
Formal Security Analysis for Blockchain-based
Software Architecture

Nacha Chondamrongkul∗, Jing Sun†, Ian Warren‡
Department of Computer Science

The University of Auckland
Auckland, New Zealand

∗ncho604@aucklanduni.ac.nz † jing.sun@auckland.ac.nz ‡ i.warren@auckland.ac.nz

Abstract—During the design phase, security as a non-
functional requirement needs to be analysed to address vul-
nerabilities in the architecture design. Without such analysis,
security vulnerabilities can be propagated to the implementation.
However, security analysis is an error-prone task, especially
in complex systems that apply blockchain technology. Without
proper security controls applied, the interaction among software
components and the blockchain may pose security risks. This
paper presents a security analysis approach based on a formal
model of blockchain-based architecture design. Our approach
can automatically identify specific security vulnerabilities and
generate informative scenarios that show how attacks may impact
the blockchain. We have evaluated our approach with an example
system and found it performs well in identifying an extensible
class of security vulnerabilities.

Index Terms—Software Architecture, Security Analysis,
Blockchain, Formal Method

I. INTRODUCTION

Blockchain is an emerging technology that many software
engineers apply to secure data and resources in software sys-
tems. To protect data against tampering, blockchain is usually
applied as software components that provide data storage,
computation services and control functions [1]. Designing the
software architecture for blockchain-based systems involves
off-chain components that are outside the blockchain network
and on-chain components that have access to a node in the
blockchain network. With the combination of on-chain and
off-chain components, protecting a blockchain-based system
is not limited to the blockchain, but the structure and be-
haviour of other components that interface with the blockchain
should also be considered to eliminate risks of attacks [2].
At the design stage, beside verifying the design against the
functional requirements, the architecture security analysis task
is conducted using software architecture design models [3].
This task involves tracing through the components and security
configuration to pinpoint any security flaws in the architecture
design. It helps to prevent the architectural security flaws
propagating to the implementation.

There are approaches proposed to verify security in the
software architecture design in general, such as [4] and [5].
These approaches apply logical rules and metrics that are
hard-coded in source code. Almorsy et al. [6] presented an
extensible tool to identify different security attacks based on

DOI reference number:10.18293/SEKE2020-024

the signatures representing security metrics and vulnerabilities.
However, the blockchain-based system has specific interaction
behaviour between on-chain and off-chain components that
requires tracing through different attack scenarios to find both
direct and indirect impact. The scenario-based traceability
is not yet addressed by the existing approaches. There are
approaches particularly proposed to analyse security in the
blockchain. Luu et al. [7] enhanced the operational semantics
of Ethereum to prevent security bugs in the smart contract.
Chaieb et al. [8] proposed a verifiable protocol that applies
encryption to ensure privacy and security properties. Some
approaches [9] [10] [11] have been proposed to verify security
in the smart contract by analysing source code. However, these
approaches focus either on the structure within the blockchain
or the implementation of the blockchain that does not yet
exist at the design stage. There is still lack of approaches
that can analyse security in blockchain-based application at
the software architecture level.

This paper presents an approach that supports architecture
security analysis based on a formal model of blockchain-based
architecture design. At the design stage, our analysis approach
aims at verifying security as a non-functional requirement after
the design has complied with functional requirements. Our
approach can automatically identify security characteristics
and generate scenarios that show how attacks may have direct
or indirect impact on the blockchain. The contribution of our
approach can be summarised as follows. First, the formal
modelling of blockchain-based software architecture design is
proposed to describe the structural and behavioural aspect of
blockchain-based systems. Second, a set of formally described
security characteristics representing security metrics and vul-
nerabilities is presented. This set is extensible to support other
characteristics not addressed in this paper. Last, our approach
has been implemented as a tool. This tool allows users to
seamlessly perform modelling and security analysis of the
blockchain-based system at the architectural level.

The rest of this paper is organized as follows. Section II
explains a motivating example of blockchain-based system and
its security challenges. Section III presents the modelling and
analysis approach. Section IV presents the evaluation of our
approach. This paper is concluded in Section V.

II. SECURITY IN BLOCKCHAIN-BASED ARCHITECTURE

This section discusses an architecture design for an example
application that applies blockchain. In addition, this section
identifies the security threats in the architecture design.

A. Motivating Example

AgriDigital is a motivating example that we use in this
work. In this paper, we briefly introduce the system, but
more details can be found in [12]. The system applies
blockchain technology to build digital trust between parties
in the agriculture supply chain such as farmers, suppliers and
transporters. Digital trust allows different parties to track and
transfer commodities while financial transactions can be made
transparently. The architecture design of AgriDigital can be
found in Figure 1. The AD Web App and Provenance Web App
are web applications that allow users to perform administration
operations and enter the record of commodities. After a
user enters or updates information, Provenance Integration
publishes it to involved components such as AD Message
Bus and Blockchain Message Bus. Blockchain Message Bus
notifies Blockchain Integrator about updated information. This
design applies the Oracle pattern [13] that allows the off-chain
component to push information from the external world to the
blockchain. Therefore, when Blockchain Integrator is notified
about the new information, it creates a new block that keeps
financial transactions on the Public Blockchain, while another
block is created and appended on Private blockchain for an
updated status of commodities. Some status of commodities
can be detected and updated through IOT Sensor that helps to
measure the condition of commodities such as temperature and
humidity. These records of updated status are also created as a
block on Private Blockchain. Reverse Oracle pattern has been
applied between Digital Wallet and Public Blockchain. This
pattern allows Digital Wallet to fetch financial information
from the blockchain for processing.

Some off-chain components, such as AD AppServer, AD
WebServer and IOT WebApp are deployed on local dedicated
servers, while others, such as Provenance Integration, Prove-
nance WebApp and Blockchain Integrator, are deployed on
the public cloud infrastructure. The deployment configuration
of these components poses security threats to the on-chain
components such as Private Blockchain, implemented with
Quorum, and Public Blockchain implemented with Ethereum.

B. Attack Scenarios

The on-chain components are vulnerable to attack as they
are in the request flow triggered by the off-chain components.
In this work, we focus on prominence attack scenarios that
usually have security impacts on the blockchain, namely data
disclosure and data tampering.

1) Data Disclosure: A key decision in designing
blockchain-based software is determining whether the data
should be placed on-chain or kept off-chain [1]. The same copy
of data in the blockchain is shared among all nodes that run
in the blockchain network. If adversaries have access to any
node, they can also access the data stored in the blockchain.

AD WebServer

Public Cloud

AD AppServer

IOT WebApp IOT Device

BankNet
Ethereum

Quorum

AD Web App
AD

Web API

AD

Message Bus

Provenance

Integration

Provenance

Web App

adprovide

adnotify adlog

prvpublish

Blockchain

Message Bus

bclog

IOT

Web API

iotprovide

IOT

Sensor

Public

 Blockchain

Private

 Blockchain

Digital

Wallet
check

finance

Blockchain

Integrator

bcint
logfinance

logstate

Fig. 1. AgriDigital System

Even though data on the blockchain can be encrypted, the data
could be disclosed if the private key is stolen [2]. Securing
the connections and components that access the blockchain is
therefore important. In our example system, if Digital Wallet
or its connection to Public blockchain is compromised, the
financial transaction can be disclosed.

2) Data Tampering: Data in the blockchain is known to
be nearly immutable and tamper-proof since hash functions
are one-way and collision resistant [14]. However, when the
oracle component feeds data to the blockchain, the data are
assumed to be trusted by all participants. If the oracle is
compromised, the adversaries could modify data before it is
stored on the blockchain. The oracle should be safeguarded by
appropriate security controls to prevent this scenario. In our
example system, the Blockchain Integrator serves as an oracle
component. If the Blockchain Integrator or the components
that feed data to it such as IOTWebAPI and Provenance
Integrator are compromised, the data on Private Blockchain
and Public Blockchain can be tampered with.

C. Security Metrics

Different security metrics are used to measure the security
in the software architecture design. In this work, we focus
on the security metrics that suit assessing blockchain-based
software architecture.

1) Attack Surface: This metric measures the number of
weaknesses in the system that the adversaries can use to
attack the system. The attack surface is usually where the
system is open to the external environment such as where data
are entered or the components that are publicly accessible.
The lower the number of attack surface, the more secure the
system is. In our example, Public Blockchain is an attack
surface as it allows any entity to join and run a node in the
blockchain network. BCIntegrator and IOTWebAPI are also
attack surfaces as they are accessible from the public network.

2) Least Priviledge: This metric ensures that minimal ac-
cess to critical data or operations is granted to users or other
components in the system. From an architectural perspective,

the number of components that can access critical data should
be limited. In blockchain-based software, the on-chain com-
ponents are critical components that should be accessed by no
more than necessary off-chain components. In our example,
BCIntegrator and DigitalWallet are the only components that
have direct access to the on-chain components.

3) Defense In Depth: This metric measures how security
controls are applied at different points in the system. To
protect data in the blockchain, the components that access the
blockchain should employ security controls at the component,
host and network layers. For architectural analysis, we can cal-
culate the ratio of off-chain components that access on-chain
components and which apply security controls compared to
the total number of off-chain components that access on-chain
components. The higher the ratio value is, the more secure
the system is. In our example, BCIntegrator and DigitalWallet
should apply authentication and authorization controls, as well
as a firewall that prevents incoming malicious traffic.

III. FORMAL SECURITY ANALYSIS

Our formal security analysis for blockchain-based software
architecture combines ontology reasoning and model checking
techniques, as shown in Figure 2. First, the architecture design
is formally modelled as the component and connector (C&C)
view and the deployment view. Second, the ontology reasoner
is used to identify security vulnerabilities in the model, based
on the ontology description of architecture patterns and se-
curity characteristics. These ontology descriptions are defined
as classes kept in the ontology library. Third, assertions are
inserted into the behavioural model based on the identified
vulnerabilities. Finally, the model checker processes the asser-
tions against the model and generates the security scenarios.

Ontology Library

Blockchain Patterns

Security Characteristics

Basic Patterns

Ontology Reasoner

LTL Assertions

Model Checker

Architecture Model

C&C

View
Deployment

View

Model in OWL

2. process model in OWL to identify

security vulnerabilities

3. Generate assertions to

demonstrate scenarios

4. verify assertions against

model in ADL

Architecture

Modeller

1. create design model

Model in ADL

Security

Vulnerabilities

Attack

Scenarios

Fig. 2. Overall Analysis Process

A. Blockchain Architecture Modelling

Both structure and behaviour of the model are essential to
analyse the security in the design phase. Structure in architec-
ture design can be formally defined as ontology representation
using the Ontology Web Language (OWL). Behaviour respect

Port

Role

<component>

Oracle

<connector>

IOConnector

orafeed

extsupplier

blockstorage

<component>

Blockchain

blockstore

<component>

Reverse Oracle

<connector>

IOConnector

blockquery

extquerier

blocksupplier

<component>

Blockchain

blocksupply

<component>

Storage

<connector>

OSPConnector

hashsupply

hashsupplier

hashlogger

hashlog

<component>

Blockchain

<connector>

OSPConnector

hashcheck

hashcheckerhashvalidator

hashvalidate

a) oracle pattern b) reverse oracle pattern

c) off-chain storage pattern

Fig. 3. Architecture Patterns for Blockchain

to interaction among components, can be defined using the
Architecture Description Language (ADL).

Architecture security analysis is usually performed on the
component and connector view (C&C) and the deployment
view of software architecture design. These views are therefore
semantically described in the design model. Ontology classes
are predefined to support the modelling of the architecture
design [15]. As shown in Figure 3, we have defined four
connector types to support three architecture patterns, namely
Oracle, Reverse Oracle and Off-Chain Storage. These patterns,
proposed by Xu et al. [13], have been applied to blockchain-
based software. In AgriDigital, we applied Oracle and Reverse
Oracle, as well as other basic patterns such as Client-Server
and Publish-Subscribe (more details can be found in [15]).

The design model of a blockchain-based system can be
defined by creating ontology individuals based on defined
classes to represent different entities in the C&C view, such
as Component, Connector, Port and Role. Another set of
individuals is created to represent different entities in the
deployment view such as device, execution environment and
communication link. These entities are linked to describe how
components are deployed within the infrastructure. Due to the
page limit, we present a subset of the AgriDigital model as
shown below1.

Individual(ex : pubwire
value(ex : hasRole ex : pubextsupplier)
value(ex : hasRole ex : pubblockstorage))

Individual(ex : walletwire
value(ex : hasRole ex : wlextquerier)
value(ex : hasRole ex : wlblocksupplier))

Individual(ex : pubextsupplier type(ex : Extsupplier))
Individual(ex : pubblockstorage type(ex : Blockstorage))
Individual(ex : wlextquerier type(ex : Extquerier))
Individual(ex : wlblocksupplier type(ex : Blocksupplier))

The pubwire individual represents a connector that links
Public Blockchain and Blockchain Integrator. The walletwire
individual represents a connector that links Public Blockchain
and Digital Wallet. The code below shows some individuals

1The complete OWL model of AgriDigital can be found at
http://bit.ly/3bm18YB

representing components and ports. The individual repre-
senting the component BlockchainIntegrator has bcint port
that attaches to pubextsupplier defined above. This definition
applies the Oracle pattern. The checkfinance port attached to
the wlextquerier role applies the reverse oracle pattern.

Individual(ex : BlockchainIntegrator
value(ex : hasPort ex : bcint))

Individual(ex : PublicBlockchain
value(ex : hasPort ex : logfinance)
value(ex : hasPort ex : checkfinance))

Individual(ex : bcint
value(ex : hasAttachment ex : pubextsupplier))

Individual(ex : logfinance
value(ex : hasAttachment ex : pubblockstorage))

Individual(ex : checkfinance
value(ex : hasAttachment ex : wlextquerier))

For the deployment view, another set of individuals are
defined partially shown below. Docker1 represents the con-
tainer situated on PublicCloud where BlockChainIntegrator
is deployed. Port12037 represents a communication port that
bcint uses to communicate to Public Blockchain. Link6 rep-
resents the network communication that links the communi-
cation ports that the ports of BlockchainIntegrator and Public
Blockchain are bound to.

Individual(ex : Docker1
value(ex : isNodeOf ex : PublicCloud)
value(ex : hasDeployment ex : BlockchainIntegrator))

Individual(ex : Port12037
value(ex : hasBind ex : bcint))

Individual(ex : Link6
value(ex : hasCommPort ex : Port12037)
value(ex : hasCommPort ex : Port8889))

The interaction behaviour of components can be defined in
ADL as presented in our previous work [16]. This behaviour
model allows the model checker to trace through different
states occurring in the blockchain-based software. The tracing
helps to generate a scenario that shows how an attack happens.
Below is part of model in ADL describing the behaviour of
the Oracle and Reverse Oracle pattern2. The ADL model also
includes definition of the component and system configuration,
which defines role and port attachment, as well as how they
are executed at runtime.

connector IOConnector {
role blockstorage() = token?j → process
→ stored → blockstorage();

role extsupplier(j) = process
→ token!j → Skip; }

connector ROConnector {
role extquerier(j) = request → uid!j
→ res?j → process → Skip;

role blocksupplier() = uid?j → process
→ res!j → blocksupplier(); }

B. Security Characteristic Analysis

Beside the ontology classes supporting blockchain-based
software architecture modelling, we also define ontology
classes for classifying security characteristics in the model.
Three characteristics, namely Attack Surface, Defence in
Depth and Least Privilege, are used to calculate metric values
that measure how secure the system is. Two characteristics,

2The complete ADL model of AgriDigital can be found at
http://bit.ly/2vkmEMK

namely Data Tampering and Data Disclosure, are used to
trace attack scenarios. These ontology classes are kept in
the ontology library. Other characteristics not addressed here
can be defined by creating new class inherited from existing
classes, or conditionally capturing different properties in the
class definition.

1) Attack Surface: To formally define the attack surface, an
ontology class called AttackSurface is created with a logic to
describe the components that are publicly accessible through
the internet or public network such as public blockchain. In
other words, a component is an attack surface if it has an
incoming communication port that binds to the internet link.

AttackSurface ≡ Component u ∃ hasPort
(Port u ∃ isBindTo (IncomingCommPort
u ∃ isCommPortOf InternetLink))

2) Least Privilege: In a blockchain-based system, an on-
chain component is considered as a critical component. We
use an ontology rule to select the components that have access
to the on-chain components. This rule is defined in Semantic
Web Rule Language (SWRL) as shown below. It describes
the connection between two components: comp1 and comp2,
which comp2 is a Blockchain.

hasPort(comp1, p1) ∧ hasPort(comp2, p2)
∧ hasAttachment(p1, r1) ∧ hasAttachment(p2, r2)
∧ hasRole(con, r1) ∧ hasRole(con, r2)
∧ Blockchain(comp2)→ LeastPriviledge(comp1)

3) Defence in Depth: To classify the communication ports
that use security controls, the ontology class, namely Authenti-
catedCommPort, AuthorizedCommPort, FirewalledCommPort
and InputSantizedCommPort are defined. As we aim to capture
the components that have access to the blockchain and apply
security controls, DefenseInDepth is defined as a subset of
LeastPriviledge that has its port bound to an incoming secured
communication port.
AuthenticatedCommPort,AuthorizedCommPort v SecureCommPort
FirewalledComPort, InputSantizedCommPort v SecureCommPort
DefenceInDepth ≡ LeastPriviledge u ∃ hasPort (Port u

∃ isBindTo(IncomingCommPort u SecureCommPort))
4) Data Disclosure: Data disclosure occurs on a connection

that transfers data as plain text over unencrypted protocols
such as http and ftp. PlainLink is defined to represent con-
nectors that communicate using the insecure protocols. An
ontology class called DataDisclosureConnector is defined as
below to describe the connector that is vulnerable to data
disclosure, as it transfers data in plain text.

HTTPLink,FTPLink v PlainLink
DataDisclosureConnector ≡ Connector u (∃ hasLinkVia

(PlainLink u InternetLink))
5) Data Tampering: When data is transferred over a con-

nector that is vulnerable to data disclosure, the data is also be
vulnerable to tampering if the connector is on a communica-
tion link that has no input sanitisation or authorisation. Without
input sanitisation the data may come from an unknown source,
and the data can be changed during the transmission without
any authorisation. DataTamperingConnector class is defined
as below.

NoInputSanitizedCommPort ≡ hasInputSantization <= 0

UnauthorizedCommPort ≡ hasAuthorization <= 0

DataTamperingConnector ≡ DataDisclosureConnector
u ∃(hasLinkVia(CommunicationLink u ∃ hasCommPort
(NoInputSanitizedCommPort u UnauthorizedCommPort)))

C. Security Attack Scenarios Analysis

With the ontology classes defined as previously described,
the ontology reasoner can pinpoint which connector is vul-
nerable to data tampering and data disclosure. We use this
information to generate attack scenarios by inserting attacker
components into the design model. These attacker components
represent software components that adversaries use. Then,
Linear Temporal Logic (LTL) assertions are generated and
inserted into the behavioural model in ADL. This allows the
model checker to trace how the components interact with each
other in response to the attacker’s request. Algorithm 1 shows
how the attacker component and LTL assertions are gener-
ated. This algorithm loops through VulnConnSet that contains
inferred individuals that are of type DataTamperingConnector
or DataDisclosureConnector. The attacker component is added
to the model, and its attack port is attached to the outbound
role of the vulnerable connector. The outbound role is where
the request is initiated to make system responses. All inbound
roles that handle the requests are iterated in the second loop.
This iteration finds the port attached to an inbound role and
its component to generate a LTL assertion.

Algorithm 1 Attack Scenarios Generation
1: Input model is a design model
2: Input VulnConnSet is a set of vulnerable connectors
3: for vulconn ∈ VulnConnSet do
4: create attacker as an attacker component
5: create attack port of attacker
6: attach attack port to outbound role of vulconn
7: for inRole ∈ vulconn.getInboundRole() do
8: for comp ∈ model.getComponent() do
9: for port ∈ comp.getPort() do

10: if port has inRole attached then
11: define a LTL assertion with
12: vulconn as vulnerable connector
13: comp as target component

The LTL assertion that proves the attack scenario is created
according to the formula below. The vevnt represents the event
triggered from the attached outbound role (outrole) of the
vulnerable connector (vulconn). The cevnt represents the event
triggered by the target component (targetcomp) that responds
to the request issued by the attacker component (attacker).
In other words, this LTL assertion checks whether the target
component is always eventually invoked when the attacker
makes a request.

�(attacker.vulconn.outrole.vevnt→ ♦ targetcomp.inport.cevnt)

For example, if the connector between Provenance
Integration and Blockchain Message Bus carries the
plain text over the internet through the cloud-based
container, this is vulnerable to data tampering. The
attacker component could be added here. The LTL
assertion is defined to generate the scenarios of this
attack as �(Attacker.prvmsgwire.publisher.process →
♦ BlockchainMessageBus.bclog.evntlogged). The model
checker verifies this assertion to be valid. The negation of

this assertion gives a counterexample showing a state trace,
as shown below.

init → Attacker attack attacked
→ Attacker prvmsgwire publisher process
→ prvmsgwire pevt!87 → prvmsgwire pevt?87
→ BlockchainMessageBus bclog evntlogged ...
→ BlockchainIntegrator bcint sendtobc
..→ PublicBlockChain logfinance finlogged
→ PrivateBlockChain logstate statelogged ...

This state trace illustrates the sequence of how components
and connectors are involved in the scenario. It shows that
both Public Blockchain and Private Blockchain are affected as
they are consequently invoked by Blockchain MessageBus and
Blockchain Integrator respectively. This information supports
software engineers to analyse and fix the configuration in the
design model. In this case, the communication link to the
Blockchain Message Bus should employ an encrypted protocol
like https. Furthermore, an authorisation control should be
applied to Blockchain MessageBus and Blockchain Integrator
to prevent data tampering. Hence, the state trace helps to
pinpoint where the security configuration should be fixed.

IV. EVALUATION

This section presents how we evaluated our approach using
the motivating example. The detail of how we conducted the
evaluation is explained, followed by the results and discussion.

A. Experimental Setup

We have implemented our approach as a software frame-
work to automate the security analysis process. Arch Modeller3

is implemented as a graphical user interface tool to support
modelling the architecture design and performing security
analysis. This tool allows users to draw the graphical dia-
grams representing the architecture design model using the
Eclipse Modelling Framework (EMF), and converts them into
the structural model in OWL and the behavioural model in
Wright#. The model in OWL can be processed by the ontology
reasoner to identify the security characteristics. Then, the
attacker components are automatically inserted and linked to
the vulnerable connectors; at the same time the LTL assertions
are inserted into the behavioural model. The behavioural
model is processed by PAT ADL [16] and returns state traces
as output, which is not possible using results from ontology
reasoning alone.

The model of AgriDigital4 has been created using Arch
Modeller. In our evaluation, we assume the design model
serves functional requirements correctly before conducting
the security analysis. We aim to assess the completeness
and soundness of the security analysis approach. After the
model has been processed, the result is analysed to determine
whether there are true-positives (TP) or false-positives (FP).
We also analysed the design model to find false-negative (FN)
results that are missing from the results given by the ontology
reasoning. The precision and recall rate has been calculated

3Arch Modeller can be found at http://bit.ly/2m3LITT
4The model of AgriDigital can be found at http://bit.ly/2SfxHjE

according to [6]. This evaluation was carried out using an
Intel Core i7 CPU with 8.00 GB Ram computer.

B. Evaluation Result

The evaluation result is summarised in Table I. The ontology
reasoner took 9,123 milliseconds to detect all five security
characteristics in the AgriDigital model. We have calculated
the precision and recall rate to prove the soundness and
completeness of the results. It can be seen that most of the de-
tection could achieve a 100% recall rate for all characteristics.
The precision rate can achieve 100% for most characteristics
except data tampering, as we have found a false-positive result.
It is important to note that no false-negative has been found, as
the breach to the whole system may be caused by a missing
security flaw. However, the accuracy of the detection relies
on how accurately the security characteristics are defined.
Also, the design model needs to be checked against functional
requirements before the security analysis is performed.

TABLE I
EVALUATION RESULTS

Characters TP FP FN Precision Recall
Attack Surface 7 0 0 1.0 1.0

Least Priviledge 2 0 0 1.0 1.0
Defence in Depth 2 0 0 1.0 1.0
Data Disclosure 5 0 0 1.0 1.0
Data Tampering 3 1 0 0.75 1.0

Table II shows the statistics when the scenarios have been
generated based on identified connectors that are vulnerable
to different scenarios. It can be seen that some assertions
give state traces that show the on-chain components have
indirect impacts (as indicated in the last column). These on-
chain components are not the target directly connected to
the vulnerable connectors, but they have a consequent impact
from the attacks as some part of the request flow leads to
them. In addition, the time taken by the model checker to
process is reasonable for this size of model, however more
comprehensive evaluation is required to better understand its
performance.

TABLE II
SCENARIO GENERATION

Assertion Scenario Time(ms) State# Impact?
#1 Data Tampering 687 22772 None
#2 Data Tampering 930 38014 Indirect
#3 Data Tampering 19 781 Indirect
#4 Data Disclosure 565 22772 None
#5 Data Disclosure 937 38014 Indirect
#6 Data Disclosure 213 781 Indirect
#7 Data Disclosure 5 13 Direct
#8 Data Disclosure 3462 79 Indirect

V. CONCLUSION

This paper presents a security analysis approach for
blockchain-based software architecture design. Based on the
ontology description of the blockchain architecture pattern
and security characteristics, our approach can identify vul-
nerabilities in the design model. Attack scenarios can be

generated based on the identified vulnerabilities using the
model checking technique. The result can be used to determine
whether the blockchain has any impact from the attacks. We
have evaluated our approach with an example system, and
the results showed that it performs reasonably well. Our set
of ontology descriptions can be extended by inheriting or
defining ontology classes to describe other security metrics
or vulnerabilities. Security engineers can extend our ontology
library, which allows software engineers to analyse security in
the blockchain-based system in a standardised way.

For future work, we plan to conduct a more comprehensive
evaluation of our approach and explore how it can be applied
in the software construction stage.

REFERENCES

[1] X. Xu, I. Weber, and M. Staples, Blockchain in Software Architecture.
Cham: Springer International Publishing, 2019, pp. 83–92.

[2] M. Saad, J. Spaulding, L. Njilla, C. A. Kamhoua, S. Shetty, D. Nyang,
and A. Mohaisen, “Exploring the attack surface of blockchain: A
systematic overview,” CoRR, vol. abs/1904.03487, 2019.

[3] W. D. Yu and K. Le, “Towards a secure software development lifecycle
with square+r,” in 2012 IEEE 36th Annual Computer Software and
Applications Conference Workshops, July 2012, pp. 565–570.

[4] J. Gennari and D. Garlan, “Measuring attack surface in software
architecture (cmu-isr-11-121),” 2012.

[5] R. Vanciu and M. Abi-Antoun, “Finding architectural flaws using
constraints,” in 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Nov 2013, pp. 334–344.

[6] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software
architecture security risk analysis using formalized signatures,” in 2013
35th International Conference on Software Engineering (ICSE), 2013,
pp. 662–671.

[7] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS 16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 254269.

[8] M. Chaieb, S. Yousfi, P. Lafourcade, and R. Robbana, “Verify-your-vote:
A verifiable blockchain-based online voting protocol,” in Information
Systems, M. Themistocleous and P. Rupino da Cunha, Eds. Cham:
Springer International Publishing, 2019, pp. 16–30.

[9] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Smartinspect:
solidity smart contract inspector,” in 2018 International Workshop on
Blockchain Oriented Software Engineering, March 2018, pp. 9–18.

[10] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS), Feb 2018, pp. 1–5.

[11] Á. Hajdu and D. Jovanovic, “solc-verify: A modular verifier for
solidity smart contracts,” CoRR, vol. abs/1907.04262, 2019. [Online].
Available: http://arxiv.org/abs/1907.04262

[12] X. Xu, I. Weber, and M. Staples, Case Study: AgriDigital. Cham:
Springer International Publishing, 2019, pp. 239–255.

[13] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern collection
for blockchain-based applications,” in Proceedings of the 23rd European
Conference on Pattern Languages of Programs, ser. EuroPLoP 18. New
York, NY, USA: Association for Computing Machinery, 2018.

[14] F. Chen, Z. Liu, Y. Long, Z. Liu, and N. Ding, “Secure scheme against
compromised hash in proof-of-work blockchain,” in Network and System
Security, M. H. Au, S. M. Yiu, J. Li, X. Luo, C. Wang, A. Castiglione,
and K. Kluczniak, Eds. Cham: Springer International Publishing, 2018,
pp. 1–15.

[15] N. Chondamrongkul, J. Sun, and I. Warren, “Ontology-based software
architectural pattern recognition and reasoning,” in 30th International
Conference on Software Engineering and Knowledge Engineering, June
2018, pp. 25–34.

[16] N. Chondamrongkul, J. Sun, and I. Warren, “Pat approach to architecture
behavioural verification,” in 31th International Conference on Software
Engineering and Knowledge Engineering, July 2019, pp. 187–192.

