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Abstract—Function-as-a-Service promises a new era in which
functionalities are implemented, executed and managed on a
cloud platform with the aim of developing and launching appli-
cations. This paper puts forward an algebraic and hierarchical
model that has ability to construct composite services for cloud
applications. Our model brings many advantages, which are also
presented in this paper.
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I. INTRODUCTION

Over the past decade, cloud computing has been devel-
oped at an unprecedented speed, whilst cloud applications
have increasingly penetrated all areas of industry [1]. Cloud
computing service model allows user to tailor the off-the-
shelf services and adopt them nearly immediately, in spite of
sometimes such a service does not completely customize to a
user’s application.

In the context of cloud computing, conventional services are
developed and deployed in the form of monolithic computation
units, in which all the code is interwoven into one large
piece [2]. As a result, the monolith hinders the scalability
and efficiency of client applications, especially when the
number of participant services is increased. To address the
issue, Function-as-a-Service (FaaS) is proposed, by means of
structuring a serverless architecture that decomposes software
applications into fine-grained functions [3]. Such functions are
further invoked remotely at runtime.

At present, FaaS providers do not pay more attention to
the service modeling. Unfortunately, the lack of modeling
possibly (i) impairs the understanding of the system, (ii) blurs
the details of software design, and (iii) obstructs quick and
frequent changes in high levels of abstraction.

In this paper, we present a novel model specified for FaaS,
which composes services in an algebraic and hierarchical
manner.

II. RELATED WORK

With the growing of cloud computing, the concept of “ev-
erything is a service” has been formulated, such as Platform-
as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS) and
Software-as-a-Service (SaaS) [4].

DOI reference number: 10.18293/SEKE2020-024

TaaS provides a base infrastructure for sale, e.g., virtual
machines and repositories, on which user must configure
and manage a platform before deploy applications on it.
PaaS provides a platform which is already installed in the
infrastructure. Hence, end user can develop and deploy the
applications based on the platform. In comparison with the
first two cloud services, SaaS is simpler. It enables cloud
applications for direct use.

FaaS is even more flexible than PaaS. It allows developer to
‘assemble’ an application from functions on the cloud. How-
ever, current FaaS providers such as AWS Lambda, Google
Cloud Functions, Microsoft Azure Functions and so forth
focus on the language support, single function execution time
and other properties, instead of the composition mechanism
and underlying modeling methodology.

III. F(X)-MAN SERVICE MODEL

In this section, we put forward a service composition model,
called F(X)-MAN, which is inspired by X-MAN component
model and its extensions [5]-[9]. In F(X)-MAN, we regard
both services and exogenous connectors as first-class entities.
Figure 1 illustrates the F(X)-MAN constructs which we further
describe below.

The F(X)-MAN model defines two types of services: atomic
or composite service, which are demonstrated in Figure 1(a)
and 1(b), respectively. An atomic service encapsulates a set of
methods in the form of an input-output function with a purpose
that different services can access, whereas a composite service
consists of sub-services (atomic or composite) composed by
exogenous connectors, which coordinate control flows between
sub-services from the outside. Therefore, services are unaware
they are part of a larger piece of behavior, which become
perfectly suitable for FaaS. Ideally, the services do not have
to be implemented by the same programming language.

Notably, F(X)-MAN model defines algebraic service com-
position [10]. This idea is enlightened by algebra where func-
tions are composed hierarchically into a new function of the
same type. Similarly, in F(X)-MAN, we utilize an exogenous
connector as an operator to hierarchically compose multiple
sub-services into a bigger service, while the resulting service
can be further composed with other services, yielding a more
complex one. The algebraic nature brings an advantage that
F(X)-MAN services can be designed, implemented, deployed
and remotely invoked with high flexibility. For instance, as



1 function run(args){

2 var a = args.paraml;

3 var b = args.param2;

4 var x = firstMethod(a);

5 var y = secondMethod(x, b);

6 var feedback = {"result1":x, "result2":y};
7 return feedback;

8}

9

10 function firstMethod(param){

11 //some code

12 return resulti;

13}

14

15  function secondMethod(paramil, param2){
16 //some code

17 return result2;

18}

s ——[[ 5 ]

feedback
y

firstMethod;

secondMethond;

(a) Atomic service.
S
26

- 1
% service O exogenous connector El input El output |

- . i
| horizontal __y Vertical . !
i data routing data routing O execution order I

(b) Composite service.

Fig. 1. F(X)-MAN: Service model.

shown in Figure 1(b), when we deploy composite service Sg
in a network, in fact all its sub-services, no matter atomic
(S1,S2,S3) or composite (Sy, S5), are exposed and ready for
use.

In order to simulate the statements in computer program-
ming, we define three categories of exogenous connectors
in F(X)-MAN. Composition connectors compose multiple
services by coordinating control flows among them, whereas
adaptation connectors are applied to individual services with
the aim of adapting the received controls. In addition, a paral-
lel connector is specified to handle the concurrent invocation
of services.

We hereby list the most commonly used statements along
with their related connectors.

o If statement. The if statement (sometimes called if-
then statement) is common across major programming
languages [11]. If the expression is evaluated to true,
statements inside the body of if are executed. Accord-

if (cond == true ) { execute S1; }

Fig. 2. F(X)-MAN: Guard.

ingly, we define an adaptation connector called guard that
allows control to reach a service only if the condition is
satisfied, as Figure 2 shows.

If-else statement. In if-else statement (sometimes called
if-elif-else statement), only the statements following the
first expression that is evaluated to true will be executed
[12]. Thus, we define a composition connector, namely
selector, with the aim of branching. Figure 3 presents an
example. If the input of selector has a value of 6, S3
will be invoked. It is worth noting that switch statement

if (cond < 0) { execute S1; }
else if (cond < 5) { execute S2; }
else { execute S3; }

cond— ([ _SEL
[z
cond<o+ cond<5 #

i 51 o] |i Sz o] |i 53 ¢

Fig. 3. F(X)-MAN: Selector.

usually can be converted to an equivalent if-else statement
[13]. Therefore, we do not design another F(X)-MAN
connector for it.

While statement. The while statement presents the basic
iteration [14]. In F(X)-MAN, we define an adaptation
connector called loop, as illustrated in Figure 4. The
loop connector repeatedly evaluates the expression, then
invokes the service if the evaluation result is true, or stop
the iteration if the evaluation result is false. Except for
the while statement, do-while statement and for statement
are also widely used, and both can be easily converted
to equivalent while statements. Hence, we suggest to use
the loop connector for all iterations.

o Parallel statement. The parallel statement, also known

while (cond < 10) { execute si1; }

Fig. 4. F(X)-MAN: Loop.



as concurrent statement, indicates a certain synchro-
nization of concurrent activities [15]. Figure 5 shows a
composition connector called parallel that denotes con-
temporaneous execution of three services. Notably, when
parallel connectors are used in an F(X)-MAN service,
we must pay more attention to its underlying issues, e.g.,
deadlock [16] and race condition [17].

create Threadl execute S1;
create Thread2 execute S2;
create Thread3 execute S3;
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Fig. 5. F(X)-MAN: Parallel connector.

o Block statement. The block statement, also known as
compound statement, is generally adopted to group a
sequence of multiple statements [18]. Therefore, F(X)-
MAN model provides a composition connector, namely
sequencer, which allows user to determine the execution
order.

‘ execute S1; execute S2; execute S3;
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Fig. 6. F(X)-MAN: Sequencer.

While the exogenous connectors coordinate the control
flows, the data channels coordinate the data flows. After a
composite service is structured, we need to add data channels
between services in order to define the direction of each data
flow. Such a channel links the input and output of services.
Figure 1(b) demonstrates two types of data channels in the
composite service: horizontal data routing and vertical data
routing [19]. The former is between two individual services,
which indicates a service passes the outcome data to another,
while the latter is data propagation between the services and
its sub-services, which illustrates the data received by the
composite service is passed to the first invoked sub-service,
whereas the outcome data of last invoked sub-service becomes
the output of the composite service. It is worth noting that we
use JSON as the data interchange format, because (i) JSON
has simple API that are available for many languages [20],
(ii) the name-value pairs provides consistent patterns that are
understandable by any user [21], and (iii) JSON provides faster
object serialization and deserialization with less resources in
comparison with other formats [22].

Next section presents how to use the F(X)-MAN composi-
tion semantic to construct FaaS.

IV. EXAMPLE

In this section, we present an example of using F(X)-MAN
service model for application development based on FaaS.
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Fig. 7. A brief overview of mammography reading system.

Over the past decade, artificial intelligence (AI) technolo-
gies have been developed at an unprecedented speed, whilst Al
applications have increasingly penetrated all areas of industry
[23], e.g., intelligent healthcare [24] and E-commerce [25].
As a nature consequence, developing such a practical Al
application commonly requires experts from various domains.
Moreover, realizing the built-in Al algorithms such as training
neural networks requires significant investment of time, effort,
data and computing resource. Therefore, to the companies who
want to focus on the core business whilst gain the benefits
from data, FaaS looks like a promising solution, by means of
a distribution model allowing Al services outsourcing offered
by third-party vendors [26].

We hereby use F(X)-MAN service model to construct a
mammography reading system (adapted from [27]) with the

function f1(){ /*
function f2(){ /*
function f3(){ /*
function fa(){ /*

code
code
code
code

Fig. 8. F(X)-MAN: Workflow.
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Fig. 9. F(X)-MAN: Mammography reading system.

ability to detect and label the lesions for breast cancer diag-
nosis. This system analyzes two-view mammography images
through several well-trained deep learning models, each of
which is a multi-layer neural network that processes medical
data in a hierarchical fashion. Figure 9 demonstrates the
primitive functional requirements.

At design-time, we firstly implement the relevant functions,
and use them to create atomic services. Then we deposit the
atomic services to a repository, and later retrieve them to
construct composite services. The resulting services can be
deposited again for further construction. After that, we can
deploy the services (atomic or composite) from the repository
to other developers and becomes a part of their programs at
run-time, or use these services as building blocks to construct
our own applications. The whole workflow of F(X)-MAN is
illustrated in Figure 8.

Accordingly, we construct the mammography reading sys-
tem, as shown in Figure 9. For the clarity, we omit the data
channels. It is worth noting that S, S2 and Ss3 are services
developed and deployed by third-parties, which are seamless
connected to our system.

V. EVALUATION

This section provides an evaluation of our algebraic and
hierarchical composition model via several quality attributes,
i.e., low coupling, testability, scalability, reusability, maintain-
ability and evolvability.

A. Low Coupling

In software evaluation, coupling is a term used to measure
the degree of connection and the amount of interaction be-
tween modules [28]. The higher the coupling, the more likely
it is that changes to the inside of a module will effect the
original behavior of another one [29]. Thereby, low coupling
is one of the ultimate pursuits for software engineering.

There are six levels of coupling, as enumerated in increasing
order of malignity [30]: data coupling, stamp coupling, control
coupling, common coupling and content coupling. Our F(X)-
MAN service model only generates the loosest two couplings
in a system:

1) In data coupling, the communication between services is

limited, i.e., via scalar parameters, in which only simple

arguments are allowed to pass directly, e.g., variable and
array. The passed data is always used for an invocation
or a return of control [31].

2) Likewise, the communication in stamp coupling is also
limited. But it passes composite data item, which usually
is a entire data structure. Thus, sometimes a data struc-
ture may contain pieces of data that are unnecessary to
the recipient module [32].

The coupling has a huge impact on testability, scalability,
reusability, maintainability and evolvability.

B. Testability

Testability refers to the effort and time required to validate
the software against its requirement. Thus, a system with better
testability can be validated faster and easier [33]. However,
perform testing in a serverless environment is never a simple
task. An application using FaaS indicates that local code and
foreign code are tangling together. It is difficult to run such
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Fig. 10. F(X)-MAN: Deriving a statechart.

an application locally, unless the local environment can fully
simulate the cloud environment [34].

Although the problem cannot be tackled once for all, we do
facilitate the testability of systems build by F(X)-MAN service
model. Firstly, such a system is completely modularized with



low coupling, which means every behavior implemented in
the local environment can be examined in isolation by means
of unit testing. Secondly, the control flows are coordinated by
the exogenous connectors, i.e., outside of the services, which
implies we can verify the system behavior through a statechart
directly derived by following the control flows, without take
the services (local and remote) into account. Figure 10 is the
statechart derived from the mammography reading system in
Figure 9.

C. Scalability

Scalability is a term that frequently appears in a variety
of computer science domains. Hence, we must explicitly
understand the scalability needed to be evaluated in the scope
of FaaS. In order to avoid the ambiguity, we hereby define the
scalability from two different aspects.

From the perspective of software engineering, scalability is
a fundamental quality referring to the impact of code expan-
sion [35]. In other words, the scalability of F(X)-MAN denotes
the effectiveness of F(X)-MAN when used on differently sized
problems. As presented in Section III and IV, F(X)-MAN pro-
vides outstanding mechanisms for partitioning, composition
and visibility control, which result in great scalability [36].
For example, the mammography reading system constructed in
Figure 9 can be regarded as another F(X)-MAN service, which
can be composed with other services, such as a mammography
report generator, to create a breast cancer auxiliary diagnosis
application, which can be further composed again for a very
large software.

On the other hand, scalability in the context of cloud
computing describes the capability of a system to increase
its throughput under an increased load, e.g., creating more
service instances [37]. As a matter of fact, comparing to
the traditional monolithic models, FaaS achieves much better
scalability. Figure 11 makes a comparison. As Figure 11(a)
shows, a monolithic model encapsulates all its functionalities
into a single process, and scales by replicating the entire
monolith. Contrariwise, current FaaS models put implemented
functionalities into separate services, and replicate the desired
services for scaling, as expressed in Figure 11(b). Apparently,
in FaaS, only services with higher demand will be scaled,
while the monolithic models anyhow waste resources.

Our F(X)-MAN model make a further improvement on
scalability. Except the advantages brought by general FaaS
models, F(X)-MAN also has a superb tailorability, which is
another way of assessing scalability [36]. For example, we can
directly instantiate the sub-services of a F(X)-MAN composite
service, and use them for new compositions, as illustrated in
Figure 11(c).

D. Reusability

Reusability is the capability of a previously implemented
service to be used again or used repeatedly in part or in its
entirely, with or without modification [38]. As aforementioned,
due to the loose couplings among F(X)-MAN services, for
a composite service, the reuse can happen at every level of
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Fig. 11. Comparison of scalability.

granularity, from the atomic services to itself. Hence, the
reusability of a concrete application also depends on the
software design, e.g., how many methods should be put in
a service. The details has been discussed earlier and demon-
strated in Figure 8.

E. Maintainability

Maintainability is a composition of three main subcharacter-
istics: analyzability, changeability, and understandability [39].
So, we perform the evaluation of maintainability based on
these three quality attributes, which are interpreted as follows:

o Analyzability. It describes the capability of model or
source code of a software to be diagnosed for deficiency.
In F(X)-MAN, a composite service can be analyzed from
two perspectives: the control flow can be identified by
its exogenous connectors, while the data flow can be
observed by data channels.

o Changeability. It refers to the possibility and ease of
modification in an application. Because of the low cou-
pling, we can change any service in an application
without effecting others, all we need to confirm is the
related data channels.

o Understandability. It indicates how easy to understand
an application by its developers and users. It becomes
obvious that an application constructed by F(X)-MAN is
a tree, whose structure visualizes the hierarchical compo-
sition of services. Moreover, every connector visualizes
a fixed semantic that can form a statement.

F. Evolvability

Evolution of software is inevitable in industry, due to the
changing requirements must be satisfied during the life cycle.
Thus, the cost of software mainly depends on the evolution in
long term. Thus, evolvability is the capability of an application
to enable its own evolution. In comparison with changeability,
evolvability refers to the change caused by new requirements.
As we presented before, the computational nature of F(X)-
MAN allows us replace any part of an F(X)-MAN architecture



with a new service in a simple fashion, while maintaining its
architectural integrity.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an algebraic and hierarchical compo-
sition model for FaaS. In the future, we plan to make an
empirical study for the evaluation of F(X)-MAN model and
implement a development tool.
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