk2 == gk2 fB
(CheckKey!msgack.NO → PROCESS())

�GetData?msgpro.E(kSB , c) (GetData!msgack.Y ES → PROCESS())
CkSB == kSA ‖ kSB == kS fB
(GetData!msgack.NO → PROCESS())

PROCESS is used to deal with whether the negotiated

session key is faked and whether the content can be transmitted
to the module requiring for it. Then it sends feedback messages
to TSM0 and TEM0 separately.

G. INTRUDER Modeling

We also regard INTRUDER as a process and it can
intercept messages transmitted on ComTSM and ComTEM
or fake messages on FakeTSM and FakeTEM at any time.

First, we define set FACT which contains all the facts that
can be learned by the intruder.

FACT =dfTSMs ∪ TLMs ∪ TEMs ∪MSGdatE

∪ {K,K−1,KS ,KS f} ∪ {N,Name}
∪ {E(key, content) | key ∈ {K−1,KS ,KS f},

content ∈ {N,Name,Content}}

Next, we define the rules to express how the intruder can
deduce new facts from what it has known, shown as follows:

{K,E(K−1, c)} 7→ c, {KS , E(KS , c)} 7→ c,

{KS f , E(KS f , c)} 7→ c, {K, c} 7→ E(K, c),

{KS , c} 7→ E(KS , c), {KS f , c} 7→ E(KS f , c),

F 7→ f ∧ F ⊆ F ′ ⇒ F ′ 7→ f

where, set F denotes the facts the intruder has known, and f
is the fact deduced from set F . F 7→ f represents that fact f
can be deduced from the set F .

The first three rules describe that the intruder can use the
corresponding key to decrypt the encrypted messages and get
some contents. In the same way, the next three rules represent
encryption. The ?nal rule is a structural rule, explaining that
the intruder can deduce fact f from a lager set F ′, if f can
be deduced from set F .

In addition, we define the Info function to represent the
facts which a intruder can learn from the intercepted and
eavesdropped messages:

Info(msge.g) =df {g} Info(msge.c) =df {c}
Info(msge.E(k, g, r)) =df {E(k, g, r)}

Info(msge.E(k, c)) =df {E(k, c)}
Info(msgm.m.n.k) =df {m,n, k}
Info(msgm.m.n.c) =df {m,n, c}
Info(msgm.m.n.l.c) =df {m,n, l, c}

where g ∈ Nonce, m, n ∈Module, k ∈ Key, r ∈ ID, l ∈
Label, c ∈ Content.

Finally, we declare a channel Deduce used for deducing
new facts:

Channel Deduce : Fact.P (Fact)
We allow that the intruder can overhear all the messages

transmitted between routers and learn all the facts from the
messages, but it cannot intercept the messages transmitted
between the modules in the same router. Meanwhile, the
intruder can fake a message if it has learned some facts and
deduce a new fact from known ones. Beyond that it can also
use a key that it knows in fake sessions.

Based on the above, now we give the formalization of
INTRUDER as below:

INTRUDER(F) =df

�m∈MSGE
FakeTSM?m→ INTRUDER(F ∪ Info(m))

��m∈MSGE∩Info(m)⊂FFakeTSM !m→ INTRUDER(F)

��m∈MSGE
FakeTEM?m→ INTRUDER(F ∪ Info(m))

��m∈MSGE∩Info(m)⊂FFakeTEM !m→ INTRUDER(F)

��f∈Fact,f 6∈F,F 7→fInit{e = false} → Deduce.f.F → (DaLeakSuc{e = true} → INTRUDER(F ∪ {f}))
C(f == c && f == h) || (f == c && f == n)B
(DaLeakErr{e = flase} → INTRUDER(F ∪ {f}))

When the intruder intercepts a message in MSGE , it can

deduce some information from this message, and it may also
replace some contents and send a fake message to other honest
entities.

IV. VERIFICATION

In this section, we use model checker PAT to implement the
formal model which has been formalized in section III. At the
same time, we carry out some security properties verification
of our system.

A. Security Specification
We want to check whether the intruder can intercept or fake

messages successfully in the whole system. Thus, we test if
our system is against the following specifications:

SPECTSM =df CHAOS (Σ− {|FakeTSM |})
SPECTEM =df CHAOS (Σ− {|FakeTEM |})

CHAOS(A) [3] is the most uncertain and divergent process
of alphabet A. It can perform any events from the alphabet
A, where Σ is the set of all events. For instance, if the
process TSM is allowed to perform any events except those
occurring on the channel FakeTSM , we can say that it
satisfies the specification SPECTSM =df CHAOS (Σ −
{|FakeTSM |}). If the system with the intruder refines these
specifications, it is indeed secure.

B. Properties Verification

In this subsection, we verify five properties: Deadlock
Freedom, Key Faking, Level Mechanism, Data Availability
and Data Leaking. As formalised above, SystemI() is used
to denote the model with an intruder and give the results of
verification at the end.
Property 1: Deadlock Freedom

#assert SystemI() deadlockfree;

The deadlock-free property is a primitive in PAT which
means a system can avoid the deadlock. This property verifies
whether our system can run into the deadlock state.
Property 2: Key Faking

#define Key Faking Success k == true;

#assert SystemI() reaches Key Faking Success;

We define Key Faking to denote the situation that the
intruder can break the mutual authentication between routers
and successfully tamper with the key.
Property 3: Level Mechanism

#define Level Mechanism safe m == true;

#assert SystemI() reaches Level Mechanism safe;

The property Level Mechanism means that contents can only
be processed and cached by higher-level processes in routers
to provide security and privacy.
Property 4: Data Availability

#define Data Acquisition Success a == true;

#assert SystemI() reaches Data Acquisition Success;

The property Data Availability represents that the contents
can be obtained by the modules which require these contents.
Property 5: Data Leaking

#define Data Leakaging Success e == true;

#assert SystemI() reaches Data Leakaging Success;

We say that a system satisfies this property, if an intruder
can intercept and crack the encrypted messages transmitted
between the honest entities. This property verifies whether the
content is leaked in the process of message transmission.

Fig. 6. Verification Result of the Properties in SystemI

As shown in Fig. 6, the properties Deadlock Freedom, Level
Mechanism and Data Availability are all valid, which means

that the system cannot run into the deadlock state and the
modules of routers can only process lower-level contents and
obtain what they want respectively. Meanwhile, we also find
the properties Key Faking and Data Leaking are invalid. These
two properties ensure the correctness of key authentication
and the security of data transmission in our model with the
intruder respectively. Therefore, we can get a conclusion that
data transmission in MCAC router architecture is safe.

V. CONCLUSION AND FUTURE WORK

This paper focuses on the security and correctness of
MCAC router architecture through formal methods. Firstly,
we have formalized three modules comprising TEM, TLM
and TSM in MCAC router architecture with CSP. Then we
verified five properties related to security through the model
checker PAT including Deadlock Freedom, Key Faking, Level
Mechanism, Data Availability and Data Leaking. Consequent-
ly, we can conclude that the correctness and security of
MCAC router architecture are guaranteed from the results of
verification.

In the future, we will follow with interest the other proper-
ties of MCAC router architecture. Meanwhile we will also
explore the way to model and verify other access control
solutions of ICN.

ACKNOWLEDGEMENT

This work was partly supported by National Key Research
and Development Program of China (grant no. 2018YF-
B2101300), National Natural Science Foundation of Chi-
na (grant no. 61872145), Shanghai Collaborative Innova-
tion Center of Trustworthy Software for Internet of Things
(grant no. ZF1213), the Fundamental Research Funds for
the Central Universities of China and the Opening Project
of Shanghai Trusted Industrial Control Platform (grant no.
TICPSH202003007-ZC).

REFERENCES

[1] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nick Briggs, Rebecca Braynard: Networking named content. Commun.
ACM 55(1): 117-124 (2012)

[2] Dinh Nguyen, Kohei Sugiyama, Atsushi Tagami: Cache the Queues:
Caching and Forwarding in ICN from a Congestion Control Perspective.
ITC 2016: 243-251

[3] Gavin Lowe, A. W. Roscoe: Using CSP to Detect Errors in the TMN
Protocol. IEEE Trans. Software Eng. 23(10): 659-669 (1997)

[4] Qi Li, Ravi Sandhu, Xinwen Zhang, Mingwei Xu: Mandatory Content
Access Control for Privacy Protection in Information Centric Networks.
IEEE Trans. Dependable Sec. Comput. 14(5): 494-506 (2017)

[5] PAT: Process Analysis Toolkit. http://pat.comp.nus.edu.sg/
[6] Anand Seetharam: On Caching and Routing in Information-Centric

Networks. IEEE Communications Magazine 56(3): 204-209 (2018)
[7] Towards seamless mobility in ICN : connectivity, security, and reliability.

(Vers une mobilit transparente dans le rseau ICN : connectivit, scurit, et
fiabilit). Pierre and Marie Curie University, France, 2018

[8] Stephen D. Brookes, C. A. R. Hoare, A. W. Roscoe: A Theory of
Communicating Sequential Processes. J. ACM 31(3): 560-599 (1984)

[9] Yuan Fei, Huibiao Zhu: Modeling and Verifying NDN Access Control
Using CSP. ICFEM 2018: 143-159

[10] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall,
Upper Saddle River (1985)

[11] Anupam Datta, Ante Derek, John C. Mitchell, Dusko Pavlovic: A
derivation system and compositional logic for security protocols. Journal
of Computer Security 13(3): 423-482 (2005)

