
Classifying Common Security Vulnerabilities by
Software Type

Onyeka Ezenwoye1, Yi Liu2, and William Patten1

1 Augusta University, Augusta, GA, USA, oezenwoye,wpatten@augusta.edu
2 University of Massachusetts Dartmouth, Dartmouth, MA, USA, yliu11@umassd.edu

Abstract—The National Vulnerability Database does not
identify a type for the software that is impacted by a specified
weakness. To gain some insight into the security vulnerability
landscape, we classify by software type a total of 51,110 vulnera-
bility entries from 2015 to 2019. The software types are operating
system, browser, middleware, utility, web application, framework,
and server. This classification shows the pattern of prevalence of
software weaknesses and the persistence of weaknesses as they
pertain to each software type.

Keywords: Software, Security, Vulnerability, Weakness, Tax-
onomy.

I. INTRODUCTION

Since 2002, the National Vulnerability Database (NVD) [2]
has maintained a list of exploitable security vulnerabilities
that exist in software. Each vulnerability entry in the list has
multiple attributes, one of which is the software weakness
(E.g., buffer error). An aggregate of common weaknesses over
time is available [3]. The vulnerability entries span many
thousands of products which range from the recognizable to
the very obscure. The database however does not specify a
software type for these products. Identifying the software type
is important in understanding the vulnerability landscape as it
pertains to each software type [9].

With the ubiquity of software comes the associated
developer-driven software weaknesses. Knowing the weakness
characteristics of the software type is important in devising tar-
geted fault avoidance and detection mechanisms which include
threat modeling, architecture review, risk analysis, training,
and policies for evolution and maintenance [5], [12]. To this
end, we are analysing vulnerability database entries. Part of
this effort includes classifying the vulnerabilities by software
type. Here, we report our findings thus far of classifying the
most recent five years of vulnerability data. With this, we seek
to provide answers to two questions:

1) Is the occurrence of the most common weaknesses
consistent across software types?

2) How well do weaknesses persist over years for the same
product?

With these answers, we provide some additional insight
into vulnerability weaknesses that isn’t available in existing
literature. The rest of this paper is structured as follows, our
approach is described in Section II. We present results in

DOI reference number: 10.18293/SEKE2020-047

Section III. Related work can be found in Section IV with
Conclusion in Section V.

II. APPROACH

The NVD catalogs security vulnerabilities in a list known
as Common Vulnerabilities and Exposures (CVE). Each entry
in the list contains attributes such as a unique identifier, the
product’s vendor, product name, description, severity score,
etc. Each CVE entry also contains a Common Weakness
Enumeration (CWE) name [1]. The CWE name identifies the
specific vulnerability type (E.g., Improper Authentication, and
Buffer Error). From here on, we refer to each CVE entry as
vulnerability and each vulnerability type as weakness.

Fig. 1. Total number of vulnerabilities reported Vs number of vulnerabilities
classified by software type

Each vulnerability contains the product’s vendor and name
(E.g., Microsoft and Windows 10) but not the product type
(E.g., Operating System). To answer the questions from Sec-
tion I, we decided to review all vulnerabilities from 2015 to
2019 and classify each vulnerability by a product type. We
classified each vulnerability into one of seven product types.
We use a database (of vendor, product name, and product
type groupings) to map each vulnerability to a product type.
We continue to update this database (with vendor, product
name, and product type groupings) in order to achieve 100%
classification for all years. Currently only 2018 is complete
(Figure 1). The product types are Web Application, Utility,
Server, Operating System, Browser (Web), Framework, and
Middleware. The types are loosely based on the taxonomy
proposed by Forward et al. [9]. We briefly describe each type:

• Web Application: web-based (or cloud-based) software
such as content management systems, information man-
agement systems, transaction processing systems, etc.



• Utility: standalone applications such as productivity, cre-
ativity, antivirus, scripts, non-web clients, etc.

• Server: system servers (including cloud-based) such as
database, email, proxy, web, FTP, DNS, load balancers,
network monitors, etc.

• Operating System: firmware, device drivers, virtual ma-
chines, and all types of operating systems.

• Browser: all types of web browsers.
• Framework: software components such as libraries, plu-

gins, and extensions.
• Middleware: enterprise transaction platforms such as

message queuing, object storage, and identity manage-
ment systems.

Of the 58,781 unique vulnerabilities over that period, we
have classified 51,110 (87%), including 100% of all vulnera-
bilities from 2018. Figure 1 shows a comparison of the number
of vulnerabilities from each year and the number of those that
have been successfully classified by product type, so far. We
are confident that at this point, the results from the number
that have been classified should be fairly representative of the
total. To support this argument, Figure 2 shows a comparison
distribution by software product between 2018, which has
been 100% classified, and all other years. The chart shows
a similarity in distribution across product type. It also shows
that operating systems and utilities account for about half of
all vulnerabilities.

Fig. 2. Relative vulnerability count by software product type

From our classification, we found that there are a total of
169 distinct weaknesses across all product types. Figure 3
shows the most common of these weaknesses. By most com-
mon we mean that each weakness has a count that is at least
3% of all vulnerabilities classified (51,110). Collectively, these
7 weaknesses account for just over 53% of all vulnerabilities,
the other 162 weaknesses account for the rest. The chart shows
that buffer errors and cross-site scripting are the two most
individually occurring security weaknesses in general.

III. RESULTS

In this section we offer some answers to the questions
discussed in Section I.

Fig. 3. Most common weaknesses across all vulnerabilities (2015-2019)

A. Is the occurrence of the most common weaknesses consis-
tent across software types?

To help answer this question, we present a breakdown of
the most common weaknesses by each product type. Figure 4
shows the most common weaknesses for the Browser type.
For this type, there were 74 different weaknesses across a
total of 2,897 vulnerabilities. These 8 weaknesses account for
75.5% of all vulnerabilities. Buffer error is the most occurring
weakness, which is consistent with Figure 3.

Fig. 4. Most common weaknesses for the Browser type

Figure 5 shows the most common weaknesses for the type
classified as Framework. There are a total of 129 weaknesses
across 8,444 vulnerabilities. These 9 weaknesses account for
59.6% of all vulnerabilities. The two most common weak-
nesses are buffer errors and cross-site scripting. This could
be explained by the fact that many of the products that fall
into this type are frameworks for web applications and other
downloadable program libraries. The two most common here
is somewhat consistent with Figure 3.

Figure 6 shows the most common weaknesses for the
Middleware product type. There are a total of 59 weaknesses
across 441 vulnerabilities. These 9 weaknesses account for
54.6% of all vulnerabilities. Although present, buffer errors, a
typically common weakness (Figure 3), don’t feature promi-
nently here. Figure 7 shows the most common weaknesses
for Operating systems. There are a total of 148 weaknesses
across 13,670 vulnerabilities for this product type. These 7
weaknesses account for 54.1% of all vulnerabilities. All of
these weaknesses are the same that appear as the most common



Fig. 5. Most common weaknesses for the Framework type

in Figure 3. This is partly due to prominence of the Operating
System type in the classification (Figure 2).

Fig. 6. Most common weaknesses for the Middleware type

Fig. 7. Most common weaknesses for the Operating System type

Figure 8 shows the most common weaknesses for the Server
product type. There are a total of 118 weaknesses across
5,840 vulnerabilities for this type. These 9 weaknesses account
for 59.8% of all vulnerabilities. All of the most common
weaknesses (Figure 3) feature prominently here, in addition
to the SQL Injection and Path Traversal weaknesses. Figure 9
shows the most common weaknesses for the product type
classified as Utility. There are a total of 124 weaknesses across
8,878 vulnerabilities for utilities. These 9 weaknesses account
for 61% of all vulnerabilities.

Figure 10 shows the most common weaknesses for Web
applications. For this product type, there are 105 weaknesses

Fig. 8. Most common weaknesses for the Server type

Fig. 9. Most common weaknesses for the Utility type

across 7,595 vulnerabilities. These 8 weaknesses account for
72% of all vulnerabilities for Web applications. We note that
the most common weaknesses for the Web application type
are similar to those of the Server type (Figure 8), allbeit at
different degrees. The results show that the most common
weaknesses (Figure 3) do not appear consistently across all
software product types. Of the 7 weaknesses, only Input Val-
idation, Cross-site Scripting, and Information Exposure occur
at a high enough rate (3%) for every product type. The Buffer
Error weakness met this threshold all types but Middleware.
Buffer Error was recorded at 1.6% of all vulnerabilities for
the Middleware type. Also, the rate at which each weakness
occurs does vary greatly across product types.

Fig. 10. Most common weaknesses for the Web Application type



B. How well do weaknesses persist over years for the same
product?

We reviewed the data to determine whether the same weak-
ness (E.g., Buffer Error) for a given product (E.g., Microsoft
Windows 10) occurs again in subsequent years for the same
product. Our results show that only a small percentage (less
than 5%) of weaknesses repeat for the same product and the
rate at which they reoccur does decrease over time (Figure 11).
A reasonable assumption here is that a majority of the weak-
nesses get repaired. Also, over time, some products get discon-
tinued or evolve into a different product. Products that have
evolved into a different product (name) would not show up in
the data as repeating. Figure 12 shows that Web applications
account for the most occurrences of repeating weakness. It
is important to note that the Operating System type which
accounts for a high number of vulnerabilities (Figure 2) does
not have as high a rate of repeating weaknesses, relatively.
The results here highlight the importance of updating existing
software installations.

Fig. 11. Number of weaknesses that repeat for the same product over time

Fig. 12. Distribution of repeating weaknesses by software type

IV. RELATED WORK

Some existing works have looked at analyzing vulnerability
data from the NVD. None that we know of classify software
weaknesses by product type. Santos et al. [8] devised a
Common Architectural Weakness Enumeration as a means to
catalog the common types of architectural weaknesses that
generally exist in software. Na et al. [13] discuss a technique
for analyzing vulnerability entries that do not have identi-
fied weaknesses. Their techniques attempts to identify the

weakness using existing information in the vulnerability entry.
Neuhaus et al. [14] analyzed vulnerability entries to identify
trends in topics such as PHP and Format Strings that appear in
the entries. Chang et al. [7] analyzes vulnerability entries from
trends in the frequency and severity of vulnerability types.
Others [4], [6], [10], [11], [15], [16] take a similar approach
by analyzing existing texts for vulnerability trends.

V. CONCLUSION

To gain further insight into reported software security
vulnerabilities, we analyzed 51,110 vulnerabilities from 2015
to 2019. We classify these vulnerabilities by software type.
Our analysis shows that the occurrence of weaknesses across
software types does vary greatly both in the type of weakness
and rate of occurrence for each software type. We also show
that the rate at which identified weaknesses repeat for the same
product is significantly reduced over time. As we continue to
analyze the data, we believe that our findings here will help
inform approaches to the avoidance and detection of software
weaknesses as well as inform strategies for software evolution
and maintenance.

REFERENCES

[1] The common weakness enumeration. https://nvd.nist.gov/vuln/
categories, Retrieved February, 2020.

[2] National vulnerability database. https://nvd.nist.gov/, Retrieved
Febraury, 2020.

[3] Relative vulnerability type totals by year. https://nvd.nist.gov/vuln/
visualizations/cwe-over-time, Retrieved February, 2020.

[4] S. Alqahtani and J. Rilling. Semantic modeling approach for software
vulnerabilities data sources. In Proceedings of the 17th International
Conference on Privacy, Security and Trust. IEEE, 2019.

[5] E. Amoroso. Recent progress in software security. IEEE Software, 35(2),
2018.

[6] F. Bulut, H. Altunel, PMP, and A. Tosun. Predicting software vulner-
abilities using topic modeling with issues. In Proceedings of the 4th
International Conference on Computer Science and Engineering, 2019.

[7] Y.-Y. Chang, P. Zavarsky, R. Ruhl, and D. Lindskog. Trend analysis of
the cve for software vulnerability management. In Proceedings of the
IEEE Third International Conference on Social Computing, Oct 2011.

[8] J. C. da Silva Santos, K. Tarrit, and M. Mirakhorli. A catalog of security
architecture weaknesses. In Proceedings of the 2017 IEEE International
Conference on Software Architecture Workshops, 2017.

[9] A. Forward and T. Lethbridge. A taxonomy of software types to facilitate
search and evidence-based software engineering. In Proceedings of the
2008 Conference of the Center for Advanced Studies, 2008.

[10] D. Gonzalez, H. Hastings, and M. Mirakhorli. Automated characteriza-
tion of software vulnerabilities. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution, 2019.

[11] T. H. M. Le, B. Sabir, and M. A. Babar. Automated software vulnera-
bility assessment with concept drift. In Proceedings of the IEEE/ACM
16th International Conference on Mining Software Repositories, 2019.

[12] G. McGraw. Silver bullet talks with Ksenia Dmitrieva-Peguero. IEEE
Computing Edge, February 2019.

[13] S. Na, T. Kim, and H. Kim. A study on the classification of common
vulnerabilities and exposures using naı̈ve bayes. In Proceedings of
Advances on Broad-Band Wireless Computing, Communication and
Applications. Springer, 2016.

[14] S. Neuhaus and T. Zimmermann. Security trend analysis with cve topic
models. In Proceedings of the 21st IEEE International Symposium on
Software Reliability Engineering. IEEE, November 2010.

[15] M. Williams, R. Camacho Barranco, S. M. Naim, S. Dey, M. Hossain,
and M. Akbar. A vulnerability analysis and prediction framework.
Computers Security, February 2020.

[16] X. Wu, W. Zheng, X. Chen, F. Wang, and D. Mu. CVE-assisted large-
scale security bug report dataset construction method. Journal of Systems
and Software, 160, 11 2019.


