

Towards A Systematic Derivation Of BPMN Model

From Business Process Textual Description

Wiem Khlif1, Nourchène Elleuch Ben Ayed2, Faten chihi1

1Mir@cl Laboratory, University of Sfax, Sfax, Tunisia
2Higher Colleges of Technology, ADW, U.A.E

wiem.khlif@gmail.com, nbenayed@hct.ac.ae, chihi.faten.95@gmail.com

Abstract—Deriving the Business Process (BP) model from its

Textual Description (TD) is crucial to its consistent analysis,

especially by making process information accessible to various

stakeholders. However, establishing or maintaining the TD-BP

alignment is not trivial when the enterprise develops a BP. In fact,

there is a clear risk that model and text become misaligned when

changes are not applied to both descriptions consistently. This

paper proposes a new transformation methodology that helps

business analyst to build BP model, which is aligned to its textual

description. It is based on the use of the business concept’s

template that is enriched by linguistic-based business rules.

Compared to existing methods, our methodology provides more

comprehensive alignment, which encompass all BPMN elements.

We examined the performance of the transformations through the

calculation of recall and precision rates.

Keywords- Textual Description, BPMN Model, Deriving,

Transformation, Business Concept’s Template

I. INTRODUCTION

Business processes capture organizational operations and
involve numerous actors with various roles [1] [2]. To provide
them with the information that they need, organizations have
recognized the value of capturing process descriptions in
model-based as well as text-based representations [1]. In this
context, several methods are proposed to automate the
transformation of a given representation into other one: Form
model to text and from text to model.

Regarding the model-to-text transformation, [3], the authors
have generated textual descriptions of a set of process models
using manual and automatic approaches. In Leopold et al. [4],
the authors proposed an approach that transforms textual as well
as model-based process descriptions into a unified data format
to automatically detect inconsistencies between them. [5] define
a semi-automated approach that consists of a process model-
based procedure for capturing execution-related data in
requirements models and an algorithm that takes these models
as input for generating natural language requirements.

Apropos of text-to-model transformation, [6] presented an
approach to generate BPMN models from natural language text
where they faced the complexity of natural language. In [1], the
authors presented the first automated approach for the
extraction of declarative process models from natural language.

In this paper, we focus on the works related to the generation
of BPMN model from its textual description. Nevertheless, the
existent works do not cover all BPMN elements. In addition,
few works derive automatically the BPMN model. To

overcome this gap, we propose a methodology called MONET
(a systeMatic derivatiOn of a bpmN modEl from business
process Textual description) that allows generating a BPMN
model from the textual description of a business process. To
achieve this, the BP description is split into business concepts
that achieve a specific business goal. Then, each business
concept is specified by using an enriched template [7] that
encapsulates the semantic information pertinent to the business
logic. Since there are many templates’ format, we use the Task
and Task & Support Descriptions [8] for the requirements
specification to document the business concept. This template
is enriched by business rules based on linguistic patterns to
support the derivation of all BPMN elements. To evaluate our
methodology, we examined the performance of the
transformations experimentally through the calculation of recall
and precision rates.

The remainder of the paper is organized as follows: Section
II introduces the proposed methodology MONET and discusses
the transformation definition strategy. Section III describes the
BPMN model derivation phase that covers the pre-processing
step and the transformation rules, which allow the generation of
a BPMN model from the business concept template. Section IV
evaluates the quality of the generated BPMN model by
considering the recall and precision rates. Section V illustrates
our tool MONET that implements the transformation rules and
the ontology to generate the BPMN model. Section VI
enumerates the threads to validity of our methodology. Section
VII discusses the related work and identifies the research gap
interest. Finally, Section VIII summarizes the research results
and draws the future works.

II. OVERVIEW OF MONET

MONET (a systeMatic derivatiOn of a bpmN modEl from
business process Textual description) is a methodology that
derives the BPMN model from a given textual description. Its
novelty resides in the production of a BPMN model that is
aligned to the input business concepts. More specifically, we
propose the business concept as a mean to define the textual
description of the business process. Each business concept is
enhanced by business rules that transform each linguistic
patterns to its corresponding BPMN elements. Fig. 1 depicts
our methodology for deriving the BPMN model from a textual
description. MONET followed two major phases: BPMN model
derivation phase and BPMN model evaluation phase.

The activities of the BPMN model derivation phase are
organized essentially in three steps: A pre-processing step

DOI reference number: 10.18293/SEKE2020-043

during which the Business Analyst receives a textual
description of a BPMN model in a natural language.

Figure 1. Conceptual process of MONET.

The description is cleaned based on a simple NLP technique
(Stanford CoreNLP tool) [9]. Then, the Business Analyst uses
the output to identify the business goals that are used to divide
the business process description into different business
concepts. For each business concept, the Business Analyst
prepares its textual description according to a specific template.
To handle this requirement, we rely on the use of the enriched
template presented in [7] (See Section III). Based on this
template, the Business Designer defines an ontology in the
transformation-definition step. The ontology and the linguistic
syntactic patterns are used to define the business transformation
rules (See Section III). The Business Engineer
formalizes/implements the transformation rules in the
transformation-implementation step which provides for the
automated generation of the BPMN model.

The evaluation phase (See Section IV) of our methodology
is based on calculating the recall and precision rates in order to
assess the performance of the transformations experimentally.
Once the calculation is done, a quality report is generated,
which is used by the quality interpretation activity.

III. BPMN MODEL DERIVATION PHASE

A. Natural Langage Pré-processing

We use natural language processing concepts that are syntax
parsing and semantic analysis. The syntax parsing consists on
obtaining a structured representation of the business
knowledge. Therefore, the business analyst has first to clean the
textual description by using the Stanford CoreNLP tool [9], and
second to organize it according to a specific template’s
structure. Stanford CoreNLP tool is used to obtain a more
manageable and readable text. The tool relies on the following
methods:

 Tokenization is the task of breaking a character sequence
up into pieces (words/phrases) called tokens, and
perhaps at the same time throw away certain characters
such as punctuation marks [10].

 Filtering aims to remove some stop words from the text.
Words, which have no significant relevance and can be
removed from the documents [11].

 Lemmatization considers the morphological analysis of
the words

 Stemming aims to obtain the root of derived words [12].

 Part of Speech Tagging tags for each word (whether the
word is a noun, verb, adjective, etc), then finds the most
likely parse tree for a piece of text.

 The cleaned file is then used to identify the business goals of

the business process. By business goal, we mean a collection of

business activities that are related to describe a functional

process of the BPMN model. Each goal will correspond to a

business concept.

 To guide and improve the generation of a BPMN model, the

business analyst associates to each business concept a template

that is described by a set of linguistic patterns. The template

covers the semantic and organizational information related to

the business logic. It is composed of three blocks (Fig. 2).

Figure 2. Detailed description of a business concept.

The first block gives an executive summary of the business
concept in terms of its id, name, purpose, pre-conditions,
participants involved in its execution, and its relationships with
business concept’s successors. We defined a specific structure
for the triggers, which is [<Pre-condition>] <Event

Description> [< Event Type:{timer | Message | Signal |
Conditional}>]. The event type can be explicitly specified or
implicitly extracted from its description. In addition, to
formalize the relations among participants, we created a
WordNet, which is a lexical database for all business words. It
defines a set of synonyms of a participant called Synsets and
records the relations among them such as hypernym (Type of),
meronym (part of), and antonym (opposite word). The
relationships that a business concept has with its successors
follows the linguistic pattern: [<Pre-condition>] <Current

Business Concept ID> is related <sequentially | exclusively |

parallel | inclusively>to<Business Concept ID>, where the
<Precondition> construct respects this structure <if>
condition <then>.

The second block describes the main, alternative, and error
scenarios. These scenarios respect this pattern [<Pre-

condition>] <Task#><Task descriptions> <Task Type >:

 Task Description: We defined a linguistic syntax pattern
to describe the tasks: ActionVerb |

CommunicationVerb + BusinessObject |
NominalGroup + [[to ReceiverName] | [from
SenderName]] to label the tasks. We mean by
BusinessObject any entity that describes the business
logic. The NominalGroup is a set of pre/post-modifiers,
which are centered on a Headword that constitutes the
BusinessObject. The pre-modifiers (respectively post-
modifiers) can be a noun, an adjective, or an ed/ing-
participle (respectively, a noun, an adjective, or adverb).
The VerbalGroup indicates the relationship type
between BusinessObjects. We note that the expression
between brackets is optional.

 Task Type: The task type can be "ActiveREQ",
"ActiveREP", "ActiveRET", "ActivePER" or "Passive"
representing respectively "Entry", "eXit", "Read",
"Write" or "data manipulation". "ActiveREQ"
corresponds to a task representing the act of asking for
something. "ActiveREP" corresponds to a reply sent
after asking for something.

"ActiveRET" corresponds to a task allowing data
retrieval. "ActivePER" corresponds to a task allowing
the data record. "Passive" task does not lead to an
exchange of data.

The third block illustrates the list of business objects as
result of the execution of the business concept.

For the semantic analysis of the business concepts’
template, we propose to create an ontology (See Fig. 3).

For the semantic analysis of the business concepts’
template, we propose to create an ontology. It is designed to
describe the entities related to the BPMN metamodel. The
annotation process is based on the result of the preprocessing
task and the defined template. It takes business concept
templates of the business process model and define the
similarities (the links) between concepts. We use the concept
names to produce an expanded list of equivalent or related
terms. Each term of the input textual description may be
associated with one or more entities from the ontology. To find
the similarities, we used the following matching techniques:

 Exact matching identifies the identical entities (String)
in the text and in the ontology;

 Morphological matching identifies the entities with a
morphological correspondence;

 Syntactical similarities using Levenshtein measure [13];

 Semantic matching identifies the synonyms relations
with WordNet ontology.

 Semantic matching identifies the synonyms relations
with WordNet ontology.

Figure 3. Meta-model ontology.

B. From Textual Description to BPMN Model

 We defined eighteen transformation rules. Each

transformation rule operates on the different components of the

template.

R1. Each trigger is transformed into an event that will be linked

to the first element of the current business concept. Based on

the trigger type, we add the corresponding event.

R1.1: If the trigger type describes the time, so add a Timer

Event.

R1.2: If the trigger type describes a certain condition that

must be satisfied to start a process, so add a Conditional

Event.

R1.3: If the trigger type describes any action that refers to

a specific addressee and represents or contains information

for the addressee, so add a Message Event.

R1.4: If the trigger type describes any action that refers to

anyone and represents or contains information for anyone,

so add a Signal Event.

R2. Each participant is transformed into pool or lane depending

on its type.

R2.1: If all participants are business workers, then add a

pool that has the same name of the business worker. We

note that a business worker represents an abstraction of a

human that acts within the business to realize a service.

R2.2: If one of the participants is a metonymy of

"department", "unit", "division" or "organizational unit",

then add a pool that has the same name of the participant

and transform others participants to lanes. Based on the

ontology result, if the relation between the participant

which is represented by a pool and the other one that is

represented by a lane is metonym (part of), so add a lane.

R3. Each relationship between the business concept and its

successors respects the linguistic pattern: [<Pre-condition>]

<Current Business Concept ID> is related <sequentially |

exclusively | parallel | inclusively>to<Business Concept ID>.

R3.1: If the relationship is <sequentially>, then add a

sequence flow if the last element of the current business

concept and the first element of its successor are in the same

pool. Otherwise, add a message flow.

R3.2: If the relationship is <parallel>, then add a parallel

gateway between the last element of the current business

concept and the first element of its successor.

R3.3: If the relationship is <exclusively> and there is a

precondition, then add an exclusive gateway between the

last element of the current business concept and the first

element of its successor. The precondition expression is

associated with the gateway outgoing sequence flow.

R3.4: If the relationship is <inclusively> and there is a

precondition, then add an inclusively gateway between the

last element of the current business concept and the first

element of its successor. The precondition expression is

associated with the gateway outgoing sequence flow.

R4. For each step of a BC’s scenario respecting the linguistic

pattern: [<Pre-condition>] <Task#> < Task Description >

<Task Type >, then add the following:

R4.1: If the task description is « Action verb +

BusinessObject », then add a service task that has the

same name of the pattern and a data object.

R4.2: If the task description is « Action verb +

NominalGroup », then add a service task that has the same

name of the pattern. If the pre/post-modifier is a noun that

merely represents a pure value, so there is no data object

to add. Otherwise, if the pre/post-modifier is a complex

noun (an entity) then add a data object.

R4.3: If the task description is « CommunicationVerb+

BusinessObject|NominalGroup + [[to ReceiverName(s)] |

[from SenderName]] », then add send or receive task that

has the same name of the pattern and a data object. Then,

call R4.4, R4.5, and/or R4.6.

R4.4: If the task type is ActivePER, then add an outgoing

object flow between the task and its data object/store.

R4.5: If the task type is ActiveRET, then add an ingoing

object flow between the task and its data object/store.

R4.6: If the task type is ActiveREP, then add a message

event and an outgoing message flow between the task and

message event. The message event name is the

concatenation of the Business Object extracted from the

task and the past participle of Receive.

R5. Each relationship between the task and its successors

respects the linguistic pattern: [<Pre-condition>] <Current

Task ID> is related <sequentially | exclusively | parallel |

inclusively>to<Task ID>.

R5.1: If the relationship is <sequentially>, then add a

sequence flow if the current task and its direct successor are

in the same pool. Otherwise, add a message flow.

R5.2: If the relationship is <parallel>, then add a parallel

gateway between the current task and its direct successor.

R5.3: If the relationship is <exclusively> and there is a

precondition, then add an exclusive gateway, if it does not

exist, between the current task and its direct successor. The

precondition expression is associated with the gateway

outgoing sequence flow.

R5.4: If the relationship is <inclusively> and there is a

precondition, then add an inclusively gateway, if it does not

exist, between the current task and its direct successor. The

precondition is associated with the gateway outgoing

sequence flow.

R5.5: If the relationship is <sequentially>, and there is a

<complete> construct related to a task, then add an end

event.

IV. BPMN MODEL EVALUATION PHASE

The evaluation of our methodology is based on the
experimental comparison activity that calculates for each
element type of the BPMN model, the recall and precision rates
according the following equations:

 Precision = TP/(TP+FP)

 Recall = TP/(TP+FN)

Where:

 True positive (TP) is the number of existing real
elements generated by our transformation;

 False Positive (FP) is the number of not existing real
elements generated by our transformation;

 False Negative (FN) is the number of existing real
elements not generated by our transformation.

V. MONET TOOL

To facilitate the application of our methodology, we
developed a tool for deriving the BPMN model from a given
textual description, named MONET Tool. Our tool is
implemented as an EclipseTM plug-in [14]. It is composed of
three main modules : Parser, generator, and evaluator.

 The pre-processing engine uses as input the textual description
of a BPMN model written in a natural language. It cleaned the
file using the Stanford CoreNLP tool. The cleaned file is used
by the business analyst to define manually business goals. Then,
the latter associates each business goal to its corresponding BC.
The business analyst creates the enriched template
corresponding to each BC. Fig. 4 shows the BC4’s template.

Figure 4. BC4’s Enhanced template.

Next, the analyst selects one or more BCs. If he selects one
BC, the corresponding fragment is generated. Else, the business
analyst can select all business concepts to transform.

The generator engine uses the ontology and applies the
transformation rules to derive the BPMN model. Fig. 5
illustrates the generated BPMN model: “Supply Management
Process”.

Figure 5. The generated BPMN model: “Supply Management Process”.

The obtained model is generated as follows: First, by
applying R2.2, we add a lane “PurchaseDepartmentSystem”
inside the pool “Supply Management Process”. Second, by
applying R1, we add the message event “Item and Invoice are
received” in the corresponding lane.

The transformation of the main scenario calls R4.2 and R4.5
that generate a task labelled “Check Item and Invoice”, two data
objects labelled invoice and item, and add an ingoing object
flow between the task and its data objects. Then, R4.2 produces
a task labelled Establish a payment (respectively, Put item in
stock).

By applying R5, we linked the business task “check invoice
and item” to the exclusive gateway labelled “control result”.
Then, we applied R3.3 and added the precondition related to the
default outgoing flow expressing the main scenario. By
applying R5, a parallel gateway is created between establish
payment and put item in stock.

Then, by selecting the "Check alignment" button, the
generator displays each element in all the business concepts and
their corresponding BPMN elements (See Fig. 6).

Figure 6. The generated BPMN model: “Supply Management Process”.

 If each element has its correspondence in the BPMN model,
then we can deduce that the textual description is aligned to its
model.

The BPMN quality evaluator evaluates experimentally the
BPMN model through the calculation of recall and precision
rates.

 Precision==0.86
Recall =0.95

The high scores for both ratios mean that the generated
BPMN model covers the whole domain precisely in accordance
with the experts’ perspective (See Fig. 7). We can deduce that
the performance of our methodology approaches the human
performance.

Figure 7. The elaborated BPMN model by the expert

F1
F2

F3

F4

VI. THREATS TO VALIDITY

In our study, threats to validity are relevant to internal
validity and external validity [15].

The internal validity threats are related to four issues: The
first threat to validity focus on who write the textual description
expressing the functional requirements and which template
have been used to describe the functional requirements. Expert
should well write these requirements based on a particular style
to generate a high quality of a BPMN model. The Second
problem is addressed when there is a diversity of description of
the requirements. In this case, which one can be used to describe
the functional requirements? The third issue is related to the
impact of an error-prone generation of a BPMN model. This
case may lead to misalignment and inconsistency between the
textual description and business process model.

The external validity threats deal with the possibility to
generalize this study results to other case studies. The limited
number of case studies used to illustrate the proposed
methodology could not generalize the results. Automation of
our methodology needs to be considered even it is easy to use

manually given its simplicity.

VII. RELATED WORK

Several methods explicitly emphasis on the generation of
process models from different types of text documents. The
authors of [6] presented an automatic approach to generate
BPMN models from natural language text, where they faced the
complexity of natural language.

In [1], the authors present an automated approach for the
extraction of declarative process models from natural language.
They developed a tailored Natural Language Processing (NLP)
techniques that identify activities and their inter-relations from
textual constraint descriptions. By considering the semantics of
these extracted components, the authors generate declarative
constraints aiming to capture the logic defined in the textual
description.

In [16] the author uses natural language processing with a
focus on the verb semantics, and creates a novel unsupervised
technique TextProcessMiner that discovers process instance.

In summary, many researchers studied the alignment
between BPMN model and textual description. However, they
don’t cover all BPMN elements.

VIII. CONCLUSION

This paper proposed a transformation-based approach to
generate a business process model from its textual description.
It provides for the generation of a BPMN model that is aligned
to the input business concepts. Compared to existing works, our
methodology has the merit of accounting for all BPMN
elements and their relationships. To do so, our methodology
used the enriched template as the starting point for deriving
BPMN model. Then, it defines transformation rules that
transform each linguistic patterns to its corresponding BPMN
elements. The methodology has been implemented. An
evaluation of a business process model shows that our
methodology approaches the expert performance and generates
BPMN models respecting the quality measurements. Although

the current results are very promising, our technique still
requires further empirical tests.

 We intend to generalize the methodology in order to derive

BPEL from the textual description as well as the information

system’s design models from the textual description and check

the alignment between all generated models: BPMN model and

information system design models.

REFERENCES

[1] H. Van der Aa, C.D.Ciccio, H. Leopold, H.A. Reijers, “Extracting
Declarative Process Models from Natural Language”, 31st Conf.
Advaneced Information Systems Engineering, Italy pp. 365-338, 2019.

[2] M. Dumas, M. La Rosa, J. Mendling, H.A. Reijers, “Fundamentals of
Business Process Management”. Springer, ISBN, pp. 1-527, 2018.

[3] S. Zaheer, K. Shahzad, R. M. A Nawab, “Comparing Manual- and Auto-
Generated Textual Descriptions of Business Process Models”, 6th Conf.
on Innovative Computing Technology, Ireland, August. 2016.

[4] Leopold, H., H. van der Aa, F. Pittke, M. Raffel, J. Mendling, H.A.
Reijers, “Searching textual and model-based process descriptions based
on a unified data format”, International Journal of Software and system
Modeling. 18, No.2, pp. 1179-1194, 2019.

[5] B. Aysolmaz, , H. Leopold, H.A. Reijers, O. Demirörs, “A semi-
automated approach for generating natural language requirements
documents based on business process models”, International Journal of
Information & Software Technology, Vol 93, pp. 14-29, 2018.

[6] F. Friedrich, J. Mendling, F. Puhlmann, F., “Process model generation
from Natural Language Text”, 23th International Conference on Advanced
Information Systems Engineering, LNCS in Computer Science book
series, Vol. 6741, London, June, pp. 482–496, 2011.

[7] W. Khlif, A. Sallemi, M. Haoues, H. Ben-Abdallah, “Using COSMIC
FSM Method to Analyze the Impact of Functional Changes in Business
Process Models”, 13th International Conference on Evaluation of Novel
approaches to software engineering, Portugal, March, 2018.

[8] S. Lauesen, “Software Requirements: Styles and Techniques”, Addison-
Wesley, London, 2002.

[9] CD. Manning, M. Surdeanu,, J. Bauer, J., Jenny Rose J.R. Finkel,
S.Bethard, D. McClosky, “The Stanford CoreNLP Natural Language
Processing Toolkit”, The 52nd Annual Meeting of the Association for
Computational Linguistics, June 22-27, pp.55-60. 2014.

[10] J. Webster, C. Kit, “Tokenization as the initial phase in nlp”, 14th
conference on Computational linguistics, Association for Computational
Linguistics, Vol.4, pp. 1106-1110, 1992.

[11] Saif, H., Fernandez, M., He, Y., Alani, H. , “On stopwords, filtering and
data sparsity for sentiment analysis of twitter”, the 9 th Inter. Confe. on
Language Resources and Evaluation, European Language Resources
Association, Iceland, May 26-31, pp. 810-817, 2014.

[12] J.B.Lovins, “Development of a stemming algorithm”, Mechanical
Translation and Computational Linguistics, Vol 11, No.1-2, june, pp. 22-
31, 1968.

[13] V.I.Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals”, journal of Soviet physics doklady, Vol. 10, pp. 707-710,
1966.

[14] Eclipse Specification. (2011), Available from: http://www.eclipse.org/

[15] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
“Experimentation in Software Engineering: An Introduction”, 2000.

[16] E.V. Epure, P. Martín-Rodilla, C. Hug, R. Deneckère, C. Salinesi, 2015.
“Automatic process model discovery from textual methodologies”, 9th
IEEE International Conference on Research Challenges in Information
Science, Greece, May 13-15, 2015.

http://dblp.uni-trier.de/pers/hd/a/Aa:Han_van_der
https://dblp.org/pers/hd/c/Ciccio:Claudio_Di
https://dblp.org/pers/hd/l/Leopold:Henrik
https://dblp.org/pers/hd/r/Reijers:Hajo_A=
https://dblp.org/pers/hd/a/Aa:Han_van_der
https://dblp.org/pers/hd/p/Pittke:Fabian
https://dblp.org/pers/hd/r/Raffel:Manuel
https://dblp.org/pers/hd/m/Mendling:Jan
https://dblp.org/pers/hd/r/Reijers:Hajo_A=
https://dblp.org/pers/hd/r/Reijers:Hajo_A=
http://dblp.uni-trier.de/pers/hd/l/Leopold:Henrik
http://dblp.uni-trier.de/pers/hd/r/Reijers:Hajo_A=
http://dblp.uni-trier.de/pers/hd/d/Demir=ouml=rs:Onur
http://dblp.uni-trier.de/db/journals/infsof/infsof93.html#AysolmazLRD18
https://link.springer.com/bookseries/558
https://dblp.uni-trier.de/pers/hd/s/Surdeanu:Mihai
https://dblp.uni-trier.de/pers/hd/b/Bauer:John
https://dblp.uni-trier.de/pers/hd/f/Finkel:Jenny_Rose
https://dblp.uni-trier.de/pers/hd/b/Bethard:Steven
https://dblp.uni-trier.de/pers/hd/m/McClosky:David
http://www.eclipse.org/
https://dblp.org/pers/hd/m/Mart=iacute=n=Rodilla:Patricia
https://dblp.org/pers/hd/h/Hug:Charlotte
https://dblp.org/pers/hd/d/Deneck=egrave=re:R=eacute=becca
https://dblp.org/pers/hd/s/Salinesi:Camille

