
DOI reference number: 10.18293/SEKE2020-026 ©2020 IEEE

An Information Fusion based

Evolution Requirements Acquisition Method

for Mobile Applications

Yuanbang Li1, Rong Peng1*, Bangchao Wang1, Dong Sun2

School of Computer Science, Wuhan University, Wuhan, China

IT Management Department, Haitong Securities Co.Ltd, Shanghai, China

 (lybang,rongpeng,wangbc)@whu.edu.cn, 13362999@qq.com

Abstract—User feedbacks and market changes are both

important sources of requirements evolution. Accurately

capturing the evolutionary demands from user feedbacks and

market changes are extremely important for providers of

mobile apps to adjust evolutionary strategies of products.

However, many challenges, such as divergent demands and

conflicting demands, hinder the process of evolutionary

requirements acquisition from multiple sources. Thus, eliciting

and merging information from multiple sources is vital to

make intelligent evolution decisions. In this paper, an evolution

requirements acquisition method based on information fusion

is proposed, which comprehensively utilizes its functionality

statements, its online comments and its similar apps’ online

comments to refine evolutionary requirements. By evolution

point ranking and selection, it provides a feasible and

reasonable way to recommend the evolutionary requirements

for the next release of the mobile application.

Keywords information fusion; evolutionary requirements;

kernel concerns; mobile app; user comments.

I. INTRODUCTION

Since the launch of Apple App Store and Google Play in
2008, mobile applications have penetrated into multiple
aspects of people's daily life such as communication, games,
reading, shopping, social networking, scheduling, working
and so on [1].

Users are increasingly interested in downloading and
installing mobile applications (apps) to obtain convenient
services as more and more apps are published in app stores.
Meanwhile mobile apps are facing fierce market competition.
On the one hand, the proliferation of homogenous apps
brings great challenges to the sustainable development of
mobile apps [2]; on the other hand, user expectations are
becoming more and higher with the improvement of mobile
apps [3]. If mobile apps fail to respond demand changes
timely, they will be replaced by other apps soon. Therefore,
continuously paying attention to user feedbacks, market
changes and main competitors are vital for mobile apps to
stand out in fierce competition.

However, tracing, integrating and prioritizing the
demands elicited from user feedbacks, market changes and
main competitors are always huge challenges for providers
due to the cost and time constraints [4]. Hence, in this paper,
an information fusion based evolution requirement
acquisition method for mobile apps is proposed, which not
only provides a merge algorithm to synthesize the
information of its own feedback and similar apps’ feedback,
but also proposes a ranking method to evaluate the
importance of the evolutionary points, which provides a

feasible way to determine the priorities of the evolution
requirements of certain mobile application.

In this paper, Section 2 introduces the relevant work.
Section 3 to 5 introduces the whole method. Section 6
demonstrates the effectiveness of the method through a case
study. Section 7 summarize the paper.

II. RELATED WORKS

There are two main ways for mobile applications to
acquire evolutionary requirements: monitoring based
evolutionary requirements acquisition and application market
analyses based evolutionary requirements acquisition.

A. Monitoring Based Evolutionary Requirements

Acquisition

Monitor the changes of user behaviors and system
performance indicators, find problems or bottlenecks in time
are important for mobile apps to analyze evolutionary
requirements. Therefore, deploying various performance
monitoring tools to detect performance indicators such as
response time, resource utilization and data transmission rate
in real-time has become important means to guide system
improvement [6]. For example, Instagram deploys Munin to
fulfil network resource monitoring, Dogslow to fulfil process
monitoring, and Redis to fulfil database query traffic
monitoring [7]. However, monitoring-based evolutionary
requirements acquisition is prone to discovering system
anomalies and performance bottlenecks, but not suitable for
capturing evolutionary requirements arising from user
experiences or expectation changes.

B. Application Market Analyses Based Evolutionary

Requirements Acquisition

Basic information, technical information and market
information of a mobile app are needed when it is submitted
to app market to facilitate user retrieval. The basic
information of the application mainly includes the developers,
size, function description and characteristics description. The
technical information includes function interfaces, class
libraries and resource manifest files, which can be obtained
by reverse analysis. The market information consists of the
price, category, download records and reviews of the app.

The methods in this category can be divided into three
kinds: feature analysis, version engineering and commentary
analysis.

Feature analysis methods mainly focus on extracting
applied features from all the available information sources
include app descriptions and resource listing files, internal
functions, permission and comments by NLP, topic
modeling , clustering and other technologies[8-10]. The

methods have been widely used in app recommendation and
version evolution.

Version engineering methods focus on version
information and release strategies. The recommendation of
app and the formulation of version strategy are realized
based on the analysis of the relationship between version
external function interfaces, download volumes, comments
and sales volumes [11-13].

Comment analysis methods focuses on extracting useful
information from online comments of apps. These methods
categorize and summarize the comments with other
information such as version and download to understand the
concerns and complaints of users by using the technology of
classification, topic extraction, affective analysis, association
mining and regression analysis [14-16].

III. ACQUISITION PROCESS OF EVOLUTIONAL REQUIREMENTS

Evolutional requirements can be extracted from user
comments. However, effective comments from which
evolutionary requirements can be extracted are few because
they were written spontaneously by ordinary users with the

main purpose of describing their own feelings. Therefore, it
is not enough. The acquisition should be broaden to gather
the useful information from the comments of its similar apps,
namely the apps with similar functions and the apps from
competitors or potential competitors in the market.

As shown in Fig.1, a mobile application evolutionary
requirements acquisition process is designed to integrate user
requirements from multiple sources, which include the
application information, its user comments and the user
comments of its similar apps.

Firstly, Kernel Concerns (KCs) are automated extracted
from its own comments and its similar apps’ comments; and
then, they are used to generate a specific Scenario Model
Instance (SMI) for each comment; after that, Aggregated
Scenario Models (ASMs) are generated and merged
according to the similarity of the kernel concerns of SIMs
and ASMs; then, an association establishment algorithm is
utilized to establish the associations between the ASMs and
the Functional Structure Tree (FST) created according to the
application information; finally, a ranking strategy is
employed to prioritize the potential evolutionary points.

Fig. 1. Acquisition process of evolutional requirements

IV. MODEL DEFINITION

A. Definition of Functional Structure Tree

The app information registered in App Store is
represented in Functional Structure Tree (FST), which is
defined as follows:

Definition 1 Functional Structure Tree is modeled as T=
(N, R), where N = {N0, N1... Nn} denotes the set of function
nodes in T (n >=0) and N0 is the root node and represent the
whole system; each functional node Ni contains two
attributes: function name and function description, denoted
as Ni:=<Name, Description>; R={<Ni, Nj>, i ≠ j} represents
the set of relationships among function nodes in T, and <Ni,
Nj> indicates that Nj is a sub-function of Ni.

FST construction process is as following: firstly,
construct the app’s FST according to the basic and technical
information provided to App Stores; after that, supplement
the FST with the functions of its similar apps abiding by the
following rules:

Traverse the function description of each similar app: for
each function fi in the description:

⚫ If a matching node can be found in FST, record it as
an alias if the function name is inconsistency with
the node’s name;

⚫ Otherwise, if fi is a sub-function of the function fj
which has a matching node Nj is FST, add a new

node Ni for fi and establish a relation < Nj, Ni >;
otherwise, add a new node Ni for fi and establish a
relation < N0, Ni >.

An example is shown as Fig. 4.

B. Definition of Scenario Model Instance

Definition 2 Scenario Model Instance (SMI) describes in
which scenario the demand is needed or the defect happens.
Its core element is KernelConcern, which has the attributes
of HasTriggers, HasApperences, HasTerminal, HasOS and
HasAppV [17].

For space limit, we only shown an example of SMI for
the comment C1 “Quit without prompt after open the
positioning function” in Fig.2. The technical detail of how to
construct SMI can be found in [17].

Fig. 2. SMI for the Comment C1

Create SMI for each

comments

Establish and fix

the associations

SMIs

Create ASMs Construct FST

App

information

Merged ASMs FST

Ranking of potential

evolution points

App

comments

Similar Apps

comments

KCs automated

extraction

KCs
Similar Apps

information

Evolutionary

requirements

FST with

ASMs

App specific

ASMs

 Process defined in this paper

 Process defined in [17]

Artifacts used/generated by processes

Merge ASMs

《KernelConcerns》

KernelConcern= Quit

HasTriggers

<<HasApperence>>

Quit automatically

HasApperences

<<Trigger>>

Open the positioning

function

HasTerminal

HasOS

HasAppV 3.2

Apple iPhone XR

iOS

C. Definition of Aggregated Scenario Model

Definition 3 Aggregated Scenario Model (ASM) is an
aggregated model of multiple scenario model instances with
the same kernel concerns.

 The algorithm of ASM construction are also elaborated
in [17]. Therefore, we only show an example of ASM with
the kernel concern “Quit” in Fig.3. The model is integrated
by 15 SMIs whose kernel concerns are all “Quit”. And the
number in each rectangle represents the frequency of the
attribute appears. It is worth mentioning that the number of
trigger is not 15 because some of the comments do not
specify their trigger events.

Fig. 3. Aggregated scenario model

V. RANKING AND SELECTION OF POTENTIAL EVOLUTIONARY

POINTS

Ranking and selection of potential evolution points
should be related not only to the importance of a function or
the severity of a defect but also to the degree of the user
attention to them. Therefore, the following evolution points

The step of ranking for defect feedback evolution point
are as follows:

Step1: Construct FST for the app according to the
process described in section 4.1.

Step2: Construct SMIs and ASMs for the app and its
similar apps according to [17].

Step3: Merge the ASMs of all apps.
In this step, the ASMs of different apps are merged

according to the similarity of their kernel concerns, which is
judged by the requirements analyst. Once the analyst decides
which two ASMs can be merged, the merge algorithm can be
carried out automatically.

Algorithm 1: Merge algorithm of ASMs

Input: ASM M1, M2; M1, M2 are the ASMs to be merged

Output: ASM M

1: Initialize ASM M = M1

2: Initialize the counter of the kernel concern of M:

M.times += M2.times

3: for each a∈AttributesSet do

4: for each v∈M2.a.V do

5: if (v∈M.a.V) then

6: M.a.v.times += M2.s.v.times

7: else

8: M.a.V.add(v)

9: M.a.v.times= M2.s.v.times

10: end if

11: end for

12: end for

13: return M

The input of the algorithm is two ASMs, M1 and M2, and
the output is the merged M. M is initialize to M1 (Line 1),
and the counter of the KernelConcern of M is set to the sum

of the counters of the KernelConcern of M1 and M2 (Line 2).
For each attribute a in AttributesSet (Line 3), traverse each
value v in M2.s.V(Line 4): if v already exists in M.s.V, sum
M.s.v.times and M2.s.v.times (Line 5-6); otherwise, add v to
M.s.V, and assign M.s.v.times to M2.s.v.times (Line 7-9).

For example, as shown in Fig. 3,{Triggers, Appearances,
Terminals, OS, AppVersions} are the AttributesSet of the
ASMs; and the value set of the attribute “Terminals” is
{“Apple iPhone”, “HuaWei”}.

Step4: Establish the association between the ASMs and
the FST according to the following algorithm:

Algorithm 2: Association establishment algorithm between

ASMs and FST

Input: ASMSet MS, FST T;

Output: RelationSet RS

1: RS =NULL // Initialize the relation set RS to NULL

2: for each asm∈MS do

3: for each lnode∈T.leafNodeSet do

4: if (asm.KernelConcern.IsAssociatedWith(lnode))

5: then RS.add(asm.KernelConcern, lnode)

6: end if

7: end for

8: end for

9: return RS

Algorithm 2 aims to establish the association between
ASMs and FST. For each asm in the ASM set MS, traverse
each leaf node lnode of FST T (Line 2-3): if the kernel
concern of asm is associated with lnode which is determined
by analyst, add a relation between them to the relation set RS
(Line 4-5). Finally, the relation set RS is returned (Line 9).

Step5: Ranking of the ASMs
The importance of an ASMi G(ASMi) is measured by the

product of the importance of the model’s kernel concern
GA(ASMi), the importance of the function associated with
the model Gf(ASMi) and the user attention to the model
Gu(ASMi), as shown in formula 1.

G(ASMi) = GA(ASMi) ∙ GF(ASMi) ∙ GU(ASMi) (1)
GA(ASMi) is determined by requirement engineers and

can be divided into three levels{0.5,1,2}, which
represent{not serious, normal, serious}. GF(ASMi) is also
divided into three levels{0.5,1,2}, which represents
{unimportant, normal, important}. The value of GF(ASMi)
that is not associated with any functional of the ASM is set to
1 by default. Of course, requirements engineers can also set
other levels in the specific implementation process.

GU(ASMi) can also be divided into three levels{0.5,1,2}.
It is calculated by the number of times the user pays attention
to the concern, as shown in formulas 2- 4.

GU(ASMi)
= {

0.5 𝑖𝑓(Ti < minp)

1 𝑖𝑓(Ti ≥ minp&&Ti ≤ maxp) (2)

2 𝑖𝑓(Ti > maxp)

minp = min + (max − min)/3 (3)

maxp = min + 2 × (max − min)/3 (4)
Where Ti indicates the number of times ASMi is

concerned; max and min indicates the maximum and
minimum number of times a ASM is concerned, respectively;
minp and maxp divide the range between min and max into
three ranges on average.

Based on the score calculated of G(ASMi), the ASMs
with TOP n scores are recommended as the evolution
requirement points.

《KernelConcerns》

KernelConcern= Quit

Triggers

quit

Apperences

15

15

Navigation click 1

Terminals

OS

AppVersions

3.2 4

4.0 3

4.0.4 4

4.5 3

4.6 1

Apple iPhone 6

HuaWei 9

Android 9

iOS 6

VI. CASE STUDY

Take Baidu Map with the version of 4.6 as the sample
app, and take Amap with the version of 5.0 as its similar app.
840 user comments of Baidu Map and 960 user comments of
Amap are crawled as feedbacks.

The evolution points are selected according to the process
described in section V, which is specified as follows.

Step 1: The FST of Baidu Map was built as Fig.4.

Fig. 4. FST of Baidu Maps

Step 2: Seven feedback ASMs are constructed through
the analysis of the comments, namely “deviation”,
“inaccurate”, “slow”, “auto-exit, “flash-screen”, “down-time”
and “waste-of-slow”.

Step 3: "Inaccurate" and "deviation" are merged as they
indicate the same meaning. Finally, six ASMs are retained.

Step 4: The associations between these ASMs and the
FST are established using algorithm 2. The associations
between ASMs and function nodes of FST are built as
follow:<deviation, location>, <slow, location>, <auto-exit,
navigation>, <flash-screen. start>. No functions are
associated to the ASM with concern “down-time” and
“waste-of-flow”.

Step 5: Set the GA, GF value of each ASM under the
guidance of the analyst and calculate GU according to the
formula 2-4 based on the times of the feedbacks. Finally,
calculate the importance of each ASM by formula 1 and sort
them in descending order. The result is shown in Table 1.

Table 1. The result of the ranking of evolution points
N F R T GU GA GF G(ASMi)

1 Deviation Location 720 2 2 2 8

2 Slow Location 490 1 1 2 2

3 Auto-exit
Navigatio

n
150 0.5 2 2 2

4
Flash-

screen
Start 190 0.5 2 2 2

5 Down-time / 90 0.5 2 1 1

6
Network

flow waste
/ 160 0.5 1 1 0.5

Note: F indicates the kernel concern of the ASM; R indicates
the function associate with the ASM; T indicates the feedback times
of the kernel concern of the ASM; GU, GA and GF indicate
GU(ASMi), GA(ASMi) and GF(ASMi), respectively.

As shown in the table, the most important evolutionary
requirement is to settle the problem of “deviation” in the
“location” function; and the least important one is to settle
the problem of “Network flow waste”.

VII. SUMMARY

In this paper, a multi-source information fusion based
evolution requirements acquisition method for mobile apps is

proposed. It synthesizes the information provided to App
Stores, the feedbacks of the app and its similar apps to
acquire evolutionary requirements. By ranking the ASMs
according to their importance and user attention, most urgent
evolutionary requirements can be found. The case study on
Baidu Map show that the ranking is similar to its version
history, which verifies the effectiveness of the method.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Plan of China (No. 2017YFB0503702).

REFERENCES

[1] William Martin, Federica Sarro, Yue Jia, et al. 2016. A Survey of App
Store Analysis for Software Engineering[J]. Research Note of UCL
Department of Computer:1-56.

[2] Cuiyun Gao, Hui Xu, Junjie Hu, et al. 2015. AR-Tracker: Track the
Dynamics of Mobile Apps via User Review Mining[C]//Proceedings
of the Service-Oriented System Engineering (SOSE), 2015 IEEE
Symposium on. IEEE, 284-290.

[3] Claudia Iacob, Rachel Harrison. 2013. Retrieving and analyzing mobile
apps feature requests from online reviews[C]//Proceedings of the 10th
Working Conference on Mining Software Repositories (MSR).41-44.

[4] Lawrence Bernstein, C. M. Yuhas. 2014. Software Requirements[M].
Apress, 73-106.

[5] Xie zhongwen, li tong, dai fei, etc. 2011. A paraconsistent meta-model
of requirements for software evolution[J]. journal of Jiangsu
university(natural science edition), 32(5):562-568.
Doi:10.3969/j.issn.1671-7775.2011.05.013.

[6] Liyin Tang, Vinod Venkataraman, Charles Thayer. 2012. Facebook’s
Large Scale Monitoring System Built on HBase[C]//Proceedings of
the Strata Conference.

[7] Dong Sun, Rong Peng, Wei-Tek Tsai. 2014. Understanding
Requirements Driven Architecture Evolution in Social Networking
SaaS: An Industrial Case Study[C]//Proceedings of the Service
Oriented System Engineering (SOSE), 2014 IEEE 8th International
Symposium on. IEEE, 230-236.

[8] Borja Sanz, Igor Santos, Carlos Laorden, et al. 2012. On the Automatic
Categorisation of Android Applications[C]//Proceedings of the 9th
IEEE Consumer Communications and Networking Conference.149-
153.

[9] Jieun Kim, Yongtae Park, Chulhyun Kim, et al. 2014. Mobile
application service networks: Apple’s App Store[J]. Service Business,
8(1):1-27.

[10] Lavid Ben Lulu David, Tsvi Kuflik. 2013.Functionality-based
clustering using short textual description: helping users to find apps
installed on their mobile device[C]//Proceedings of the International
Conference on Intelligent User Interfaces.N/A.

[11] Diya Datta, Sangaralingam Kajanan. 2013. Do App Launch Times
Impact their Subsequent Commercial Success? An Analytical
Approach[C]//Proceedings of the International Conference on Cloud
Computing and Big Data.205-210.

[12] Israel J. Mojica Ruiz, Meiyappan Nagappan, Bram Adams, et al. 2016.
Analyzing Ad Library Updates in Android Apps[J]. IEEE Software,
33(2):74-80.

[13] Gunwoong Lee, T. S. Raghu. 2014. Determinants of Mobile Apps'
Success: Evidence from the App Store Market[J]. Journal of
Management Information Systems, 31(2):133-170.

[14] Ning Chen, Jialiu Lin, Steven C. H. Hoi, et al. 2014. AR-miner:
mining informative reviews for developers from mobile app
marketplace[C]//Proceedings of the 36th International Conference on
Software Engineering.767-778.

[15] W. Maalej, H. Nabil. 2015. Bug report, feature request, or simply
praise? On automatically classifying app reviews[C]//Proceedings of
the Requirements Engineering Conference.116-125.

[16] Guzman E, Aly O,Bruegge B. Retrieving diverse opinions from app
reviews//Empirical Software Engineering and Measurement (ESEM),
2015 ACM/IEEE International Symposium on. IEEE, 2015: 1-10.

[17] Sun D, Peng R. A Scenario Model Aggregation Approach for Mobile
App Requirements Evolution Based on User
Comments[M]//Requirements Engineering in the Big Data Era.
Springer Berlin Heidelberg, 2015: 75-91.

