ISC-FS: An Improved Spectral Clustering with
Feature Selection for Defect Prediction

Xuan Zhou!, Lu Lu"%,

and Yexia Qin*>?

'School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
2Modern Industrial Technology Research Institute, South China University of Technology, Meizhou, China
3School of Environment and Energy, South China University of Technology, Guangzhou, China
*Corresponding author email: lul@scut.edu.cn

Abstract—We notice the lack of historical data with labels
always exists in software defect prediction (SDP). Unsupervised
learning and cross-project defect prediction (CPDP) have tried to
address this problem. However, traditional unsupervised learning
always requires manual intervention while CPDP faces the
challenge of heterogeneity between different projects. Therefore,
this paper proposed a framework called Improved Spectral
Clustering with Feature Selection (ISC-FS) to conduct unsu-
pervised learning for defect prediction without human effort
in this paper. First, ISC-FS clusters the software entities and
gets pseudo-labels. Second, we do a feature selection, of which
the key idea is different clusters hold the different magnitude
of features. Last, the selected features are fed to a spectral
clustering method based on connectivity-distance. To validate the
proposed method, experiments were carried out on 28 projects
from PROMISE and NASA datasets, and comparisons were made
with the other five unsupervised methods. The results show the
promising performance that ISC-FS can outperform referential
methods.

Keywords—Software defect prediction, Unsupervised learning,
Spectral clustering

I. INTRODUCTION

With the expansion scale of contemporary software, soft-
ware defect prediction (SDP) has attracted more and more
attention, which can help reduce the test burden and optimize
the allocation of testers and developers. It is usually believed
that the cost of fixing bugs after deployment is higher than that
during development. Given the huge cost and limited budget,
it is important that SDP is involved in the early stage of the
software life cycle.

Researchers have investigated the different algorithms and
features to improve the performance of SDP. SDP tasks usually
consist of two steps: capturing features from software entities
and training a classifier through machine learning methods.
Supervised learning methods predominated in the previous
research related to SDP. But unfortunately, SDP is not widely
used in industry [1]. That is mainly because that the historical
data with labels required in supervised learning is often lack
in pre-release software; more importantly, it is also expensive
and difficult to collect in post-release software [2].

One way to solve this problem is cross-project defect pre-
diction (CPDP), which attempts to use prediction models built
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by other projects with sufficient historical data [3]. The main
challenge CPDP faces are heterogeneity. On the one hand,
different projects may have dissimilar features [4]. On the
other hand, even if a source project with the same features as
the target project is selected, CPDP still faces the differences in
data distribution between source projects and target projects
[5]. As shown in Figure 1, the classifier trained by source
projects may not be suitable for target projects. Moreover,
existing CPDP researches mainly focused on the establishment
of a usable target prediction model. However, a large number
of irrelevant data usually makes the prediction model perform
worse. That explains why CPDP is challenging to achieve
promising performance in practice [6].

Classifier learned by

. Source Project
source project \

Target Project

Fig. 1. Divergent data distribution between different projects.

Meanwhile, unsupervised learning has also been used in
defect prediction to solve the shortage of labeled data. Never-
theless, early studies on unsupervised learning for SDP often
need human effort. To solve this problem, [7] proposed novel
approaches showing the defective possibility for software
entities by using the magnitude of features. More recently,
[8] presented a connectivity-based unsupervised classifier,
different from traditional distance-based methods.

As far as this paper is concerned, with the heuristic of [8],
we proposed our unsupervised framework for SDP called the
Improved Spectral Clustering with Feature Selection (ISC-
FS). First, given the importance of data quality [9], the
feature selection considering data distribution is added. Sec-
ond, compared with traditional clustering methods, spectral
clustering has the adaptability to different data distributions.



To make the adjacency matrix used in spectral clustering
closer to the physical meaning, we present a new adjacency
matrix definition, which will be explicated in Section III.
Furthermore, following the previous point of view [10], a
particular threshold is adopted when labeling entities to avoid
human intervention in the classification process. At last, we
get the final prediction.

In summary, the contributions of this paper are listed as
follows:

o We proposed a novel framework called ISC-FS for SDP
on unlabeled datasets.

o To access our proposed method, experiments were con-
ducted on 23 projects in the PROMISE dataset and 5
projects in the NASA dataset. Results showed that ISC-
FS performs better over traditional unsupervised methods
and state-of-the-art unsupervised approaches for SDP.

The remaining of this paper is structured as followed: In
section II, we introduce the related work about SDP and unsu-
pervised learning. Section III presents our method in details.
Section IV describes the experimental setup and Section V
illustrates the experimental result. In Section VI, we point out
the potential threats to validity. The last section concludes and
discusses future work.

II. RELATED WORK

We introduce the related work on SDP and unsupervised
learning in this section.

A. Software Defect Prediction

SDP is a process predicting whether the software entities
have defects or not. There exists many studies on defect
prediction. [11] combined semantic and structural scattering to
capture project and human characteristics as resource features
to build a prediction model. [12] proposed cross-entropy,
which carries information representing the difference between
two probability distributions. However, all of the above work
are using supervised methods.

That is because that people believe unsupervised classifiers
usually shown disappointing performance. However, according
to the meta-analysis in [2], generally speaking, unsupervised
models do not seem to perform worse than supervised models.
Under this circumstance, and taking into account that it is
easier to collect unlabeled data in the big data era, an effective
unsupervised model for SDP when lacking the labeled data is
necessary.

B. Unsupervised Learning

Unsupervised learning is a machine learning technique
classifying instances to different classes without labeled data.
Due to acquiring labeled data is a difficult task, unsupervised
learning has been applied in many fields. [13] employed it
to the end-to-end training of visual features on large-scale
datasets. In SDP, [14] first attempted expert-based unsuper-
vised learning including k-means and neural-gas. Besides, [15]
labeled the cluster with a certain threshold. The typical process
of unsupervised learning for SDP mainly consisted of two

steps, 1) clustering software instances into k clusters; and 2)
identifying each class is defect-prone or not.

Recently, spectral clustering has been used in SDP [8].
Spectral clustering, based on Laplacian mapping, uses minimal
cuts to characterize the original data with special orientations
that carry the cutting information, and then clusters. The main
idea is treating data as vertices (V) in space, and these vertices
can be connected by edges (E). In SDP, edges represent
the connection between software instances, and its weight
is determined by the connection between two instances. For
clustering, the graph G = (V, E) will be cut into two disjoint
sets. The key idea to this cut is that the edge weights between
the subgraphs are as low as possible, and the edge weights
within the subgraphs are as high as possible.

III. METHOD

In this section, we explicate our method in detail. Figure
2 illustrates the framework of ISC-FS. To be more specific,
ISC-FS includes five steps: (1) preprocessing, (2) spectral
clustering, (3) labeling cluster and get pseudo-labels (4) fea-
ture selection using pseudo-labels; and (5) re-clustering and
labeling by selected features to obtain the final predictions.
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Fig. 2. Overview of ICS-FS framework.

5. Re-clustering and labeling by
selected features and get final
prediction result

A. Preprocessing software features

Software features usually have various sizes. Take the
features in the PROMISE dataset as an example, loc means
the line of code, which is usually greater than one hundred,or
even thousands. And dam, the data access metrics, is the
ratio of all private or protected attributes in the class to all
attributes, which means its range is [0,1]. Consequently, ISC-
FS used the z-score normalization, which makes data to a
normal distribution with a mean of 0 and a standard deviation
of 1. For every specific feature z, the normalized features z
can be shown as:

R mean(x) 0
std(x)
where mean(z) is the average value of x, and std(z) means
the standard deviation of x.

Moreover, in some datasets, we observe there are some
missing values, which we assign to the average of all existing
values of the corresponding features.



B. Spectral Clustering

Guided by the idea of spectral clustering, an adjacency
matrix W € R"* ™ to represent the weight of edges is
required at first and we note that n is the number of entities.
The previous work [8] adopted the dot product to generate
adjacency matrix, as shown in Equation 2.

m

wij = mi w5 = Y (agk % agy) 2)
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where m represents the number of features, and a;; represents
the value of the j;; feature of the 7, entity.

However, since spectral clustering assumes that values in the
adjacency matrix are non-negative, it simply sets the negative
value to zero, which will lead to the loss of some original
information. Furthermore, according to Equation 2, two more
distant points may have larger weights, which is inconsistent
with physical meaning. Thus, we proposed a new adjacency
matrix definition as shown in the Equation 3.

0 ifi=j
! ey exp(—(ag — azr)®) if i #j

From Equation 3, each feature has a value ranged in [0,1]
represents its similarity, and the sum represents the similarity
of two entities. Besides, since it is meaningless to focus on
the self-circle, the self-circle value is set to zero.

Second, the Laplacian matrix is calculated by the following
formulas:
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where L®Y"™ represents the symmetric normalized Laplacian
matrix, and d; = Z?=1 Wi

Last, we conduct the eigendecomposition on the Laplacian
matrix L*¥™. Follow the normalized cut algorithm proposed
by [10], we use the second smallest eigenvector, denoted as

v, for clustering.

C. Labeling Cluster

After spectral clustering, entities has been divided into two
groups. C7 and C5 are used to denote two groups respectively.
To determine whether a cluster is a defective one, we use the
following heuristic: entities with more defect-proneness tend to
have higher complexity. The features in our datasets measure
complexity, which means that larger values represent higher
complexity. In this case, we adopt the average row sums of
the normalized features to determine which cluster is defective.
Calculated by Equation 5, if AV S, is greater than AV Sc,,
we mark C as defective cluster. Otherwise, C5 is considered
as cluster containing defective entities. Specially, the labels
obtained by the first clustering are called pseudo-labels, which
are used to assist feature selection, and the labels obtained by
the second clustering are the final results.

z:emtityec1 RowSum(entity)
size(Cy)
where AV Sc, represents the average row sums of cluster

C;, RowSum(entity) is the sum of all feature values of the
specified entity, size(C;) means the size of cluster C;.

AV Se, =

(&)

D. Feature-selection

Feature selection has a greater influence than classifier
selection [17]. Since that the irrelevant or redundant features
not only require more computational cost but also reduce
the performance of prediction models [18], feature selection
based on feature violation scores (FVS) is added in ISC-FS
by removing features with less relevant information. FVS can
be calculated by the following equation:

V;
FVS,; = Nam (6)
where V; means the number of violations in the 7;; features
and Num is the number of entities.

A violation is a value that does not follow the defect
proneness heuristic. To reduce manual intervention, the median
or average value is commonly used as a special threshold. Nev-
ertheless, in the inherently imbalanced SDP field, the median
or average tends to weaken the prediction performance. Thus,
we selected the corresponding defect percentile from pseudo-
labels as the threshold.

Algorithm 1 FeatureSelection(x, pseudoY)

1: percentileX = percentile(x)
2: for i =1 to row do
3:  for j =1 to col do

4: if pseudoY (i) xor x(i, j) >= percentileX (j) then
5: violate(j) + +

6: end if

7. end for

8: end for

9: for 7 =1 to col do

10.  if violate(j) < percentileX(j) then

11: select the corresponding feature

122 end if

13: end for

The algorithm is shown in Algorithm 1. We give a specific
example in Figure 3, the clean rate is 4, and the corresponding
percentile is calculated for each feature, shown in bold. For
instance, the Entity D is labeled as clean and its X5 is 10,
which is not less than the corresponding percentile, so it should
be considered as a violation. After calculating all the FVS,
select the features with FVS less than the clean rate. Therefore,
X1, Xo, X4 as features are finally selected.

E. Re-clustering and labeling by selected features

After feature selection, the results might differ from the
pseudo-labels used in feature-selection. In this case, it is
necessary to repeat the step of spectral clustering and labeling
clustering.



X X, | Xg | X4 | X5 |Label
En. A 3 1 3 7 1 Buggy
En.B 1 1 0 9 Clean 1
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Fig. 3. An instance of computing feature violation scores (FVS), violations
are shown in a dark gray shade.

IV. EXPERIMENT SETUP
A. Experiment Datasets

Table I lists the statistical characteristics of the 28 datasets
from two groups, the PROMISE and the NASA, used in
our experiments, which is commonly used in recent SDP
researches [19] [20].

« The PROMISE dataset collected by [21], including data
from different versions. As it is likely to be a significant
overlap between different versions of a project, we con-
sidered a version as a separate project. Each project in
PROMISE dataset contains 20 features.

o The NASA dataset is collected from the NASA Metrics
Data Program. Each NASA project includes various static
code metrics (CMs) of a NASA software system or sub-
system, as well as the corresponding defect label data.

B. Comparative Methods

The following five unsupervised learning methods are se-
lected to compare with ISC-FS:

o K-means: A traditional classic clustering algorithm, first

used in SDP in [14].

e Partition around medoids (PAM): A method of K-
medoids. The method uses medoids as a reference point,
which solves the problem that K-means is extremely
susceptible to extreme values.

e CLA: An unsupervised method proposed by [7] for SDP.
The name is taken from the first letter of the steps are
Clustering and LAbeling instances.

o« CLAMI: An improved version of CLA by adding Metric
selection and Instance selection.

o Spectral Clustering (SC): A connectivity-based unsuper-
vised method proposed by [8].

It should be pointed out that we adopted the same heuristic
rules as ISC-FS are adopted when labeling the cluster in the
first two baselines, while the last three algorithms have their
own clear rules in the corresponding researches [7] [8].

C. Experiment Datasets

The classifier has many widely used measures for classifiers,
such as accuracy, which is the most traditional measure in

classification tasks, and it represents the ratio of correct
prediction.

However, accuracy usually does not deal well with the
imbalanced datasets. Furthermore, a critical value for the
probability of defect-proneness is required when computing
accuracy and many other measures (e.g. F-score). The critical
value can affect the performance and the default value (i.e. 0.5)
may not be the best critical value [22]. Thus, we adopted the
Area Under Curve (AUC), which is independent of critical
value and has good tolerance for imbalanced datasets, to
evaluate the effectiveness of the approaches.

AUC is defined as the area under the ROC (receiver oper-
ating characteristic curve). ROC refers to a curve of the false
positive rate (FPR) against the true positive rate (TPR). The
FPR and TPR can be expressed in Equation 7 and 8. From
the above definition, it can be seen the AUC value ranges in
[0, 1], and an AUC value of 0.5 indicates that the effect of
the classifier is almost the same as the random guessing. The
higher AUC is, a better result implies.

TP
TPR= TP+ FN 2
FP
FPR= ———
R FP+TN ®

where TP, FN, FP and TN can be calculated from Table II.

V. RESULT

We evaluated our proposed method by the Scott-Knott test
[23], using hierarchical clustering to divide different methods
into groups with significant statistical differences. In this study,
we adopted the normality and effect size aware variant of the
standard Scott-Knott test, Scott-Knott test effect size difference
(ESD) [24]. Based on the traditional Scott-Knott test, the
Scott-Knott ESD test has the following improvements: (1) cor-
rect non-normal distribution inputs, which are considered to be
normally distributed in traditional Scott-Knott testes; and (2)
merge any two statistically different groups with a negligible
effect size into one group. We used the function sk_esd in the
ScottKnottESD R package to make the implementation.

The result is shown in Figure 5. After comprehensive
observation, ISC-FS outperformed 5 reference methods in
our experiments. The following points can be drawn from a
detailed observation:

o In the PROMISE dataset, the average AUC of ISC-FS
was 0.694, which outperformed K-means, PAM, CLA,
CLAMLI, SC by 44.58%, 43.68%, 5.15%, 14.33%, 3.74%
respectively.

e In the NASA dataset, the average AUC of ISC-FS
was 0.685, which outperformed K-means, PAM, CLA,
CLAMI, SC by 42.12%, 35.91%, 2.24%, 2.39%, 1.48%
respectively.

o The results are divided into groups with different statis-
tical differences in Figure 5. Our results are statistically
different from the other comparison methods in both of
the two datasets.



TABLE I

DATASETS
Group Granularity ‘ Project ‘ Version Avg. instance | Avg. Buggy Rate(%) | # of metrics
ant 1314151617 338 19.58
ivy 1.12.0 232 34.06
jedit 4.04.14243 369 16.29
log4j 1.0 135 25.19
PROMISE class lucence 2224 294 59.00 20
poi 3.0 442 63.57
synapse 1.0 1.2 257 21.70
velocity 1.5 1.6.1 222 50.21
xalan 242527 812 52.23
camel 1.2 608 35.53
CM1 505 9.50 37
KC1 2107 15.42 21
NASA function KC3 - 458 9.39 39
KC4 125 50.40 13
MC2 161 32.30 39
TABLE II procedures reported, our implementation may not reflect all

THE CONFUSION MATRIX

‘ Predicted defective ‘ Predicted non-defective

Actual defective True Positive (TP)

False Positive (FP)

False Negative (FN)

Actual non-defective True Negative (TN)

o K-means and PAM showed the lowest performance be-
cause they adopt a different mechanism with spectral
clustering, which only clustering based on Euclidean
distance between entities.

o We noticed that the CLAMI performed worse than CLA.
However, in [7], CLAMI is proposed as an enhanced
version of CLA by adding metric selection and instance
selection to improve the ability of prediction models. We
studied on it and observed that CLAMI only selected
features with the minimum metric violation score (MVS),
however, in a real dataset with a large number of in-
stances, the MVS of different features often varies. In this
case, dozens of features will be selected as few features
in some projects, which will weaken the performance.

VI. THREATS TO VALIDITY

We discuss a few threats to the validity in this section.

A. Implementation of CLA and CLAMI

In this study, we compared our approaches with 5 referential
methods. Due to the unpublished implementations of CLA
and CLAMI, we have reimplemented our version according
to the corresponding paper. Although we strictly followed the

details in the comparative method.

B. AUC might not be the only suitable measures

We used AUC as measures to evaluate the performance of
SDP models. There are many other measures (e.g., G-measure,
MCC) can be used for performance evaluation. In fact, AUC
is a widely used evaluation measure in SDP tasks [4] [7] [8].

C. Experimental results might not be generalizable:

In our experiment, we selected 28 projects that have been
widely used in SDP. However, diverse software projects have
different characteristic, so there is no guarantee that our
findings will be applicable to other projects. More validation
should be conducted in the future.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an unsupervised learning method
called ISC-FS to solve the problem of lacking historical data
in SDP. The main advantage of ISC-FS is that it introduces
feature selection considering data distribution and improves
spectral clustering. A large number of experiments on 28
projects from 2 groups have been conducted to assess that the
proposed method can perform better in terms of AUC than the
referential approaches.

In the future, we plan to evaluate our approach with more
datasets from different sources. Furthermore, we will try
to extend our approach to the semi-supervised version by
introducing a few labeled data.
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