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Abstract—For different programs or applications, it is necessary 

to select the appropriate compilation optimization pass or subse-

quence for the program. To solve this problem, machine learning 

is widely used as an efficient technology. However, the most im-

portant problem in using machine learning is the extraction of pro-

gram features. How to ensure the integrity and effectiveness of 

program information is the key to the problem. In addition, when 

compiling and optimizing the selection problem, the measurement 

indicators are often program performance, code size, etc. There is 

not much research on program reliability which needs the longest 

measurement time and the most complicated measurement meth-

ods. This paper proposes a GGNN-based compilation optimization 

pass selection model. We extend the deep neural network based on 

GGNN, and build a learning model which learns heuristics for pro-

gram reliability. The experiment was performed under the clang 

compilation framework. The alternative compilation optimization 

pass adopts the C language standard compilation optimization 

passes. Compared with the traditional machine learning method, 

our model improves the average accuracy by 5% ~ 11% in the op-

timization pass selection for program reliability. At the same time, 

experiments show that our model has strong scalability.  

Keywords- compilation optimization selection; AST; GGNN; 

reliability; clang  

I.  INTRODUCTION 

In the past few decades, compiler developers have designed 
and implemented a large number of compilation optimization 
options in response to compilation optimization needs in various 
complex situations. In actual development, the standard compi-
lation optimization pass provided by the compiler is difficult to 
adapt the requirements for the program to be compiled in com-
plex scenarios. On the one hand, the program to be compiled has 
different semantics and compilation goals. It is difficult to obtain 
the optimal optimization effect by using the standard compila-
tion optimization pass directly. If an inappropriate optimization 
pass is used, it may even bring negative effects about program 
performance, etc. On the other hand, with the continuous devel-
opment of the hardware architecture, the compilation environ-
ment becomes increasingly complex, and the compilation opti-
mization pass should be adjusted accordingly. Therefore, how to 
choose the best compilation optimization pass for the program 
to be compiled among the intricate optimization options. Be-
come a challenging scientific problem. The algorithms used in 
this field mainly include heuristic search algorithms and ma-
chine learning algorithms. The heuristic search algorithm uses a 
heuristic method to search the optimal compilation optimization 

pass in the compilation optimization option combination space. 
For example, the VISTA interactive compilation system [1] uses 
a combination of genetic algorithms and human-assisted guid-
ance to search for optimal compilation optimization passes; the 
open source framework “ OpenTuner ” [2] uses a variety of evo-
lutionary algorithms, including genetic algorithms, to get a 
speedup of up to 2.8 times; Jantz et al. [3] use genetic algorithms 
to select the optimal compilation optimization pass for the JIT 
compiler. And some other selection schemes based on some 
multi-objective optimization algorithms, for example,  Lok et al. 
[4] [5] use SPEA2, NSGA-II and IBEA to select the compilation 
optimization pass for the program to be compiled that meets the 
target code execution speed, scale and other goals. 

However, the heuristic search algorithm can generate effi-
cient compilation optimization sequences, but it takes a lot of 
time to run the entire iterative process. Gradually researchers be-
gan to use machine learning algorithms to select compilation op-
timization sequences. A large number of algorithms based on 
SVM and LR are widely used. The work [6] used code runtime 
characteristics to characterize the program to be compiled to 
train the logistic regression model; Ashouri et al. [7] analyzed 
the dependencies between optimization options in the compiler's 
LLVM, using program dynamic characteristics to train the 
Bayes network, then use this model to predict the optimization 
options that should appear in the next stage until the prediction 
is completed; the open source compiler "Milepost GCC" [8], 
which is a modularized, modified form of GCC4.4 scalable com-
piler that supports static feature extraction of the program to be 
compiled, trains machine learning models, and predicts the com-
pilation effect of the compiled optimization sequence. A large 
number of machine learning algorithms perform feature extrac-
tion on programs, both dynamic and static features., it is difficult 
to extract program information completely and efficiently. Most 
work has tried to transfer natural language methods and does not 
capitalize on the unique opportunities offered by code’s known 
semantics. For example, long-range dependencies induced by 
using the same variable or function in distant locations are often 
not considered. Such models miss out on the opportunity to cap-
italize on the rich and well-defined semantics of source code. 
Therefore, constructing a graph to represent complete program 
information and training in conjunction with a graph neural net-
work is a more effective way to ensure the integrity of the pro-
gram information as much as possible. 

In addition, from the perspective of compiling optimization 
goals, most researches focus on the execution speed of the target 
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machine code [9] [10]. Statistics shows that the target code is 
used in machine learning algorithms. The acceleration ratio as 
the optimization target accounted for the vast majority of the re-
search, accounting for more than 80% of this part of the research. 
Another optimization goal that researchers are concerned about 
is the size of the target code [11] [12]. It is a very important op-
timization goal, especially in the case of the current widespread 
application of embedded programs, reducing the storage space 
as much as possible can bring significant benefits. However, 
there is not much research on the use of machine learning for 
compilation optimization orienting program reliability research. 

In order to extract the program information as completely as 
possible, while taking advantage of the advantages of machine 
learning, we combine GGNN, program reliability analysis and 
compilation optimization selection problems. We abstract the C 
raw code into a graph with data flow and type hierarchies, and 
then build a program optimization oriented graph neural network 
for program reliability. Our work replaces the need for compile-
time or static code features, merging feature and heuristic con-
struction into a graph and send it to a graph neural network. Then 
learning to get which clang standard compilation optimization 
can bring the highest reliability gain for a specific C code. By 
using the PIN [13] tool for verification, our model has an average 
accuracy improvement of 5% ~ 11% compared to traditional ma-
chine learning algorithms without our extended GGNN. At the 
same time, our model is also highly scalable and can adjust the 
size of the output layers to solve different problems. 

II. PROGRAM AS GRAPH 

A. Abstract Syntax Tree 

As an intermediate representation of the source code for 
parsing and semantic analysis, AST [14] is a tree-structured data 
describing the syntax rules and execution order of the code, 
which is obtained after the code is parsed using irrelevant con-
text rules. In the AST, leaf nodes represent identifiers in the 
source code, while non-leaf nodes represent syntactic structures. 
As the parse tree of the source code, the AST basically covers 
the following syntax structures: Selecting structure (IF, 
SWITCH, etc.); Loop structure (WHILE, FOR, etc.); Sequence 
structure (expressions, assignment statements, etc.). Therefore, 
AST, as an intermediate representation of the source code, can 
effectively retain the syntactic context information related to the 
programming language. 

B. Function Call Graph 

FCG [15] is used to characterize information related to con-
trol flow in source code. Each node in a function call graph rep-
resents a function, and the edges in it represent the calling rela-
tionship between functions. Understanding the calling relation-
ship between functions is of great help to understand the hierar-
chical structure of the program, and clarifying the function call-
ing relationship is a key part of program analysis. 

C. Data Flow Graph 

DFG [16] explicitly contains the data logic of the two aspects 
of data transfer and data processing in the source code. Nodes in 
DFG represent entities, such as variable declarations, operands, 

operators, structures, etc., and the edges in them represent the 
data relationships that exist between these entities. DFG can de-
scribe the data logic and program functions of the source code 
and is used to analyze the dynamic runtime data flow infor-
mation of the program. From the perspective of data transmis-
sion, DFG describes the movement and transformation of data 
streams from input to output. Because it can clearly reflect the 
logic that the program must complete, it has become one of the 
most commonly used methods of program analysis. 

 

int add(int m1) 

{ 

int x1 = Foo(m2); 

int y1 = 2; 

y2 = x2 + 1; 

return y3; 

} 

int Foo(int m) 

{ 

int n = Square(m); 

int k = Mod(m); 

return n*k; 

 

} 

(a)  
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(b) 

Figure 1.  Example of the co-AST.  

By comparing the characteristics of AST, FCG, and DFG, it 
is clear that each different form of the intermediate expression 
form only describes the program source code from a certain an-
gle. The AST only contains static information related to the 
grammatical structure, and the latter two are used to describe the 
runtime dynamic information related to the control flow and the 
data flow. In particular, the angles of the latter two references 
are different. FCG starts with a coarse-grained function, while 
DFG starts with fine-grained variables, operators, and operands. 
The source code is special executable text, and both static syntax 
information and dynamic runtime information are important. 
Therefore, the fusion of the code information carried in the AST, 
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FCG, and DFG helps reduce the information loss caused by the 
transformation of source code to intermediate expressions. 

We have established a joint program analysis graph co-AST, 
which combines the characteristics of AST, FCG, and DFG. As 
shown in Figure 1, based on the source code of Fig. 1 (a), we 
constructed the co-AST graph as Fig. 1 (b). The complete co-
AST graph has a total of seven types of edges. We introduce the 
edges of FCG and DFG into the original AST structure. As 
shown in Figure 1 (b), the solid arrow is the function call identi-
fier, and the dashed curve arrow is the identification of the data 
stream This combination greatly enriches the information in the 
program graph, thereby speeding up the spread of information in 
GGNN and improving the effect of model training. 

III. CONSTRUCTION OF EXTENDED GGNN 

The graph model used in this paper involves a directed graph 
𝐺 = (𝑉, 𝐸), where 𝑉 represents a set of nodes of size |𝑉| and 𝐸 
represents a set of size |𝐸|. The nodes in 𝑉 are represented by 
node number 𝑖, the directed edges in 𝐸 are represented by eij, 

and eij represents the edge pointed by node 𝑖 to node j. For dif-

ferent types of edges in the graph, use the edge type set LK = {l1 , 
l2, ..., lk} to represent. The connection relationship between the 
nodes in the graph is represented by the connection matrix 𝐴. 
There are two design schemes for the dimension of 𝐴. The first 

design is 𝐴∈ R|V|×2|V|, directed edge eij in the figure is seen as 

two different types of access edges, one is the outgoing edge of 
node 𝑖 and the other is the incoming edge of node j. The second 

design is  𝐴∈ R|V|×|V|, it only considers the directed edge eij as 

the incoming edge of node j. The connection matrix in this paper 
uses the second scheme. 

The element 𝐴ij in the 𝑖 row and the j column is a 𝑑 × 𝑑 

matrix (𝑑 represents the node state vector dimension). 𝐴ij is also 

called the propagation matrix on edge eij, which represents the 

information propagation rules from node 𝑖 to node j. For exam-
ple, Fig. 2 (c) shows the connection matrix corresponding to the 
data flow graph shown in Fig. 2 (b), where the two rectangular-
framed matrices are the propagation matrices corresponding to 
e3y and eyz respectively. 

In the assignment statement shown in Fig. 2 (a), we are con-
cerned about whether the number 3 can be passed to the variable 
z, as shown in Fig. 2 (b). To this end, nodes 3 and z can be re-
garded as the source node and the target node respectively, and 
their feature vectors are initialized as ℎ3

0 = [1,0] and ℎ𝑧
0  = [0,1] 

(the first dimension of the two-dimensional vector is 1, which 
means that 3 can reach the node), and the feature vector table of 
node 𝑦 is initialized as ℎ𝑦

0  = [0,0]. The propagation matrix 𝐴ij  

determines how the information of each dimension of node 𝑖 is 
propagated to the various dimensions of node j. "0" represents 
no propagation and "1" represents complete propagation. For ex-
ample, 𝐴3y in Fig. 2 (c) indicates that node 3 only passes the in-

formation of its first dimension to the first dimension of node y. 
In this way, the result of multiplying vector ℎ3 and 𝐴3y is still 

ℎy = [1, 0], indicating that the data has not been passed to the 

target node z. However, 𝐴yz  in Fig. 2 (c) indicates that the 

information of the first dimension of node 𝑦 is to be transferred 
to the first dimension of node z. Therefore, the result of multi-
plying vector ℎy and 𝐴yz is ℎz = [1,0], indicating that data can 

reach the target node z. 

y = 3 

z = y 

(a) Sample code 

3

y z  

(b) DFG 
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(c) Connection matrix 

Figure 2.  Example of connection matrix and propagation matrix.  

In GGNN [17], the information propagation of nodes on dif-
ferent types of edges is achieved through different multilayer 
perceptron, and the propagation matrix on the edges is repre-

sented by the trainable multilayer perceptron weights 𝑊e  ∈ 

R𝑑×d. It should be noted that the connection matrix shown in Fig.  
2 (c) only represents the weight of the multi-layer perceptron af-
ter the graph model has converged on the reachability task. The 
GGNN model has an iterative t-round of node state information 
propagation process, as follows: the state information of node 𝑖 

is initialized to a vector ℎ𝑖
(1)

∈R𝑑. During the t-th round of iter-

ation, each central node 𝑖 gathers all neighbor node information 

to get the node interaction context 𝑚𝑖
(𝑡)
∈R𝑑, as shown in (1) 

(where 𝑁i represents the set of neighbor nodes of 𝑖). In response 
to the current interaction context, the node 𝑖 updates its own state 

information ℎ𝑖
(𝑡)

 after t round. The GRU unit is used in GGNN 

different from GNN. The GRU unit considers the relationship 
between node status information in different update rounds. That 
is, when the node updates during the round t-th, the node hidden 

layer vector expression ℎ𝑖
(𝑡)

  and the state information ℎ𝑖
(𝑡−1)

 of 

the previous round have a time series relationship, as shown in 
(2). GNN only uses edges as a means of propagation, but does 
not distinguish the functions of different edges. And GNN does 
not set independent learnable parameters for edges, which means 
that some characteristics of edges cannot be learned through the 
model. This is also the main reason we use GGNN as shown in 
Fig. 3. 

 𝑚𝑖
(𝑡)

 = 𝛴𝑗∈𝑁𝑖
 𝐴ij ∙ ℎ𝑗

(𝑡−1)
 () 

 ℎ𝑖
(𝑡)

 = GRU (ℎ𝑖
(𝑡−1)

, 𝑚𝑖
(𝑡)

) () 

Figure 3.  Extended GGNN architecture
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During the information propagation of the graph model, 

𝑚𝑖
(𝑡)

 is the interaction context of node 𝑖 in the whole graph. 

Whether it is GNN or GGNN, 𝑚𝑖
(𝑡)

 is obtained by directly ac-

cumulating the product of feature information ℎ𝑗
(𝑡−1)

 of the 

neighbor node j and the propagation matrix 𝐴ij on the edge eij. 

In the topology of the graph, different nodes have different prop-
erties in the topology. In the GNN and GGNN models, the top-
ological properties of the nodes are directly expressed as hidden 
nodes. Based on this, in the substructure composed of the central 
node 𝑖 and its neighbor nodes 𝑁i, our model abandons the way 

of directly accumulating the product of ℎ𝑗
(𝑡−1)

 and 𝐴ij  to calcu-

late 𝑚𝑖
(𝑡)

. We hope that the model automatically learns how to 

calculate 𝑚𝑖
(𝑡)

 and that the central node could pay more atten-

tion to those neighbor nodes whose topology information is im-
portant, because these neighbor nodes determine the interaction 
context of the node 𝑖 on the graph to a greater extent. 

Therefore, we have extended GGNN. We assign different 
weights to each neighbor node to characterize its importance to 

the central node 𝛼ij，it gets function mapping through neural 

network 𝑎 : R𝑑  × R𝑑  → R, 𝑎 calculates the correlation coeffi-
cient between the central node 𝑖 and its neighbor j, and uses the 
𝑠oftmax function to normalize the correlation coefficients of all 
neighboring nodes, such as (3) shown: 

 𝛼ij = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑎 (ℎ𝑖
(𝑡−1)

, ℎ𝑗
(𝑡−1)

)) () 

The weight parameter of the neural network 𝑎 is only related 
to the round of information propagation. The same round of in-
formation propagation,  𝑎 is shared by all nodes. Different prop-
agation rounds have different parameters for 𝑎. The uncertainty 
of the number of neighbor nodes j of a node 𝑖 will result in a 
variable number of 𝑎ij, and it is not possible to directly imple-

ment the 𝑠oftmax function provided by the framework Tennsor-
flow. This paper implements 𝑠oftmax to adapt to the changing 
number of neighbor nodes: 

 𝑎𝑖𝑗  = 𝑎𝑖𝑗  - max(𝑎𝑖1, 𝑎𝑖2, …, 𝑎𝑖𝑗) () 

 𝛼ij = 
ⅇ

𝑎ij

𝛴𝑘∈𝑁i
ⅇ𝑎ik

 () 

So the interaction context 𝑚𝑖
(𝑡)

 of node in of our expanded 
GGNN is shown in (7): 

 𝑚𝑖
(𝑡)

 =∑ 𝛼ij ∙ 𝐴ij ∙ ℎj𝑗∈𝑁i
 () 

Because the selection of program compilation optimization 
pass is to analyze the program according to the embedded ex-
pression of the program algorithm graph co-AST, after obtain-

ing the final graph node embedding vector expression ℎ𝑖
(𝑇)

, the 
embedding vector ℎG of the entire co-AST graph needs to be 
calculated. This paper proposes a node vector probability fu-
sion method, which generates a graph embedding vector from 

the node embedding vector. As shown in (7), the f (ℎ𝑖
(𝑇)

, ℎ𝑖
(1)

) 
is a fully-connected neural network, which learns the probabil-

ity that node 𝑖 will be fused based on node attributes ℎ𝑖
(1)

 and 

topology information ℎ𝑖
(𝑇)

. The activation function in f uses 

𝑠igmoid, whose final output is a value of [0, 1]. The g is also 
implemented by using a fully connected layer neural network, 
which uses the tanh function to activate the output. The calcu-
lation of ℎG is similar to (6). In the end, the program compila-
tion optimization pass selection 𝑙G is derived from the function 
𝑠ofmax: 

 ℎG = ∑ 𝑓 (ℎ𝑖
(𝑇)

, ℎ𝑖
(1)

) ∙ 𝑔(ℎ𝑖
(𝑇)

)𝑖∈V  () 

 𝑙G = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎG) () 

In our extended GGNN, the computation of 𝛼ij of central 

node and its neighbor nodes can be parallelized and computa-
tionally efficient. Moreover, it implements the calculation 
method of the model automatically learning the interaction con-
text, without having to consider the number of neighbor nodes 
that changes. If using neural networks to learn to calculate the 
interaction context, it will definitely need to face the problem 
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that the neural network weight dimensions cannot be unified due 
to the inconsistent number of neighbors in each node. 

IV. EXPERIMENT AND ANALYSIS 

In order to verify the effectiveness of the model proposed in 
this paper in the selection of reliability-oriented program com-
pilation optimization pass, we not only evaluate the model from 
the perspective of pass selection accuracy, but also analyze the 
ability of the model to learn topology from the perspective of 
co-AST graph node embedding expressions.  

A. Configuration 

In order to cover more program categories in our training set, 
we have expanded on the standard C test suite MiBench [18]. 
We still adopt the program classification method of MiBench, 
but we have made a lot of expansions in the number of programs. 
We use the open source compilation tool clang to parse the raw 
code to get the program's AST data set. We further add edges 
representing data flow information and edges representing func-
tion call graphs to the AST tree for each program, and finally 
obtain the final co-AST data set. In our experiments, the co-AST 
data set is divided into a training set, a validation set, and a test 
set according to a ratio of 8: 1: 1. We use the PIN tool to evaluate 
the reliability of the program and generate the training set. Our 
program reliability evaluation indicators refer to Sridhran [19]. 

The optimization algorithm used for model training is the 
SGD of the ADAM optimizer [20]. The loss function uses cross 
entropy. The weight parameter initialization in the model uses 
Glorot [21] initialization method. In the experiment, the infor-
mation propagation layer (information iteration round) is set to 
4 layers, and the number of neurons in each propagation layer, 
that is the propagation matrix vector dimension 𝑑, is a hyperpa-
rameter. The choice of this hyper-parameter mainly considers 
the speed of model convergence and the model's loss value. For 
this reason, we determined after experiments that when the hid-
den layer vector dimension 𝑑 is 270, the model's convergence 
loss value is relatively small, and the model training speed is 
also relatively fast. Therefore, we set the hidden layer vector di-
mension 𝑑 to 270 to complete the subsequent experiments. 

B. Result and analysis 

In the experiment, we construct the classification task of 4. 
The main content of this task is to judge, for a specific C raw 
code, when using the clang standard compilation optimization  
passes -O1, -O2, -O3, and -OS, which one is more reliable for 
the program. This is different from many others that focus on 
the impact of compilation optimization passes on program speed 
and code size. The benchmark comparison experiment selected 
in this experiment is TreeBased Convolution Neural Network 
(TBCNN). To our knowledge, TBCNN is by far the best per-
forming work on source code classification tasks. In addition, 
LSTM [22] is widely used in text classification tasks and our 
model is aimed at the improvement of the GGNN model. We 
also test the LSTM and GGNN models. The experimental re-
sults are shown in TABLE I, where exGGNN is our extended 
GGNN. Therefore, there are four models in the controlled trial, 
LSTM, TBCNN, GGNN and exGGNN. 

TABLE I.  ACCURACY OF OPTIMIZATION PASS SELECTION 

Different 

Model 

Accuracy 

Minimum Maximum Average 

LSTM 82.2% 84.3% 83.9% 

TBCNN 84.5% 88.6% 86.7% 

GGNN 87.3% 93.5% 89.2% 

exGGNN 87.9% 98.1% 94.1% 

 

The experimental results in Table 1 show that the accuracy 
of exGGNN in the code optimization pass selection problem has 
improved significantly, indicating that our model has achieved 
the expected results for this problem. Better than LSTM and 
TBCNN shows that choosing GGNN to deal with such prob-
lems is a better choice, and better than GGNN shows that our 
extension has played a important role. Then, in order to evaluate 
whether the data flow edge and function call graph edge are use-
ful, we remove one of the 7 types of edges and use the exGGNN 
model to learn the co-AST graph after deleting a certain edge to 
implement the optimization pass selection. Observe the effect of 
each edge on the selection accuracy of the program. The exper-
imental results are shown in TABLE II. The double underline 
indicates the co-AST graph with this type of edge removed. 

TABLE II.  TABLE TYPE STYLES 

Different 

Edge 

Program Category (MiBench) 

auto-

mo-

tive 

con-

sume

r 

net-

work 

of-

fice 

secu-

rity 

tele-

com

m 

AST 0.99 0.02 0.09 0.95 0.06 0.09 

Operand 0.92 0.07 0.07 0.92 0.02 0.05 

LastUse 0.92 0.07 0.07 0.12 0.02 0.05 

Compute 0.92 0.07 0.07 0.92 0.02 0.05 

Return 0.94 0.07 0.07 0.92 0.02 0.09 

Formal 0.99 0.08 0.08 0.05 0.02 0.05 

Call 0.92 0.07 0.07 0.92 0.03 0.05 

 

The experimental results show that for most program tasks 
in MiBench, deleting a certain type of edge has little effect on 
the accuracy of program optimization pass selection accyracy. 
There may be information redundancy in the seven types of 
edges, so any type of edge deletion will not have a significant 
impact on the accuracy of program classification. But for some 
programs, deleting these types of edges can significantly reduce 
or improve the accuracy of program classification. Therefore, 
the construction of co-EAST is effective and can further im-
prove the extracted program information. 

We also compare the convergence trend of exGGNN / 
GGNN / TBCNN loss values in the co-AST / AST intermediate 
expression form. As shown in Fig.4, the graph model not only 
has a smaller final convergence loss value, but also has a faster 
convergence rate than TBCNN. The reason why the graph net-
work model converges faster is that the graph model has 
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stronger constraints on AST nodes than TBCNN. More specifi-
cally, in the TBCNN model, the convolution operation forces 
one-way propagation of information from child nodes to the par-
ent node. While the graph model involves, for each node, it is 
two-way information propagation between all neighboring 
nodes. This information dissemination can gradually spread to 
the entire graph structure. 

 

Figure 4.  Variation of loss values for the four models. 

In order to select a highly reliable compilation and optimi-
zation pass, we propose a learning strategy through GGNN. The 
experimental results show that our model achieves a higher ac-
curacy on the pass selection problem and is better than similar 
neural networks models. As the first attempt to combine graph 
neural networks with program reliability, we obviously 
achieved our experimental goals. Although the program's run-
ning time and code size are important indicators of program 
evaluation, the reliability of the program can not be ignored, es-
pecially in the booming aerospace field, the reliability of the 
program is always the first consideration. We are working on 
combining optimization sequence generation and graph neural 
networks, hoping to find a better solution to the phase ordering 
problem.  
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