
DCBlock : Efficient Module for Unpaired 

 Image to Image Translation Using GANs  

 

 

Jin Yong Kim, Myeong Oh Lee, Geun Sik Jo
*

Department of Computer Science 

Inha University 

nastynas9004@gmail.com, eremo2002@naver.com, gsjo@inha.ac.kr 

 

 

Abstract — Recently, as various image-to-image translation 

studies have been progressed, it is possible to generate 

high-quality images. In particular, generation models 

using unpaired data produce meaningful results even 

building data at a low cost. However, these studies, which 

are based on Generative Adversarial Networks (GANs), is 

composed a very heavy architecture. Unlike the commonly 

used other deep learning models, generally the GANs 

model consists of two or more in a particular case deep 

architecture, which has a large computational cost. To 

solve this limitation, this paper proposes an efficient 

generator module called DCBlock (Depthwise separable 

Channel Attention Block). DCBlock consists of a depthwise 

separable convolution with a relatively low computational 

cost to replace the standard convolution commonly used in 

the image to image translation, and channel attention to 

compensate for information loss caused by depthwise 

separable convolution. DCBlock showed similar 

performance to the existing original model while reducing 

the number of parameters that represents the amount of 

computation by up to 91.6%. Besides, we experiment with 

the proposed method for various novel researches and 

prove that the problem is solved. 

Keywords-component Generative Adversarial Networks , 
Unpaired Image-to-Image translation, Efficient model 
architecture, deep learning  

I. Introduction 
Recently, image-to-image translation studies using 
Generative Adversarial Networks (GANs) [1] produce 
plausible results. GANs can translate the style of the image 
to another domain [2-5] or generate new high-quality images 
with high resolution [6,7]. However, GANs are very 
expensive to compute because of standard convolutional 
layers, such as convolutional neural networks using very 
deep architectures (e.g. VGG [8], ResNet [9], AlexNet [10]). 
Therefore, the number of parameters representing the 
model's complexity will appear dramatically higher. A large 
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number of parameters have a significant impact on training 
and inference time and requires high memory resources 
which is the major limitation for many Image-to-Image 
translation applications to be applied in real world. 

To solve the aforementioned problems, this paper 
introduces the “Depthwise-separable Channel attention 
Block (DCBlock)” which replaces standard convolution with 
depthwise separable convolution and applies channel 
attention for an efficient unpaired image to image translation. 
DCBlock dramatically reduces number of trainable 
parameters that enables use of GANs in applications with 
limited resources. When we first tried to reduce the number 
of parameters, we replace standard convolution with 
depthwise separable convolutions. However, depthwise 
separable convolution is known to cause information loss 
[11,12]. Information loss causes poor quality image 
generation in the GAN model. At this point, we considered 
how to generate the image as natural as the existing other 
methods and were inspired by Zhang et al [13] who using 
channel attention in the residual block. Applying the channel 
attention focuses on the important parts in feature and make 
up for information loss, thus ensuring the quality of image. 
Therefore, we applied the techniques mentioned earlier to 
create a module called DCBlock. DCBlock is a replacement 
for “Resblock” [9] which is usually used in GAN 
architectures [2-5] for image-to-image translation. 
Overall, our contributions are as follows: 
⚫ We propose a DCBlock that reduces number of 

parameters and generate almost similar quality images 
as existing image-to-image translation models   

⚫ We have demonstrated how to use channel attention to 
avoid information loss in depthwise separable 
convolution. 

⚫ We provide experimental results, including 

quantitative and qualitative assessments of our results 

with existing models and ablation study on the effect 

of channel attention on our model 



 In conclusion, our method can generate the same quality 

image even though we reduce the parameters of existing 

baseline models. 

II. Related Work 

 Generative Adversarial Networks. Generative 

Adversarial Networks (GANs) have shown great 

performance in image generation and image translation [2-5]. 

Inspecting image generation mechanism of GANs, generator 

tries to produce fake images that are indistinguishable from 

the real ones, while a discriminator tries to distinguish the 

real image from the fake or generated images. Since two 

networks are opposing, what each network learns is called 

“adversarial loss” which is a key point in GAN. In the basic 

GAN [1] model, there is one generator and one discriminator, 

but nowadays there are many models with multiple 

generators and discriminators depending on purpose. 

 Unpaired Image-to-Image Translation.  Image 

translation that proceeds with paired data is often difficult to 

apply because data is rarely paired in the real world. On the 

contrary, using unpaired training data is suitable for real-

world application, Consequently, there are various GAN 

methods presented. CycleGAN [2] learns the cycle 

consistency loss by mapping the two domains separately in 

two generators. Among the methods using attention guided, 

AttentionGAN [4] is a model that adds attention mechanism 

to CycleGAN. It can make the important part changes via the 

built-in attention mechanism without the need for additional 

labeled data or models. The case of multimodal is more 

efficient than the above models when generating a diversity 

of images. StarGAN [3] consists of one generator and several 

discriminators, which efficiently generate various images to 

increase efficiency and quality. MUNIT [5] creates 

multimodal images without any guides. MUNIT is composed 

of contents encoder and style encoder for recombine random 

noise with input contents at style space.  

Efficient CNN Architecture. Many networks using 

depthwise separable convolution have been studied for 

efficient neural networks. At first, Xception [11], an 

architecture inspired by inception and depthwise separable 

convolution, proposed an extreme version inception module 

that does 1x1 conv first and then performs spatial correlation 

mapping on all output channels individually. MobileNet [12] 

also use depthwise separable convolution and additionally 

proposed shrinking hyper-parameter consisting of a width 

multiplier to control the input and output channels and a 

resolution multiplier to adjust the size of the input image. 

ShuffleNet [14] highlights that pointwise convolution is still 

a high cost area. To solve this problem, ShuffleNet designed 

channel sparse without connecting all weights, and shuffled 

groups to prevent the problem of getting only information 

flow for a specific area as input.  

As we have seen, efficient CNN networks are being actively 

researched and real-world applications using them are 

actively being developed. Therefore, we will introduce a 

module to be used in the GAN method for efficient image-

to-image translation. 

  

III. DCBlock 
To address the heavyweight model that unpaired image-to- 

image translation with GAN has, we proposed DCBlock 

(Depthwise separable Channel attention Block). At first, we 

applied depthwise separable convolution to reduce number 

of parameters. However, as can be seen in Xception [11], it 

causes information loss. Xception bridges this gap with 

residual connection but in image-to-image translation did not 

alleviate it, causing poor generation. Since depthwise 

separable convolution is performed for each channel, the loss 

of the feature appearing in the whole part is inevitable. 

Accordingly, to tackle an optimal balance between the qual-

ity of output and computational cost, we had to add a 

technique to compensate for information loss. Therefore, we 

applied an attention module to keep the information we need 

as much as possible and not lose it even in deep architectures. 

Our proposed module DCBlock is shown in Fig 1. It consists 

 

Fig. 1 . DCBlock Architecture 

 



of two sessions, Depthwise separable session and Channel 

attention session. In DCBlock, the input feature and output 

feature will be feed to each block proceeding residual 

learning. For input feature 𝐹𝑛, DCBlock can be formulated as 

follows: 

𝐷𝐶(𝐹𝑛) = 𝐹𝑛 ⊕ 𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛) 

⊕ 𝐶𝐴(𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)) , 
(3) 

where 𝐷𝐶(∙) denote DCBlock module and 𝑆𝑑𝑒𝑝𝑡ℎ(∙), 𝐶𝐴(∙) 

denote depthwise separable session and channel attention 

session.  Depthwise separable session significantly reduces 

the number of parameters than the standard convolution of 

the existing resblock. And channel attention that denoted 

𝐶𝐴(𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)) is formulated as, 

 

𝐶𝐴 (𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)) = 𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛) 

⊗ 𝑆𝑎𝑡𝑡 (𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)), 
(4) 

where 𝑆𝑎𝑡𝑡(𝐹𝑛) is attention map extracted by channel atten-

tion. This is a statistic of the channel obtained through the 

gating mechanism [15], which can prevent the information 

loss. In summary, we present DCBlock which a method that 

is efficient and produces quality similar to existing models. 

In the next part, we describe a detailed description of the 

DCBlock configuration. 

Depthwise Separable Convolution. As explained in the 

previous part, to reduce number of parameters, we used 

depthwise separable convolution, which composed a 

combination of depthwise convolution and pointwise 

convolution. In depthwise convolution, there are filters for 

the number of channels to extract spatial features, which is 

why the number of input and output channels is the same. 

Depthwise convolution is can be written as, 

where 𝐾̂ denote kernel size of depthwise convolution, i,j,m 

denote width, height, input channel and 𝐹 denote feature map. 
And pointwise convolution is a 1x1 convolution, and the size 

of the filter is fixed to 1x1. In contrast to the depthwise 

convolution, pointwise convolution is performed only on the 

channel without dealing with spatial features. This helps to 

greatly reduce the amount of computation in DCBlock. 

Table I shows the differences between the parameters and 

computational costs of the two convolutions. 

Table I 

 COMPARISON OF TWO KIND OF CONVOLUTIONS 

Method 
Standard 

Convolution 

Depthwise Separable 

Convolution 

# of Param 𝐾2 × 𝐶 × 𝑀 𝐶 × (𝐾2 + 𝑀) 

Computational 

cost 
𝐾2 × 𝐶 × 𝑀 × 𝐻 × 𝑊 𝐶 × 𝐻 × 𝑊 × (𝐾2 + 𝑀) 

where K denote kernel size, C, M denote input and output 

channel size and H, W denote input height, width. As Table 

I shown, Standard convolution has a computational cost of 

𝐾2 × 𝐶 × 𝑀 × 𝐻 × 𝑊  while depthwise separable convolution 

has 𝐶 × 𝐻 × 𝑊 × (𝐾2 + 𝑀). Dividing the two costs to see the 

difference shows that the cost has reduced by 
1

𝑀
+  

1

𝐾2. This 

has great effect in reducing proportionally increasing 

parameters in GANs where relatively deep networks are used. 

𝐺̂𝑘,𝑙,𝑚 =  ∑ 𝐾̂𝑖,𝑗,𝑚 × 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚𝑖,𝑗  , (5) 

 

Fig. 2. Output Comparison of The Two Methods 

 

 



Channel Attention Mechanism. Channel attention, 

proposed by Zhang et al [13], is one of the attention’s 

variations that leverages the interdependencies between the 

channel to focus on informative feature. It uses global 

average pooling to compress channel information and restore 

the feature through the convolution layer. Subsequently, the 

channel statistics are extracted via the gating mechanism [15]. 

This effect enhances and restores the feature for the focused 

part of the network. Consequently, we use channel attention 

to sustain as many features as possible even in deep architec-

tures and to address information loss caused by depthwise 

separable convolution. We provided more details about 

Channel Attention Mechanism usage in the next section and 

show how it affects to generated images in section 4. 

 

IV. Experiments 
To explore the suitability of proposed model, we evaluated 

DCBlock quantitatively and qualitatively on various datasets, 

comparing different models. The method of experiments is 

replacement of the “Resblock” [9] with a “DCBlock” on 

other novel models as we mentioned at section II.  

Baseline Models. As baseline models, we adopt 

CycleGAN[2], AttentionGAN [4], StarGAN [3] and MUNIT 

[5]. Since they include resblock in their models, they are 

suitable models for evaluation. For comparison, we apply 

DCBlock to aforementioned models, and compared the 

performance and number of parameters. CycleGAN consists 

of two generators and two discriminators, where the 

generator typically uses nine resblocks, which could be six 

or U-Net [16] depending on the resolution of images dataset. 

We used horse2zebra datasets [2] for this task. 

AttentionGAN has a similar architecture to CycleGAN. It 

has also nine or six resblocks and additionally produce 

attention mask via a built-in attention mechanism. For the 

experiment, we used the selfie2anime dataset created in Kim 

et al [17] for the AttentionGAN. StarGAN consists of one 

generator and N discriminators, where N is datasets number 

of class. In addition, StarGAN generator consists of six 

resblocks. For StarGAN experiments we used celebA dataset. 

MUNIT consists of a content encoder and a style encoder as 

described in the paper. In the MUNIT model, resblocks were 

applied only for the content encoder. For the experiments, we 

use summer2winter yosemete dataset [2] with MUNIT 

model. 

Evaluation Metrics. In quantitative evaluation, we 

measured the quality and diversity of the image with four 

metrics along the baseline papers. FID [18] uses the 

inception-v3[22] model to extract features and measure the 

distance between the distribution of real and fake images. 

The lower value of FID is more similar with real image. 

LPIPS [19] is perceptual metric about patch images. LPIPS 

evaluate the distance between images patches. Although It 

indicated that higher is different, and lower is more similar, 

we use it as a measure of the diversity of the image.  SSIM 

[20] is a metric that handles the structure of an image. It 

evaluate three factors that affect perceptual quality:  average 

brightness, contrast, and structure. SSIM indicates higher is 

similar. Inception Score (IS) [21]  is similar to FID in that it 

uses Inception network [22]. However, they differ in the way 

they use features, and IS evaluates how diverse the image is 

and how well it can be determined. In qualitative evaluation 

was conducted perceptual study according to Kim et al [17]. 

We conducted a user study in which users voted on their 

preference image. 

Quantitative Evaluation. As seen in TABLE II, we applied 

DCBlock to adopted models. In CycleGAN, replacing the 

generator's resblock with a DCBlock shows that the FID, 

SSIM, and IS are similar or better, despite a 91.6% reduction 

in the number of parameters from 11.06M to 0.87M. In 

AttentionGAN, SSIM and IS were lower than original model 

when applied, but FID was higher, and the number of 

parameters decreased by 69.3% from 11.25M to 3.3M. In 

TABLE II 

QUANTITATIVE EVALUATION 

 

Method 

Generator 

Million 

Parameter 

LPIPS↑ FID ↓ SSIM↑ IS↑ 

CycleGAN  
ResBlock 11.06 

Evaluate 

only 

multimodal 

210.48 0.7898 1.3771 

DCBlock (Ours) 0.89 195.04 0.8495 1.4354 

AttnetionGAN 
ResBlock 11.82 221.09 0.4392 1.5045 

DCBlock 3.62 226.16 0.4166 1.4620 

StarGAN 
ResBlock 8.43 0.114 17.61 0.8221 3.2183 

DCBlock 2.56 0.109 19.36 0.8252 3.1949 

MUNIT 
ResBlock 15.02 0.047 105.94 0.3344 1.8457 

DCBlock 7.22 0.044 105.81 0.3348 1.8322 

 



StarGAN, number of parameters reduced by 70.4% from 

8.43 to 2.5, and other metric show that original and DCBlock 

generate images of similar quality. And in result of MUNIT, 

the number of parameters decreased by 51.9% from 15.02 to 

7.22, and similar figures in other metrics as well. 

Analyzing the results of quantitative evaluation, we can see 

that DCBlock shows similar performance as resblock, a 

method of each model, while dramatically reducing the 

number of parameters. 

Table III 

PREFERENCE PERCENTAGE OF USER SCORE 

 

Model Original (Resblock) DCBlock(Ours) 

CycleGAN 

(horse2zebra) 
51.4(257) 48.6(243) 

StarGAN 

(CelebA) 
54.2(271) 45.8(229) 

 

Qualitative Evaluation.  We provide 10 randomly sampled 

images from CycleGAN [2] (horse2zebra) and StarGAN [4] 

(CelebA) with DCBlock and the original model pairs to 50 

participants, and participants evaluate the fake images to 

choose what they think is more natural. We inform the 

participant that only the domain of fake image and the 

original image. The results of the user study are shown in 

Table III. As we aimed for, both methods showed nearly 

similar preference percentages. First, the two methods of 

CycleGAN have a difference of 2.8% p (14 votes), which is 

higher than our method. And StarGAN showed the original 

with an 8.4% p (42 votes) high preference.  

 As a result, as shown in Fig. 2, our module produces a very 

similar level of image quality, although it is slightly less in 

terms of preference than the original module. 

Ablation Study. As discussed in section 3, channel attention 

[13] is an important contribution to image quality in this 

paper. Our ablation study examines how channel attention 

affects our module and contribute to generating images. To 

verify the impact of channel attention, we compared 

CycleGAN's original model, the "without-channel-attention" 

model using only depthwise separable convolution, and 

DCBlock. In terms of number of parameters, CycleGAN, as 

provided TABLE IV, has 11.06 million parameters, without-

channel-attention has 0.66 million parameters and ours has 

0.89 million. In Fig 3, several failure cases are shown in 

CycleGAN original model and without channel attention 

module. Second (The enlarged images are the first column) 

and fifth column images were not translated to zebra when 

horses in blurry form were used with CycleGAN and 

without-channel-attention model. However, when we use our 

module, we can see that the blurry horses are also translated 

to zebra. And as shown in fourth column, input image is 

difficult to recognize the horse on the hill with human 

perception. Despite CycleGAN and Without-channel-

attention failure that translate wrong part (i.e. sky), our 

 

Fig. 3. Ablation Study Comparison 

 



method overcomes this issue. As a result, adding channel 

attention increases a small number of parameters, however, 

contributed to generate the similar quality as the existing 

model or improve to better results. This is clear to say that 

channel attention contributes to extracting the righter focus 

even in the images that are difficult to distinguish.  

 

Table IV 

COMPARISON OF ABLATION STUDY 

 

Model 
Millions of 

parameters 

CycleGAN original 11.06 M 

Without-CA 0.66 M 

Ours (DCBlock) 0.89 M 

 

V. Conclusion  
In this research, we proposed DCBlock that solves high 

computational cost problem in the unpaired image-to-image 

translation with GANs. DCBlock overcome the large number 

of parameters and high requirements of memory resources 

while ensuring the quality of the image. Experimental results 

show that when our method is applied to the baseline method, 

it generates images of similar quality or more natural to the 

existing method while reducing the number of parameters. 

Since DCBlock is a lightweight network, it is thought to be 

easier to use in a real world with limited resources. 
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