
An Empirical Study of Maven Archetype
Xinlei Ma† Yan Liu† ∗

†School of Software Engineering, Tongji University, Shanghai, China
∗ Corresponding Author

{1831592, yanliu.sse}@tongji.edu.cn

Abstract—Archetype is a Maven project templating toolkit. An
archetype is defined as an ”original pattern” of the representative
Maven project. Using archetypes enables Maven developers
to quickly work in a way consistent with the best practices
which demonstrate many Maven features and usage patterns
of Maven components. Nowadays, more and more developers
utilize archetypes to standardize development within their orga-
nizations. Despite the ever-growing use, there are still limited
experimental evidence and guidance on how to leverage the
power of archetype. Meanwhile, because of the enormous scale
and spotty quality of projects, it is incredibly challenging to
perform analysis on the whole Maven central repository. As
the simple ”artifacts” of the Maven best practices in many
diverse domains, Maven archetypes are ideal for studying the
”Maven Way” of configuration and the usage pattern of Maven
libraries. Therefore, we perform the first empirical study on
2,326 archetypes retrieved from the Maven central repository
to discover the archetype characteristics. Our results identify
the configuration schema patterns, structural patterns, the uses
of dependencies/plugins in archetypes, and summarize some
evolution characteristics of archetypes as well. The primary
archetype characteristics capture the potential research value
of archetypes. The guidance on how to configure the archetype
and utilize Maven libraries can be leveraged to maintenance,
automatic completion both for archetypes, and Maven projects.

Index Terms—Maven; Archetype; Configuration; Software
Analytics

I. INTRODUCTION

Apache Maven is a software project management and com-
prehension tool. Based on the concept of a project object
model (POM), Maven can manage a project’s build, reporting,
and documentation from a central piece of information [1], [2].

Archetype is a Maven project templating toolkit. It helps
archetype authors create Maven project templates for Maven
developers and provides developers with the means to generate
Maven projects from those project templates. An archetype
is defined as an ”original pattern” or ”model”, which helps
Maven developers get started as quickly as possible. More
encouragingly, it will introduce new users to the best practices
employed by Maven [3]. Nowadays, more and more develop-
ers adopt the archetypes to standardize development within
their organizations. Despite the ever-growing use, there are
still limited experimental evidence and guidance on how to
configure archetypes.

Maven central repository is one of the most popular and
widely used repositories of Maven projects, which contains

DOI reference number: 10.18293/SEKE2020-021

more than 2.8M Java Maven projects [4]. However, those
who want to analyze the whole Maven central repository
face challenges on an enormous scale and spotty quality of
projects [4]. As the simple ”artifacts” of Maven best practices,
archetypes also present the ”Maven Way” [5] of configuration
and some usage patterns of Maven libraries. Therefore, we
perform the empirical study on Maven archetypes in the
Maven central repository instead of all Maven projects. To our
knowledge, we are the first to perform the empirical study on
Maven archetypes [6]. Previous archetype-related researches
[7] paid more attention to its practical usage but failed to
leverage its hidden knowledge.

An archetype consists of the archetype metadata which
describes the contents of archetype and Maven project tem-
plates which can generate a working project [3]. These project
templates include pom.xml files, Java files, and other resource
files. In concept, the archetype is a code ”skeleton” or a
very simple ”artifact” [3]. Maven archetypes and projects are
configured by a POM, which is stored in a pom.xml file.
Since our research object is studying archetype configuration
and usage patterns of Maven libraries, we focus on POMs in
pom.xml files.

This work start with four research questions on the config-
uration levels, design appropriate analysis process to explore
archetype patterns, uses of dependency/plugin, evolution, and
obtain some interesting conclusions finally. The main contri-
butions of our work are as follows:

• Gaining novel insight into configuration-level analysis
across representative Maven projects.

• Presenting a first complete process on archetype analysis
with appropriate static and quantitative methodologies.

• Releasing a pre-processed datasets in https://zenodo.org/
record/3702349#.Xmd21JMzZQI, including all 2,326
archetypes which can be used for further research.

The remainder of this paper is organized as follows: Section
2 presents the terminologies related to this paper. Section
3 describes the methodology applied to conduct the analy-
sis. Section 4 presents the experimental results of the four
proposed questions. Section 5 presents the conclusions of
the study. Due to space limitations, all graphs and Table II
and Table III are available at https://drive.google.com/file/d/
1EhqU1GY1KBS5xipo4DkUtCiurMmE2pdS/view.

https://zenodo.org/record/3702349#.Xmd21JMzZQI
https://zenodo.org/record/3702349#.Xmd21JMzZQI
https://drive.google.com/file/d/1EhqU1GY1KBS5xipo4DkUtCiurMmE2pdS/view
https://drive.google.com/file/d/1EhqU1GY1KBS5xipo4DkUtCiurMmE2pdS/view


II. TERMINOLOGY

Maven artifacts such archetypes, dependencies, and plugins
are identified by the 3-tuple ”GroupId:ArtifactId:Version”,
where GroupId is the organization of this project, ArtifactId
is the name of this project, and Version is the version for this
project respectively. We provide some terminologies of POM
here to make readers understand better.

POM Tree. A POM is stored in a well-defined eXtensible
Markup Language (XML) file consisting of element tags,
which can be modelled as a rooted tree with element nodes:
the POM XML tree [8].

POM Relationship. POM relationships generally include
dependencies, inheritance, and aggregation [2]. POM Inher-
itance means that a POM extends its parent POM directly
and can inherit and override its parent. A Maven project can
be represented as a sub-module with its own POM. Through
POM, a multi-module or aggregator project can group many
sub-module projects [2].

Then, for better analysis, we give detailed definitions of
essential concepts in this paper.

POM XML Element Sequence. In a POM Tree, each
element node has a unique path from the root (”project”
element) to itself. Given a specific element Ele, we can
represent it as a tuple <Ele, Sele> where Ele is the tail
element of the sequence, and Sele is the prefix of this element
in the POM tree.

POM Inheritance Depth. It defined as the depth of the
given POM in the POM inheritance chain. In other words, it
is the number of POMs preceding a given POM in the POM
inheritance chain.

Evolution Type of Dependency and Plugin. We define
the following kinds of dependency changes: dep add, dep del,
dep add del, dep v, dep scope, and dep exclutions. The evo-
lution type of plugin is similar. We use dep, plu, v, and del to
denote dependency, plugin, version, and deletion.

III. METHODOLOGY

In this empirical study, firstly, we give some definitions for
some concepts related to our study. Then we propose four
archetype-based research questions, collect the dataset, and
design corresponding experiments. Based on the findings of
each experiment, we provide conclusions for each research
question or explanations of experimental results. The overall
workflow is presented in Fig. 1.

A. Research Questions

We propose four questions from the aspects of patterns, uses
of dependency/plugin, and evolution. The questions are:

• RQ0: What are typical configuration schema patterns in
archetype POMs?

• RQ1: How are structural patterns used in archetypes?
• RQ2: What is the usage pattern of dependencies and

plugins in archetypes?
• RQ3: How archetypes evolve during the lifecycle?

B. Dataset Preparation

1) Collecting raw dataset: We collect all the second latest
archetypes in JAR format from the Maven central repository,
which include 6,432 POM files and 11,050 Java code file.
Moreover, for archetype evolution study, our dataset contains
10,184 archetypes releases for a total of 2,326 archetypes,
which gives an average of 4 releases per archetype.

2) Processing raw dataset: In Maven projects or
archetypes, the pom.xml file specifies the project structure,
settings for different build steps, and libraries on which the
project depends. We decompress the JAR archetypes, retrieve
pom.xml files from decompressed archetypes, and parse them
to extract useful data (such as adopted dependency and pom
relationships). In this work, we mainly focus on the root
pom.xml files in archetypes except for the POM relationships
(which are extracted from the pom.xml file for archetype
generation process).

C. Technologies

Apriori [9] frequent itemset mining algorithm is used to
investigate what type of dependencies or plugins always work
along, with Confidence level (C), Support (S), and Lift (L) as
metrics.

IV. OBSERVATIONS AND FINDINGS

A. RQ0: What are typical configuration schema patterns in
archetype POMs?

As a configuration file, a pom.xml file should base on the
POM schema. Configuration Schema Patterns of POM are
useful for POM automatic completion. We define Configu-
ration Schema Pattern as a combination of frequent element
sequences to implement a configuration concern in POM. To
answer this question, we propose three subquestions:

• RQ0.1 Which element tags are frequently used in root
pom.xml files?

• RQ0.2 Which element sequences are frequently used in
root pom.xml files?

• RQ0.3 Which configuration schema patterns are fre-
quently used in root pom.xml files?

Figure 3 and Figure 4 illustrate the top frequently used
element tags and element sequences in the root pom.xml
files separately. Referring to these element sequences with
corresponding frequency, we summarize several typical
schema patterns by combining relational element sequences
into an element tree. Figure 2 displays some typical schema
patterns, and the root element of these patterns are build (the
top-level build element under project), dependency, plugin,
and profile. Regarding each element in the element tree, we
manually divide their direct suffix element tags into two
sets according to frequency. In Figure 2, the dotted lines
with boxes mean the set of highly frequently used element
tags, and the original lines with boxes mean the set of less
frequently used element tags. The orange box means the
non-leaf node, and the green box means the leaf node.



RQ0 We analyze the XML schema patterns used in POM
files to detect the recurring element tags and sequences.
For POM automatic completion, several configurations
patterns are detected and concerns principally the tags
build, dependency, plugin, and profile.

B. RQ1: How are structural patterns used in archetypes?

Our investigation of structural patterns in archetypes focuses
on aggregation and inheritance. POM aggregation is used
to manage a complex system which involves hundreds of
interrelated sub-modules. POM inheritance can effectively
reduce the repetition of configuration code and make it easier
to reuse configuration code. Some typical ”Maven Ways”, such
as centralized management of dependencies, predefining of
public components, can be used through POM aggregation and
POM inheritance. In this part, we propose two subquestions:

• RQ1.1 Which proportion of archetypes adopts POM
inheritance or POM aggregation in our dataset? Is the
POM Inherited Depth usually not more than one?

• RQ1.2 Are archetypes which adopt POM inheritance and
POM aggregation simultaneously in proportion in our
dataset?

TABLE I: Uses of POM inheritance and aggregation in pri-
mary dataset and extended dataset

Item Num Avg Mid Max Scope

inheritance 1,817 / / / primary
aggregation 1 / / / primary
inheritance depth / 2.18 2.00 7.00 primary
aggregation 491 / / / extended
aggregation submodule / 10.03 6.00 62.00 extended
inheritance & aggregation 1229 / / / extended

For RQ1.1, we find that 1,817 archetypes have the
specified parent, while only one archetype has sub-modules(it
has specified parent as well). The latter phenomenon is
unreasonable, and we infer it is because these archetypes are
sub-modules of other archetypes which are out of our study
range. Therefore, besides previous basic 2,326 archetypes,
we expand our study scope to parent archetypes upward
POM inheritance chains and find that 491 archetypes are
sub-module projects of their direct parent. Moreover, Table I
shows the average, median, and max POM Inherited Depth
for 1,817 child archetypes, and the average, median, and
max sub-module number for 1,296 archetypes which are both
multi-module and parent projects.

RQ1 Pom Inheritance is adopted by more than 2/3 of the
studied archetypes, and POM Inherited Depth is always
more than 1. About 1/5 of the studied archetypes are
sub-modules of their direct parent, which means POM
aggregation and inheritance are often used simultaneously.
When developers desire to scale up their archetypes, POM
aggregation and inheritance are encouraged to be utilized.

C. RQ2: What is the usage pattern of dependencies and
plugins in archetypes?

According to the principle about the wisdom of the crowds
in software engineering, referring to other developers’ de-
cisions on the library can avoid some pitfalls experienced
by other developers [10]. Therefore, we try to explore the
following subquestions:

• RQ2.1 What is the utilization distribution of dependencies
and plugins?

• RQ2.2 Which dependencies and plugins in archetypes are
frequently adopted, and in which scenario?

• RQ2.3 Which dependencies and plugins are frequently
adopted at the same time and why?

Figure 5a and Figure 5b present the utilization distribution
of dependencies and plugins, respectively, and each one of
distributions is right-skewed. The x-axis shows the number
of archetypes using a type from the dependency or plugin.
The y-axis shows the fraction of total dependencies or plugins
falling within that utilization number bin. It indicates that the
majority of dependencies or plugins show low utilization, and
this result is similar to the study about utilization distribution
of Maven Components among open-source Java projects [11].

For RQ2.2, Figure 6a and Figure 6b illustrate the top
20 frequently used dependencies (from overall 3,188 dis-
tinct dependencies) and the top 20 frequently used plu-
gins (from overall 444 distinct plugins) at the level of
GroupId. The most popular dependency is junit:junit appear-
ing in 536 archetypes, and the most frequently used plugin
is org.apache.maven.plugins:maven-compiler-plugin appearing
in 643 archetypes.

The result of frequent item-set mining shown in Table III
presents what types of dependencies or plugins are utilized
together in high frequency (RQ2.3). We remove the most
frequently used dependencies or plugins in this result like junit
since they nearly appear in every archetype. In Table III, the
tag means the category of dependency or plugin. And S, C,
L, D, P means support, confidence level, lift, dependency, and
plugin, respectively.

Moreover, we summarize three relationships based on the
mining result to explain why they always work along, which
are also indicated in Table III:

• Functionally Related. Functionally related dependencies
or plugins usually belong to the same Java function
module, such as log and test.

• Tool. Some dependencies (or plugins) may support others
as tools.

• Up-Down-Stream. The downstream dependencies (or
plugins) usually depend on the upstream dependencies
(or plugins) to realize interfaces.



RQ2 Very few dependencies or plugins are frequently used,
while most of them are hardly used. We make a two-
level classification for popular dependencies according to
their function and usage scenarios. The result of frequent
item-set mining gives a primary answer to what types
of dependencies or plugins always work along, and we
summarize the relationships to explain the mining result.

D. RQ3: How archetypes evolve during the lifecycle?

Configuration management includes controlling the changes
to the items such as dependencies in the system throughout
their life cycle [12]. In order to analyze the evolution of
archetypes during the life cycle of POM files, we try to answer
several subquestions as follows:

• RQ3.1 How often do archetypes release a new version?
• RQ3.2 Which are the most frequently changed items

when archetypes evolve?

TABLE IV: Overview of dependency/plugin addition and
deletion

Item Median Mean

Dependency Add Rate 0.25 0.46
Dependency Del Rate 0.25 0.31
Plugin Add Rate 0.50 0.79
Plugin Del Rate 0.50 0.50

Item Number

Dependency Addition 932
Dependency Deletion 683
Dependency Addition and Deletion 539
Plugin Addition 461
Plugin Deletion 298
Plugin Addition and Deletion 193

An archetype version number composes of major, minor,
incremental version and qualifier. We regard only major and
minor version number change as an iteration in this question
for incremental numbers and qualifiers are optional. In our
dataset, archetypes release a new version every 150 days on
average and have 7,018 iterations in total.

From the results in Figure 7, we can find that the majority
of change types are associated with dependencies and plugins,
especially their version. Fig. 8 shows the occurring ratio for
each evolution type. (In one iteration, it will be accumulated
when calculating, if the same item changes.)

We also notice that the high frequency of dependency and
plugin addition or deletion, so we calculate the added or
deleted number of dependencies/plugins and their rate for
each iteration. The added dependency rate is calculated as the
following equation:

rateadded dependency =
Cntadded dependency

Cnttotal
(1)

where Cntadded dependency is the number of added dependen-
cies and Cnttotal is the number of total dependencies in the

old version of archetype. The other three rates are similar to
this equation.

As shown in the first part of Table 9, the number of
added or deleted plugins is less than that of dependencies
in general, while the add rate (or del rate) of plugins is
slightly higher than that of dependency as shown in Table
IV. The second part of Table IV gives an overview of
the total number of addition and deletion behaviors for
dependency and plugin. It shows that almost half of addition
and deletion appear together. Figure 10a and Figure 10b
show the time of dependency/plugin addition and deletion
behaviors. Dependency addition and deletion become frequent
since 2007, while plugins since 2009.

RQ3 In general, archetypes release a new version every
2 to 5 months. For archetype iterations, the items about
dependencies and plugins change most often. The reason
is that archetype developers always update the dependency
and plugin information and add/delete dependencies and
plugins. This reflects the high-level attention on the de-
pendency/plugin management from archetype authors.

V. THREADS TO VALIDITY

In our study, we use the second latest version of archetype
to carry out our research, which may cause subtle deviations
in our research results. Another threat to validity concerns
the definitions of the archetype iteration, which may slightly
influence our findings. However, this will not change the trend
of overall results on how archetypes evolve.

VI. CONCLUSIONS

In general, Maven archetypes are the best Maven practices
which are well worth of research. This paper presents an
empirical analysis of 2,326 Maven archetypes hosted by the
Maven central repository. We focus on the Maven archetype
configuration from the aspects of patterns, uses of depen-
dency/plugin, and evolution, and provide some interesting
experimental results. We public our datasets, including 2,326
archetypes, 10,184 releases, and result data in this study. We
hope this paper will benefit further study on this topic.

REFERENCES

[1] Wikipedia, “Apache maven,” https://en.wikipedia.org/wiki/Apache
Maven, 2019.

[2] A. S. Project, “Apache maven,” https://maven.apache.org/
pom.html#What is the POM/, 2019.

[3] ——, “Apache maven archetype,” https://maven.apache.org/guides/
introduction/introduction-to-archetypes.html, 2019.

[4] A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, and O. Barais,
“The maven dependency graph: a temporal graph-based representation
of maven central,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 344–348.

[5] T. O’Brien and M. V. S. Inc., Maven: the definitive guide. O’Reilly,
2008.

[6] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, p. 81, 2018.

[7] T. J. Speicher and Y. Cheon, “Composing a cross-platform development
environment using maven,” in Proceedings of the RCCS+ SPIDTEC2
Workshop on Regional Consortium for Foundations, Research and
Spread of Emerging Technologies in Computing Sciences, Juarez, Mex-
ico, 2018, pp. 68–80.

https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Apache_Maven
https://maven.apache.org/pom.html#What_is_the_POM/
https://maven.apache.org/pom.html#What_is_the_POM/
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html


[8] Y. Lu, J. Liang, Y. Xiao, S. Huang, D. Yang, W. Wang, and H. Lin,
“Xmlvalue: Xml configuration attribute value recommendation,” in 2017
IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), vol. 1. IEEE, 2017, pp. 202–207.

[9] R. Srikant, “Fast algorithms for mining association rules and sequential
patterns,” Ph.D. dissertation, Citeseer, 1996.

[10] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, 2009, pp. 57–62.

[11] H. Sajnani, V. Saini, J. Ossher, and C. V. Lopes, “Is popularity a
measure of quality? an analysis of maven components,” in 2014 IEEE
international conference on software maintenance and evolution. IEEE,
2014, pp. 231–240.

[12] I. of Electrical and E. Engineers, IEEE Standard for Software Configu-
ration Management Plans. IEEE, 1990.


	Introduction
	Terminology
	Methodology
	Research Questions
	Dataset Preparation
	Collecting raw dataset
	Processing raw dataset

	Technologies

	Observations and Findings
	RQ0: What are typical configuration schema patterns in archetype POMs?
	RQ1: How are structural patterns used in archetypes?
	RQ2: What is the usage pattern of dependencies and plugins in archetypes?
	RQ3: How archetypes evolve during the lifecycle?

	Threads to Validity
	Conclusions
	References

