
Mining and Predicting Micro-Process Patterns of
Issue Resolution for Open Source Software Projects

Yiran Wang‡, Jian Cao*‡ and David Lo§
‡Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China

§School of Information Systems, Singapore Management University, 178902, Singapore
Email: ‡{wangyiran33,cao-jian}@sjtu.edu.cn, §davidlo@smu.edu.sg

Abstract—Addressing issue reports is an integral part of open
source software (OSS) projects. Although several studies have
attempted to discover the factors that affect issue resolution,
few pay attention to the underlying micro-process patterns of
resolution processes. Discovering these micro-patterns will help
us understand the dynamics of issue resolution processes so that
we can manage and improve them in better ways. Of the various
types of issues, those relating to corrective maintenance account
for nearly half hence resolving these issues efficiently is critical for
the success of OSS projects. Therefore, we apply process mining
techniques to discover the micro-patterns of resolution processes
for issues relating to corrective maintenance. Four and five typical
patterns are found for the identification stage and solving stage
of the resolution processes respectively. Furthermore, it is shown
that the consequent patterns can be predicted with a certain
degree of accuracy by selecting the appropriate features and
models. Furthermore, we make use of the pattern information
predicted to forecast the issue lifetime and the results show that
this information can also improve the accuracy in the earlier
observation points. At the same time, pattern predictions provide
good interpretability to the forecast of issue lifetime.

Index Terms—issue resolution, micro-pattern, process mining,
issue pattern prediction, issue lifetime prediction

I. INTRODUCTION

Issue registering, tracking and resolution are very important
in open source software (OSS) projects [1]. Previous studies
show that problems of issue overstocking may arise over
time [2] and a considerable portion of issues in GitHub
are pending for months or even over a year [3]. Therefore,
effective strategies should be implemented to improve the issue
resolution process such as prioritizing issues to be resolved
and allocating resources for each issue clearly in practice and
more importantly, we should understand the influential factors
behind successful issue resolution processes.

As a collaboration process, issue resolution consists of
multiple actions that occur in order and involves several
persons. It is beneficial for us to understand issue resolution
from the process view. For example, bottlenecks, the critical
paths and the most frequent paths can be identified and studied
when issue resolution is modeled as a process. Predicting the
resolution time is not sufficient to understand and manage the
dynamic issue resolution process that is full of uncertainties.
Therefore, we aim to provide a richer prediction on the
ongoing process.

DOI reference number: 10.18293/SEKE2020-031
*Corresponding Author

Issue resolution is essentially a problem-solving process and
follows a typical problem-solving procedure that includes steps
consisting of defining the problem, brainstorming the ideas,
deciding on a solution, implementing a solution and reviewing
the results. However, these steps can only roughly describe the
issue resolution process and in practice, there are many details
for each step. The detailed typical process models for different
steps or stages are called micro-process patterns or micro-
patterns in this paper. On open source hosting platforms such
as GitHub, different types of events, including development
events and interaction events, are recorded in event logs. We
can mine micro-patterns for issue resolution processes from
these event logs by applying process mining techniques [4].

The value of process mining in OSS projects, as been de-
scribed in [5], is that it not only reveals the variety of processes
followed by open source communities, it also helps standardize
or improve core activities. Unfortunately, no research has
been conducted on the topic of process pattern mining and
prediction on issue resolution processes yet. Knowing typical
micro-process patterns help developers, managers and stake-
holders gain a deeper understanding on the processes of issue
resolution. It would be extremely helpful to risk assessment,
work prioritization and resource allocation. For example, some
patterns cost more time than others so that OSS project
members can take actions to guide an issue resolution process
to follow more efficient patterns to intentionally speed up the
resolution process. At the same time, micro-process pattern
information can also be a useful feature for the resolution
time prediction model and provides better interpretability to
the prediction results.

There are different types of issues and they may have very
different micro-process patterns. In this paper, we focus on
the issues relating to the maintenance activities. Moreover, the
ISO/IEC 14764 standard [6] defines four types of maintenance
activities spanning the different motivations that software engi-
neers have while undertaking changes to an existing software
system. Issues can be mapped to these maintenance activities
through a classification model [7]. In this paper, we only
focus on issues relating to corrective maintenance, which
corresponds to bugs and accounts for nearly half of all issues.

Therefore, in this paper, we aim at answering the following
research questions:

• RQ1: What are the frequent micro-process patterns of
resolution processes of issues relating to corrective main-

tenance in OSS projects?
• RQ2: Is it possible to predict which micro-process pattern

will appear during the issue’s lifetime?
• RQ3: Is pattern information useful for issue lifetime

prediction?

In order to answer these questions, firstly, we mine frequent
process patterns in different stages of issue resolution using
process mining techniques. The distributions and characteris-
tics of these patterns in various projects are analyzed. Then, we
construct models for pattern prediction during issue lifetime
using dynamic and static features. Finally, we try to utilize the
pattern probability predicted as an additional feature for issue
lifetime predictions.

II. RELATED WORK

Influencing factors for issue resolution time [2], [7]–[9],
bug-fixing time prediction and issue lifetime prediction [10]–
[19] have received significant attention in recent years. Weiss
et al. [11] predict the time spent on fixing an issue based
on the average time of its similar issues. Al-Zubaidi et al.
[19] use multi-objective search-based approach to estimate
issue resolution time which makes estimation models accurate
and simple simultaneously. Giger et al. [12] and Rees-Jones
et al. [14] present decision-tree-based models to predict bug
fix time while Panjer et al. [13] utilize logistic regression
models, Zhang [15] utilize kNN-based model. Kikas [10]
predict issue resolution time based on random forest models
using dynamic and contextual features. In this work, we also
construct issue lifetime prediction models but our emphasis is
to show an improvement in the predictors’ performance when
calculating the probability of micro-process patterns predicted
into features.

Process mining is now considered to be in a mature phase
allowing its application to extract knowledge from event logs
to a variety of sectors. Applying process mining in open-
source software communities has seldom been studied [20]–
[23]. [21]–[23] uses the characteristics of process mining to
perform conformance checks to study the differences between
the actual bug life cycle and the standard process on the guide.
However, these studies are confined to extracting the overall
process model and none of them mine internal micro-process
patterns further. In contrast, we try to discover the micro-
process patterns in the issue resolution process.

III. MINING FREQUENT MICRO-PATTERNS OF THE ISSUE
RESOLUTION PROCESS

In this section, we answer RQ1. In order to mine the
micro-process patterns of issue resolution, we need to observe
the micro-processes of issues. The events extracted through
GitHub APIs record what has happened in an issue resolution
process. We perform pre-processing on the raw data and filter
some helpful and common events which are shown in I to
make an event log made up of 38978 records and apply process
mining algorithms on it.

TABLE I
EVENTS OF ISSUES USED IN THIS STUDY

Event name Description
Created The issue was created by the actor.

Assigned The issue was assigned to the actor.
Labeled A label was added to the issue.

Mentioned The actor was @mentioned in an issue body.
Referenced The issue was referenced from a commit message.
Renamed The issue title was changed.
Reopened The issue was reopened by the actor.

Closed The issue was closed by the actor.

A. Dataset

In this study, we collect issue data using its public APIs1

from GitHub and only closed issues updated at or after
January 1, 2017 are included. The ten popular projects used
in this study vary in domain, scale and programming language
and they all provide dynamic platforms for bug reporting,
discussing and fixing.

Since we focus on issues relating to corrective maintenance,
issue reports must be classified first. We rely on labels applied
to each issue report in GitHub to identify their maintenance
type. Labels used by developers in GitHub are reliable since
they are applied by the persons who actually perform the main-
tenance activity [7]. Finally, 4863 issues relating to corrective
maintenance are collected and included in the dataset. We
perform a preliminary analysis on the duration distribution for
the dataset and find that the majority of issues are closed in
a short period while few issues are pending for a long time,
which appears to be a typical long-tail distribution.

B. Approach

The main approach we use to discover micro-processes is
process mining. This technique has been successfully applied
to distill a structured process description from a set of real
executions in practice [24]. Its main objective is to discover
processes, do conformance checking and process improve-
ment. Many algorithms can be applied to generate process
models like α–algorithm, heuristic miner, genetic algorithm. In
accordance with these methods, process mining automatically
discovers fact-based process models out of the raw data.
Therefore, we use process mining to discover micro-process
patterns in issue resolution processes. Celonis2 as a mature
process mining tool is used in this work.

C. Findings

The original extracted model is very complex and difficult
to read and understand, so we remove a few activities and
connections with low frequency to improve the readability of
the model. Figure 1 shows the process model with 97.3%
activities and 87.2% connections covered. Dashed arrows
indicate connections from the Process Start or to the Process
End. It can be easily found that the most common process
path is :

1https://developer.github.com/v3/
2https://academiccloud.celonis.com

Fig. 1. The process model with 97.3% activities and 87.2% connections
covered

created − > labeled:bug − > closed
This indicates that most issue resolution processes start with

‘created’ and end with ‘closed’, via ‘labeled:bug’ except for
those which still have activities after the issue is closed. For
this reason, the whole process model can be divided into two
stages by the ‘labeled:bug’ activity:

1) The First Stage (Identification Stage): ‘created’ to ‘la-
beled:bug’: In this stage, project contributors inspect the
issue in order to know the environment and details with
or without further conversations with the issue authors.
If they judge the issue is a bug rather than a misuse,
they will assign the bug label to the issue for further
fixing.

2) The Second Stage (Solving Stage): ‘labeled:bug’ to
‘closed’: In this stage, when an issue is confirmed as
a bug, the actors try to fix it. It may finish directly
without any activities, or a contributor or a team may
be @mentioned or assigned to fix the found bug, and
commits may be made to fix the bug.

Compared with the general problem solving process model,
the first stage roughly corresponds to the step of defining the
problem while the second stage corresponds to brainstorming
the ideas, deciding on a solution, implementing a solution
and reviewing the results. For issue resolution processes in
OSS projects, it is very difficult if not impossible to divide
the second stage into different steps since these steps are
interwoven. Figure 2 shows the process models for the two
stages, respectively.

Table II presents the most frequent micro-process model
variances which exceed 5% of all for each stage. In general,
Stage 1 costs much less time than Stage 2, which indicates
that it is easier to confirm a bug than to fix it. The bottleneck
period usually occurs in Stage 2.

In each stage, the durations differ clearly between patterns.
It should be noted that activities with the circle arrow()
mean the resolution process goes through the activity twice
or more times. The reason why we don’t merge it into the
process model that goes through the activity only once is
that their durations of them differ greatly (See Table II). For
example, the third pattern of the 1st stage spends 34.9 more

(a) The Identification Process Model

(b) The Solving Stage Process Model

Fig. 2. The two-stage process models

TABLE II
FREQUENT MICRO PROCESS PATTERNS IN TWO STAGES

Pattern Micro Process Freq. Duration Standard
No. Patterns Median Deviation

The 1st Stage: Identification Stage
1 created − > labeled:bug 41% 14.2d 69.8d
2 created − > assigned − > labeled:bug 12% 11.4d 52.0d
3 created − > mentioned	 − >labeled:bug 9% 50.8d 134.0d
4 created − > mentioned − > labeled:bug 8% 15.9d 56.4d

others 30% 57.5d 127.5d
The 2nd Stage: Solving Stage

1 labeled:bug − > closed 26% 114.7d 226.0d
2 labeled:bug − > mentioned − > closed 10% 134.8d 237.3d
3 labeled:bug − > mentioned 	 − > closed 17% 189.5d 279.3d
4 labeled:bug − > assigned 	 − > closed 7% 29.8d 72.0d
5 labeled:bug − > referenced 	 − > closed 8% 61.5d 142.4d

others 32% 79.5d 232.6d

days(68.7%) than the fourth pattern on average, and the only
difference between these two patterns is that the former goes
through ‘mentioned’ activity twice or more while the latter
goes through it only once. Going through the ‘mentioned’
activity twice or more may mean a several rounds of discussion
or @mentioning a team and @mentioning a team often costs
more time than @mentioning a person when judging a bug.
It must be noted that spending more time doesn’t necessarily
imply inefficiency. The issue lifetime depends on many factors,
one being the complexity of an issue. For a complex issue, the
project manager may @mentioning a team so that more time
is needed to label this issue and this is often the right way.

Another finding is that processes going through the ‘as-
signed’ activity in stage 1 or 2 and processes going through
the ‘referenced’ activity in stage 2 will reduce the durations
greatly. This conforms to our common sense that explicitly
assigning the task to people can increase efficiency and it is
extremely likely that committing to a pull request marks the
end of issue resolution. It may also mean that when an issue
is easy, the manager clearly knows who should be responsible
for it and can directly assign it to him or a developer can
directly commit a pull request to fix it.

IV. PATTERN PREDICTION

Predicting which pattern occurs next in advance during
issue lifetime can provide with a richer and more interpretable
forecast result and in this section, we construct models to
predict patterns to answer RQ2. The steps include feature
selection, model training and evaluation.

A. Feature Selection

The performance of prediction models relies on features that
are properly selected. Obviously, the patterns to be followed
are affected by many factors. Our feature engineering is based
on the work of [10] and [14]. Furthermore, we also add
the following new features to the features we chose based
on previous work: CodeIncluded for whether the body of an
issue includes code or not, CleanedTitleLength for the number
of words in the issue body with markdown parsed and tags
removed and CreatorAuthority for whether the creator has
authoritative identity in the project. It should be noted that
since we would like to predict emerging patterns with time,
the dynamic features proposed in [10] are used.

The selected features can be divided into three classes, i.e.,
Issue features, Issue creator features and Project features.
Issue features describe the contents of an issue and its related
events. Issue creator features reflect the characteristics of the
author of an issue, which relates to issue contents and quality.
The resolution processes of issues are also be affected by
their projects and project features reflects their issue resolution
statuses and activity levels. Features are not listed for lack of
space.

B. Model Training

The target of pattern prediction is to select the most possible
pattern type from a limited number of pattern types. This can
be regarded as a classification problem. Since we will predict
patterns with time, we trained different classification models
at different observation points. For example, the observation
point of 1 day means that we make a pattern prediction for an
issue that has been opened for 1 day.

The observation points are chosen to match calendric pe-
riods, which leads to six observation points (1, 7, 14, 30,
90, and 180 days) . For each observation point, we train two
classifiers to predict the pattern for the 1st stage and the 2nd
stage respectively. Finally, we train 12 models in total.

TABLE III
THE MACRO-F1(MACF1) AND MICRO-F1(MICF1) SCORES AT DIFFERENT

STAGES

metrics Observation Point
1d 7d 14d 30d 90d 180d

Stage 1 macF1 0.617 0.679 0.653 0.591 0.604 0.664
micF1 0.706 0.741 0.746 0.719 0.756 0.869

Stage 2 macF1 0.469 0.646 0.667 0.674 0.708 0.590
micF1 0.508 0.626 0.661 0.682 0.713 0.702

C. Pattern Prediction Performance

We trained multiple classifiers including MultiLayer Percep-
tron, Linear Discriminant Analysis, Gaussian Naive Bayes,
Multinomial Naive Bayes, Bernoulli Naive Bayes, Logistic
Regression, Decision Tree and Random Forest. Random forest
classifiers [25] perform best for most of the time and we
utilize them in the following section. Table III shows the
macro-averaged F1-score and micro-averaged F1-score [26]
for Random forest classifiers at different observation point.

We calculate yhe Top-10 ranking of feature importance
for models at different observation points. The importance
distributions of features of different stages at the same ob-
servation point are quite similar. However, we can find a
huge difference between importance distributions of features
in different observation points of the same stage. In early
periods, static features seem to play a greater role while at
late observation points dynamic features play a major role. It
is also shown that ‘nMentionedByT’ which denotes ‘Number
of times actors was mentioned in the issue body before T’ is
always of great importance.

To summarize the findings with respect to RQ2, it can
be concluded that we can predict which pattern has the
highest probability of appearing during issue lifetime with a
certain degree of accuracy by selecting appropriate features
and models.

V. ISSUE LIFETIME PREDICTION WITH MICRO-PROCESS
PATTERN INFORMATION

In order to answer RQ3, we construct models with micro-
process pattern information in contrast to models without
pattern information to show that predicting patterns with time
is beneficial to lifetime prediction.

A. Feature Selection

The feature selection is similar to last section. In addition,
predicted pattern information is used as the extra inputs to the
models. Rather than providing the concrete predicted pattern
information, here we provide the appearance probabilities of
patterns as inputs, for example, [0.12, 0.21, 0.03, 0.64] for the
1st stage. The reason is the consequent pattern is essentially
nondeterministic and can be changed with time due to several
factors. This is also the reason why pattern prediction accuracy
is not so high. Therefore, providing the name of a most
possible pattern is too risky. If the predicted result is wrong,
it will completely mislead the lifetime prediction model.

TABLE IV
PREDICTION PERFORMANCES OF MODELS FOR DIFFERENT OBSERVATION

POINTS AND PREDICTION HORIZONS

Pred. macro-F1 micro-F1 AUC
horizon init prob fore init prob fore init prob fore

Observation at 1 day after issue is opened
7d 0.524 0.576 0.554 0.740 0.785 0.759 0.531 0.571 0.552

14d 0.575 0.623 0.611 0.664 0.704 0.686 0.574 0.618 0.607
30d 0.661 0.680 0.671 0.662 0.682 0.680 0.658 0.678 0.672
90d 0.696 0.695 0.696 0.720 0.726 0.722 0.691 0.690 0.692
180d 0.741 0.728 0.737 0.803 0.804 0.803 0.724 0.708 0.720
365d 0.774 0.772 0.775 0.892 0.894 0.892 0.740 0.734 0.741

Observation at 7 days after issue is opened
14d 0.508 0.535 0.512 0.860 0.865 0.854 0.517 0.538 0.517
30d 0.647 0.669 0.673 0.738 0.761 0.758 0.640 0.667 0.661
90d 0.673 0.693 0.680 0.676 0.698 0.680 0.678 0.690 0.680
180d 0.739 0.736 0.746 0.762 0.765 0.770 0.732 0.729 0.740
365d 0.778 0.756 0.783 0.864 0.852 0.866 0.750 0.727 0.754

Observation at 14 days after issue is opened
30d 0.609 0.637 0.633 0.796 0.820 0.811 0.596 0.618 0.614
90d 0.660 0.667 0.661 0.667 0.677 0.670 0.657 0.661 0.661
180d 0.744 0.737 0.740 0.750 0.748 0.751 0.737 0.734 0.737
365d 0.751 0.750 0.765 0.839 0.836 0.845 0.730 0.725 0.739

Observation at 30 days after issue is opened
90d 0.624 0.626 0.613 0.741 0.743 0.733 0.617 0.620 0.609
180d 0.712 0.730 0.716 0.716 0.732 0.718 0.713 0.733 0.717
365d 0.749 0.735 0.743 0.790 0.784 0.787 0.738 0.722 0.732

Observation at 90 days after issue is opened
180d 0.590 0.584 0.554 0.724 0.729 0.721 0.578 0.580 0.566
365d 0.703 0.702 0.694 0.716 0.713 0.710 0.704 0.702 0.695

Observation at 180 days after issue is opened
365d 0.678 0.683 0.691 0.692 0.708 0.725 0.679 0.689 0.691

TABLE V
HEAT MAP FOR VARIOUS MODELS AT DIFFERENT OBSERVATION POINTS

AND PREDICTION HORIZONS.

(a) macro-F1
Observation Prediction horizons

point 1 7 14 30 90 180
7
14
30
90

180
365

(b) micro-F1
Observation Prediction horizons

point 1 7 14 30 90 180
7
14
30
90

180
365

Red � � � denotes that a model with pattern probabilities performs better
than initial model and blue � � � denotes the contrary. A dark color � �
denotes the gap is more than 6%, the medium � � denotes the gap is between
3%-6% and a light color � � denotes the gap is less than 3%.

B. Model Training

As in [10], our lifetime prediction tries to answer the
question as to whether the issue can be closed before the
given time or not. Therefore, it is a classification problem
and we train prediction models at different observation points.
At each observation point, we make predictions for whether

it will be closed with different prediction horizons. Naturally,
the prediction horizon should end after the observation point.
For each combination of an observation point and a prediction
horizon, we should train one model. For example, we make a
prediction for an issue to answer the question as to whether it
will be closed within 30 days after it has been opened for 14
days.

C. Prediction Performance

Although the prediction task is a binary classification prob-
lem in our study, we still utilize the macro-averaged F1-score
and micro-averaged F1-score to evaluate the classifiers because
correctly predicting the fact that an issue can be closed in a
given prediction horizon or not is equally important so that
traditional metrics for binary-classification are not sufficient.
As in [27], we also use random forest as the model for this
task because it has been proven that random forest is better
than other conventional models on this task.

We analyze model performance for different observation
points and compare initial models (init), models with pattern
probability predicted (prob) and models with exact pattern
predicted (fore). Table IV shows the obtained macro-averaged
and micro-averaged F1-scores of various models.

Accordingly, Table V shows the performance comparison
in the form of a heat map. We find that models with pattern
probability predicted achieve better performance when doing
short-term prediction at earlier observation points.

Firstly, pattern probability is similar to prior probability.
At an early period when other features can barely provide
information, adding prior probability is of great help for
classifiers. As time progresses, other features are of more value
and begin to modify the ‘prior probability’ and even break
away from it. So, the value of pattern probability become less
and less at later observation points.

Secondly, we find that after adding pattern probability
features, the classifiers tend to predict that a certain issue
can be closed within a given period. Without pattern prob-
ability, issue lifetime predicted may range widely. But with
pattern probability, the resolution time distribution predicted
may shrink due to the pattern restrictions. In this case, the
capability of the model to distinguish the unconventional ultra-
long period issue becomes weak, so prediction performance
deteriorates after adding pattern features.

Another interesting finding is that models with pattern
probability predicted even perform better than models with the
foresight of exact patterns in many cases, especially at earlier
observation points. We explain the phenomenon in this way:
The model precision is low at an early period, adding an exact
pattern may result in over-fitting to some extent. Nevertheless,
the probability of patterns means various possibilities, which
improves the ability of generalization.

VI. THREATS TO VALIDITY

Threats to internal validity In this study, we assume that
properties of issues in each project are uniformly distributed
while the heterogeneity of issues in each project cannot

be avoided. In addition, there are may several relationships
between some issues in a project, i.e., they are not independent.
These will inevitably affect our results to some extent. Another
issue is we apply 17 features to predict possible patterns while
the most important factor, the complexity of the issue itself, is
not included since it is difficult to measure directly. We have
tried to remedy this by putting some of the features that are
closely related to issue complexity into the model. Also, issue
misclassification is reported to occurs in [28], which may have
impact on issue pattern prediction and issue lifetime prediction
in our study.

Threats to external validity In this study, we use issues
from 10 projects that are representatives of the open source
domain which have different backgrounds, development prac-
tices and goals. To improve generality, we propose extending
our study to more representative projects.

VII. CONCLUSIONS

In this paper we try to mine micro-process patterns of the
resolution process of issues of a corrective maintenance type.
Based on the issues extracted from 10 distinctive and repre-
sentative projects in the open source domain, we apply process
mining techniques to extract process patterns from them. We
divide the whole issue solving process into two stages, i.e., the
identifying stage and the solving stage. Four and five patterns
are discovered for the first stage and second stage, respectively.
Then we analyze their properties and get some interesting
findings. After this, we construct models for pattern prediction
during issue lifetime using static and dynamic features and
our model shows an improved performance with time. Then
we construct models for issue lifetime prediction in GitHub
projects for different calendric periods with the probability of
patterns predicted in order to demonstrate value within pattern
information. The results show that models with predicted
pattern information achieve better accuracy for issue lifetime
prediction at earlier observation points.

ACKNOWLEDGMENT

This work is partially supported by National Key Research
and Development Plan(No. 2018YFB1003800).

REFERENCES

[1] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in Proceedings of the 2010 ACM conference on
Computer supported cooperative work. ACM, 2010, pp. 291–300.

[2] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, “Exploring the
characteristics of issue-related behaviors in github using visualization
techniques,” IEEE Access, vol. 6, pp. 24 003–24 015, 2018.

[3] R. Kikas, M. Dumas, and D. Pfahl, “Issue dynamics in github projects,”
in International Conference on Product-Focused Software Process Im-
provement. Springer, 2015, pp. 295–310.

[4] W. Van Der Aalst, Process mining: discovery, conformance and en-
hancement of business processes. Springer, 2011, vol. 2.

[5] E. Kouzari and I. Stamelos, “Process mining in software events of
open source software projects,” in 2nd International Symposium & 24th
National Conference on Operational Research, HELORS, 2013, pp. 25–
27.

[6] ISO/IEC, “International standard-iso/iec 14764 ieee std 14764-2006
software engineering; software life cycle processes &; maintenance,”
2006.

[7] A. Murgia, G. Concas, R. Tonelli, M. Ortu, S. Demeyer, and M. March-
esi, “On the influence of maintenance activity types on the issue
resolution time,” in Proceedings of the 10th international conference
on predictive models in software engineering. ACM, 2014, pp. 12–21.

[8] G. Destefanis, M. Ortu, S. Counsell, S. Swift, M. Marchesi, and
R. Tonelli, “Software development: do good manners matter?” PeerJ
Computer Science, vol. 2, p. e73, 2016.

[9] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study on
factors impacting bug fixing time,” in 2012 19th Working Conference
on Reverse Engineering. IEEE, 2012, pp. 225–234.

[10] R. Kikas, M. Dumas, and D. Pfahl, “Using dynamic and contextual
features to predict issue lifetime in github projects,” in Proceedings
of the 13th International Conference on Mining Software Repositories.
ACM, 2016, pp. 291–302.

[11] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 2007,
pp. 1–1.

[12] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering. ACM, 2010, pp. 52–56.

[13] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceedings of the
Fourth International Workshop on mining software repositories. IEEE
Computer Society, 2007, p. 29.

[14] M. Rees-Jones, M. Martin, and T. Menzies, “Better predictors for issue
lifetime,” arXiv preprint arXiv:1702.07735, 2017.

[15] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: an
empirical study of commercial software projects,” in Proceedings of the
2013 international conference on software engineering. IEEE Press,
2013, pp. 1042–1051.

[16] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: can
we do better?” in Proceedings of the 8th Working Conference on Mining
Software Repositories. ACM, 2011, pp. 207–210.

[17] P. Anbalagan and M. Vouk, “On predicting the time taken to correct bug
reports in open source projects,” in 2009 IEEE International Conference
on Software Maintenance. IEEE, 2009, pp. 523–526.

[18] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “How long does
a bug survive? an empirical study,” in 2011 18th Working Conference
on Reverse Engineering. IEEE, 2011, pp. 191–200.

[19] W. H. A. Al-Zubaidi, H. K. Dam, A. Ghose, and X. Li, “Multi-objective
search-based approach to estimate issue resolution time,” in Proceedings
of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering. ACM, 2017, pp. 53–62.

[20] E. Kouzari, L. Sotiriadis, and I. Stamelos, “Process mining for process
conformance checking in an oss project: An empirical research,” in IFIP
International Conference on Open Source Systems. Springer, 2018, pp.
79–89.

[21] E. Kouzari and I. Stamelos, “Process mining in software events of
open source software projects,” in 2nd International Symposium & 24th
National Conference on Operational Research, HELORS, 2013, pp. 25–
27.

[22] W. Poncin, A. Serebrenik, and M. Van Den Brand, “Process mining
software repositories,” in 2011 15th European Conference on Software
Maintenance and Reengineering. IEEE, 2011, pp. 5–14.

[23] M. Gupta, “Nirikshan: process mining software repositories to identify
inefficiencies, imperfections, and enhance existing process capabilities,”
in Companion Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 658–661.

[24] W. M. van der Aalst, H. A. Reijers, A. J. Weijters, B. F. van Dongen,
A. A. De Medeiros, M. Song, and H. Verbeek, “Business process mining:
An industrial application,” Information Systems, vol. 32, no. 5, pp. 713–
732, 2007.

[25] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[26] V. Van Asch, “Macro-and micro-averaged evaluation measures [[basic
draft]],” Belgium: CLiPS, pp. 1–27, 2013.

[27] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133–
3181, 2014.

[28] P. S. Kochhar, T.-D. B. Le, and D. Lo, “It’s not a bug, it’s a feature:
does misclassification affect bug localization?” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 296–299.

