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Abstract—In traditional software defect prediction,
previous researches mainly focused on manually design-
ing complex features and building classifiers based on
features. However, such traditional features often fail
in capturing rich syntactic and semantic information
in programs. Thus, an effecient prediction model is
unable to be constructed in some cases. In this study, a
framework called semantic convolutional auto-encoder
(SCAE) is proposed to effectivelly extract semantic
features from source code. Token vectors are extracted
from Abstract Syntax Trees (ASTs) of programs and
then encoded as numerical vectors. Convolutional auto-
encoder (CAE) can learn semantic features from the
numerical vectors by decreasing the reconstruction
error between input and output. After that, the CAE-
based features are utilized to train a classifier. To
enhance the transferability of CAE-based features for
different projects, we perform domain adaptation by
matching kernel embedding of layer representations
across domains in reproducing kernel Hilbert spaces.
Extensive experimental results verify that the SCAE
yields referential methods on ten open-source projects.

Keywords—Software defect prediction, Transfer
learning, Semantic feature learning, Convolutional
auto-encoder

I. Introduction
As one of the research hotspots in software engineering,

software defect prediction (SDP) technology can detect
potential bugs in an application, then help developers
assign limited testing resources and effectively enhance
software reliability. An ideal defect prediction model can
accurately determine whether there are defects in pro-
gram, and thus plays an important role in improving
software quality, shortening the development cycle, and
decreasing maintaining costs.

Traditional software defect prediction (SDP) technolo-
gies utilize features representing software complexity and
software scale [1] to find the potential defects in program
such as Halstead metric [2], which was based on the
number of operators and operands in program, and Mc-
Cabe metric [3], which was calculated by loop complexity.
Besides, CK metric [4] and other object-oriented met-
rics [5] were also adopted for defect prediction. Previous
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researchers mainly focused on elaborately designing and
choosing handcrafted features that reflect the software
characteristic for better performance of defect prediction.
Asad et al. [6] evaluated the quality of software design and
presented several coupling metrics for defect prediction.
Conducting an empirical study for 32 feature selection
methods, Xu et al. [7] showed that the selection of features
has great effects on classification performance.

A key issue in SDP is the extraction of the syntax
and semantic information from program. Deep learning
technique is also used in the latest studies. Wang et al. [8]
and Li et al. [9] leverage deep belief network (DBN) and
convolutional neural network (CNN) for semantic feature
generation respectively. However, compression of higher
features is often accompanied by the information loss,
which may cause a bad effect on making classifications.
As an unsupervised method in deep learning, auto-encoder
(AE) can automatically learn features from a large amount
of unlabeled data and is widely used in various tasks
[10], [11]. The convolutional auto-encoder (CAE) is an
effective variant of the basic auto-encoder, and can reserve
as much program semantics as possible by reconstructing
input. The convolution and pooling operations in CAE can
capture local patterns more effectively during the period
of feature generation. When transfering knowledge from
a labeled source domain to an unlabeled target domain,
different domains may exhibit distributional discrepancy
in transfer learning, which caused cross-domain knowledge
adaptation problems [12]. In cross project defect predic-
tion, distribution discrepancy between different projects
also hinders the transerability of semantic feature, and
degrades the performance of classifier.

In this work, a framework named semantic convolu-
tional auto-encoder (SCAE) is developed, which uses the
convolutional auto-encoder to effectively capture semantic
information from ASTs of program. Specifically, we first
parse source code into ASTs, then extract AST node to
form token vectors and map token into number according
to the mapping table. The embedded numerical vectors
are fed into convolutional auto-encoder. By decreasing the
reconstruction error between input and output, the CAE
model can automatically learn high-level representation of
input. To bridge the substantial distributional discrepancy



between different projects, a domain confusion loss based
maximum mean discreapancy (MMD) is introduced in
feature extraction. Enhancing the semantic feature trans-
feribility generalizes the model of SCAE to the domain
adaptation scenario. Evaluating the proposed approach
on ten open-source java projects, experimental results
indicate that the SCAE can improve the performance on
both within project defect prediction (WPDP) and cross
project defect prediction (CPDP).

This work makes the following contributions:
• To capture semantic information hidden in ASTs, con-

volutional auto-encoder is utilized for a better feature
generation in defect prediction by reconstructing the
input and output.

• Considering the domain discrepancy, we optimized
the model of CAE by minimizing the distributional
discrepancy between source and target projects to
obtain transferable semantic features.

• For WDDP and CPDP, extensive experiments are
conducted to verify the effectiveness of our method,
and the results shows that our approach can enhance
the classification performance of SDP.

The rest of this paper is organized as follows. The
related work of SDP is described in Section II. Section
III illustrates the proposed approach and the experiment
setup is given in Section IV. The proposed approach is
evaluated and the experimental results are analyzed in
Section V. Section VI presents the threats to validity. In
Section VII, we present the conclusion of this work and
possible directions in the future.

II. Related work
Over the past few decades, software defect prediction

becomes a hotspot research area in software engineering
and there are many researches in the literature [13], [14].
Traditionally, most researchers mainly leverage traditional
features for defect prediction, such as Halstead features [2],
McCabe features [3], CK features [4], etc. The selection of
features plays a vital role in classification performance [7]
and Jacob et al. [15] also proposed a method to identify
and remove redundant features for SDP. Ni et al. [16]
investigated multi-objective features selection for SDP and
proposed a method taking feature selection and construc-
tion of prediction models into account. Moreover, different
algorithms of classification in machine learning are also
utilized to build classifiers for defect prediction. Support
Vector Machine [17], Logistic Regression [9], Naive Bayes
[18] were leveraged to build classification models in SDP
respectively. Researchers also build prediction models on
CPDP, in which the training set and the test set are from
different projects. Turhan et al. [19] took the distance of
different data into account, and proposed nearest neighbor
filter to remove irrelevant instances in source project.
Considering the difference of data distribution, Nam et
al. [20] presented an approach, i.e. TCA+, using Transfer
Component Analysis (TCA) to make the source and target

project distributions similar in feature space. To improve
CPDP, Qiu et al. [21] constructed an ensemble classifier
for the target project, which is trained on multiple com-
ponents of source project data.

Recently, several deep learning techniques are also ap-
plied to build models for defect prediction. Wang et al.
[8] utilized a deep learning technique, i.e. Deep Belief
Network, to learn the semantic representation in source
code of program. Convolutional Neural Network were
leveraged [9] for defect prediction, and achieved significant
results on seven open-source projects in terms of F1-score.
Liang et al. [22] also employed Long Short Term Memory
(LSTM) network in defect prediction. Although previous
studies [8], [22] utilized neural network to learn nonlinear
high-dimensional features for CPDP, but they overlooked
the impact of domain discrepancy existing in different
projects. Besides, convolution and pooling operations were
also taken advantage of [9], but the proposed method in
this work mainly has the following two differences. Firstly,
the CAE does not require the information of label in
the period of semantic feature generation. Secondly, we
perform extensive experiments for CPDP in this work.

III. The proposed approach
As shown in Figure 1, the proposed approach consists of

the following major three steps: 1) Parsing source code into
ASTs; 2) Mapping tokens and embedding vectors; 3) Using
convolutional auto-encoder to generate high-level semantic
features and making classifications.

A. Parsing source code
The proposed approach takes source code files as input,

and we need to transform the input to learn semantic
information. It is proved that ASTs can be successfully
applied to various tasks. In this paper, we firstly transform
source code into ASTs so as to perform the following
steps. Source files are parsed into ASTs and appropriate
token nodes are selected from ASTs to generate token
sequences. Following this work [9], four types of AST nodes
are mainly chosen for both WPDP and CPDP.

B. Encoding Tokens and word embedding
In part III-A, each source file is parsed into a token

sequence. Since the proposed model requires numerical
vectors as input, each token sequence needs to encoded
as numerical vectors based on the mapping table. Specif-
ically, a mapping relation between tokens and integers is
constructed, which means that for every token in token
sequences, it has a unique integer identifier. According to
the mapping table, the token sequence can be converted
into an integer vector. In this way, different integer vectors
may differ from each other in length, so zero is appended
at the end of integer vectors to keep the same length
with the longest vector. Following the work [8], infrequent
tokens that occurs less than three times are also filtered
out during this process. Word embedding is also performed
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Fig. 1. The framework of SCAE

before training the model. It is difficult to draw the
distance of different AST nodes only using an integer
index. Word embedding technique maps a token to a fixed-
length vector, and tokens in similar context tend to have
similar representations. Here, the embeded size is chosen
as 30, and each token is mapped to a vector whose length
is 30 on the real-number field.

Similar to other classification tasks in machine learning,
there also exists the issue of class imbalance in SDP.
Specifically, the number of defective instances is less than
the non-defective instances in a project, which makes the
classifier tend to predict non-defective. Data sampling
technique is also used in this work by randomly duplicating
the minority class instances, i.e. Random Over-Sampling,
to obtain more balanced training samples.
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Fig. 2. Overview of CAE-based feature generation for CPDP

C. Building convolutional auto-encoder and making pre-
diction

1) Training CAE for WPDP: Comparing with basic
auto-encoder, CAE integrates the convolution and pooling
operations for the advantage of CNN in feature extraction
to better capture the syntactic and semantic information
in program. In particular, CAE includes an encoder and
a decoder. The encoder consists of a convolutional layer,

a pooling layer, a fully-connected layer, and the decoder
also includes an unpooling layer, a deconvolutional layer.

The embedded vector x ∈ Rl×e, where l and e are
the length of input and the embedding size respectively,
passes through the convolutional layer and the pooling
layer and is encoded as the feature y = fe(x) ∈ Rh, where
h denotes the feature size. During the step of decoding, the
hidden representation y also moves through unpooling and
deconvolutional layer, and is decoded as x̃ = fd(fe(x)).
The reconstruction error, Jae =

∑n
i=1 ∥x− x̃∥ 2

2, can be
calculated by the input x and output x̃. In addition, a reg-
ularization item Jwd is added to avoid overfitting during
model training. The objective function to be minimized is
shown in Equation 1, where W , b denote the parameters in
CAE and factors λ, γ are the tradeoff parameters for the
Jwd penalty and Jmmd penalty respectively. In WPDP, we
do not perform the domain adaptation, which means that
the regularization hyperparameter γ is set as 0.

min
W,b

J (W, b) = Jae + λJwd + γJmmd

=
1

2ns

ns∑
i=1

∥x− x̃∥ 2
2 + λ

∑
∥ω∥ 2

2 + γMMD(Xs, Xt)

(1)
CAE is an unsupervised learning method, and cannot

directly be utilized for classification tasks. Therefore, an
additional classifier needs to be constructed. After feature
extraction, we use the CAE-based features of training set
with labels to learn a classifier, and test its performance
on the test set. In this work, the algorithm of Logistic
Regression is utilized to established the classifier for both
WPDP and CPDP.

2) Training CAE for CPDP: To promote transferability
of learned features, we need to reduce the distribution
difference between source and target projects. By mapping
distribution Xs and Xt to a reproducing kernel Hibert
space Hk, maximum mean discreapancy (MMD) measures
the mean value of these two distributions in the Hk. Figure
2 shows the CAE-based feature generation for CPDP, and



the MMD loss, i.e. Jmmd, is to be minimized during model
training. The MMD distance can be resolved as follows,

MMD(Xs, Xt) =
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where ϕ(·) is a nonlinear feature mapping function on the
reproducing kernel hilbert spaces Hk. The most important
property is that MMD(Xs, Xt) = 0 when Xs = Xt. The
characteristic kernel function k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩
calculates the dot product of xi and xj in Hk. In
this study, we adopted Gaussian kernel: k(xi,xj) =
exp(−∥xi − xj∥2 /2σ), and σ is the kernel width.

IV. Experiments
This section describes the experiment setup in detail.

Extensive experiments are carried out on ten open source
project (listed in Table I) to evaluate effectiveness of the
proposed approach. Here are two research questions:

• RQ1: Does the semantic features extracted by the
proposed approach outperforms traditional features in
WPDP?

• RQ2: Does the distribution adaptation method can
improve the performance of CPDP?

TABLE I
The description of projects from PROMISE repository

Project Name Versions Avg. files Avg. Bug Rate(%)

ant 1.6, 1.7 521 21.4
camel 1.4, 1.6 888 18.5
ivy 1.4, 2.0 284 7.2
jedit 4.0, 4.1 269 21.2
lucene 2.2, 2.4 272 60.7
poi 2.5, 3.0 391 63.9

synapse 1.0, 1.1 190 20.0
velocity 1.5, 1.6 218 49.1
xalan 2.4, 2.7 759 61.5
xerces 1.3, 1.4 370 35.0

A. Dataset
To evaluate the performance of the approach, experi-

ments are performed on ten different open-source projects
from the PROMISE repository which has been used in
prior studies [8], [22]. Table I shows the necessary infor-
mation about projects in experiments, including project
name, project versions (including the training set and
the testing set), the number of files and the bug rate.
Traditional features for these projects are also widely used
in conventional defect prediction [13], [20], [21]. Besides,
the projects in the dataset have different data sizes, i.e.

different numbers of files and defect rates, and we assure
that it can verify the generalization of the model.

B. Evaluation metric
In this study, F1-score (also F-measure) is adopted

to assess the performance of prediction. As a composite
measure, F1-score is the harmonic average of precision and
recall, which has been widely used in binary classification.

C. Baseline of methods
The proposed approach is compared with the following

methods, LR based on 20 traditional features, and other
two deep learning methods, including DBN and CNN.
Besides, NNFilter, TCA and TCA+ are also performed for
CPDP to verify the validity of domain adaptation method.

• LR: A logistic regression classifier is built based on
20 traditional features.

• DBN [8]: This method utilizes Deep Belief Network
to capture semantic information in source code.

• CNN [9]: Supervised Convolutional Neural Network
is utilized to extract semantic features from ASTs of
programs.

• NNFilter [19]: This method uses KNN algorithm to
select instance from multi source projects .

• TCA [23]: Transfer Component analysis, the state-
of-the-art method in transfer learning.

• TCA+ [20]: This method optimizes the normaliza-
tion process of TCA for enhancing CPDP.

When implementing these two deep learning algorithms,
their optimal parameters are selected according to their
papers and we ensure that the experiments are conducted
with the same data processing for a fair comparison,
including parsing source code into ASTs, mapping tokens,
as well as data imbalance preprocessing. The proposed
model is built from a training set using Adam as the
optimizer. Same network architectures and parameters are
adopted when implementing CAE. We set the epoch size
as 30, the batch size as 16, the filter size as 3, the number
of filter as 10, the number of nodes as 20.

V. Results and analysis
This section presents the results of experiments con-

ducted on PROMISE dataset. According to analysis of the
results, we answer the two questions raised in Section III.

RQ1: Does the semantic features extracted by
the proposed approach outperforms traditional fea-
tures in WPDP?

With 20 traditional features, a classifier is constructed
using Logistic Regression algorithm for WPDP. We train
the model with the instances from an old version of
project, and make classifications on a new version of the
same project. Additional two deep learning methods, i.e.
DBN and CNN are also performed to extract semantic
features. Conducting experiments on ten projects as listed



Fig. 3. F1-scores of traditional method using LR and deep learning methods using DBN, CNN, CAE respectively.

in Table I, these three methods are compared with our
method, built on CAE-based features using LR algorithm.

As we can see from Figure 3, our approach can obtain
higher F1-scores in most cases. Taking project synapse as
an example, we use 1.0 version for model training, 1.1
version for testing. The F1-score are respectively 0.464,
0.336, 0.289, 0.556 for LR, DBN, CNN and CAE, and the
CAE can obtain higher F1-scores than other methods on
project synapse. The average of F1-scores over ten projects
are 0.488, 0.435, 0.426 and 0.539 for these four methods,
and CAE outperforms 10.36%, 23.94%, 26.67% than LR,
DBN and CNN on F1-score respectively.

RQ2: Does the proposed distribution adaptation
approach for CAE can improve the performance of
CPDP?

In CPDP, the domain adaptation is performed on CAE,
and we call it CAE+. CAE and CAE+ are compared with
other three cross-project defect prediction techniques, in-
cluding NNFilter, TCA and TCA+. Different from WPDP
in RQ1, we only use the new version of projects for CPDP.
For ten projects from PROMISE dataset, each CPDP task
takes a project from these projects as a target project,
and another project as source project. Therefore, 90 sets
of CPDA task are constructed for each method.

Giving a target project, 9 CPDP tasks can be estab-
lished respectively using the remaining 9 projects, and
we calculate the average F1-score for each target project.
Table II illustrates the average results of our methods
and other compared approaches on PROMISE dataset.
Similarly, each row in the table represents the average of
F1-scores of a project, and the best result are also maked
in bold. The next-to-last row reports the w/t/l, which
means that our CAE+ wins w projects, ties t projects,
loses l datasets, versus other methods at coressponding
column. Also taking a project, e.g. xerces as an exam-
ple, the highest F1-score is 0.608 achieved by CAE+.
Compared with NNFilter method, CAE+ wins 9 projects,
ties 0 projects, loses 1 projects, and compared with TCA
method, CAE+ wins 8 projects, ties 0 projects, loses 1
projects respectively.

As Table II reports, the F1-score of CAE and CAE+ is
0.503 and 0.521, which indicates that our proposed models
obtains better performances for CPDP. The CAE+ out-
performs LR, NNFilter, TCA, TCA+, DBN, CNN, and
CAE by 8.8%, 11.3%, 4.4%, 13.8%, 17.9%, 26.2%, and
3.6% respectively. The results also proves that, in general,
domain adaptation method can enhance the performance
of CPDP.

VI. Threats to validity
A. Implementation of compared methods

The proposed model is compared with other deep learn-
ing methods, DBN [8] and CNN [9]. These two methods
are reproduced according to their papers. However, we
can not guarantee that all the implementation details
have been taken into account. Considering the randomness
involved in batch shuffle, we repeated the experiment ten
times, recording the average of F1-score.

B. Pamameter selection
During the training of the proposed model, we adjust

the hyperparameters of CAE to get promising perfor-
mance. Considering the large space of parameters, experi-
ments cannot be done on all combinations of parameters,
which may make a difference in experimental results.

VII. Conclusion
In this work, a framework of SCAE is proposed to

extract semantic features from source code for defect pre-
diction. In particular, token nodes are deliberately selected
from ASTs of program. Each token in token sequence is
mapped into an integer, and then word embedding is per-
formed on numerical vector. The data then are fed into the
convolutional auto-encoder to capture the intermediate
representation of syntactic and semantic information of
source code. Considering the distributional discrepancy
of semantic representations between source and target
project, an additional domain loss item is introduced dur-
ing feature generation in CPDP. Conducting experiments
on ten open-source PROMISE projects, the results prove



TABLE II
Average cross-project defect prediction results on PROMISE dataset

Target LR NNFilter TCA TCA+ DBN CNN CAE CAE+
ant 0.49 0.487 0.464 0.387 0.336 0.38 0.483 0.495

camel 0.348 0.348 0.343 0.341 0.312 0.278 0.32 0.349
ivy 0.27 0.275 0.265 0.21 0.176 0.227 0.291 0.263
jedit 0.452 0.445 0.448 0.211 0.337 0.378 0.445 0.471
lucene 0.603 0.592 0.664 0.646 0.582 0.528 0.644 0.646
poi 0.611 0.605 0.627 0.602 0.625 0.573 0.699 0.675

synapse 0.49 0.478 0.456 0.468 0.396 0.384 0.501 0.494
velocity 0.53 0.493 0.56 0.514 0.435 0.429 0.542 0.564
xalan 0.49 0.49 0.64 0.629 0.663 0.545 0.643 0.647
xerces 0.509 0.47 0.523 0.576 0.562 0.405 0.466 0.608

CPCAE:(w/t/l) 9/0/1 9/0/1 8/0/2 9/1/0 9/0/1 10/0/0 7/0/3
Average 0.479 0.468 0.499 0.458 0.442 0.413 0.503 0.521

that the proposed SCAE can improve performance on
both WPDP and CPDP in terms of the evaluation metric,
i.e. F1-score. In future work, we plan to explore other
domain adaptation methods for CPDP, and our future
investigation involves applying the proposed approach to
more projects.
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