
Formalization and Verification of VANET
Ran Li1, Huibiao Zhu∗1, Lili Xiao1, Jiaqi Yin1, Yuan Fei2, Gang Lu∗1

1Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

2School of Information, Mechanical and Electrical Engineering,
Shanghai Normal University, Shanghai, China

Abstract—Vehicular Ad Hoc Network (VANET) is a subclass
of Mobile Ad Hoc Network (MANET) types. As a key part
of the Intelligent Transportation Systems (ITSs) framework, it
can be used not only to provide value added services, but also
to guarantee the security of ITS. Since VANET is extensively
applied, its security is of great significance.

In this paper, we model the architecture of VANET using
process algebra Communicating Sequential Processes (CSP). By
utilizing model checker Process Analysis Toolkit (PAT), we verify
five properties (deadlock freedom, divergence freedom, data
leakage, vehicle faking and RSU faking) of the model and find
that the proposed architecture may cause data leakage. Hence,
we improve the model by encrypting the messages with receiver’s
public key to cope with this problem. The new verification results
show that our study can guarantee the security of VANET.

Index Terms—VANET; Security; CSP; Modeling; Verification

I. INTRODUCTION

While the rapid growth of driverless vehicles has been
fueled by the development of vehicle industry and wireless
communication technology, VANET is actually the supporting
infrastructure and paves the way for driverless vehicles.

VANET is the application of traditional MANET in the field
of intelligent traffic [1]. The basic architecture of VANET
is demonstrated in Fig. 1. Each vehicle has an On Board
Unit (OBU) and one or more Application Units (AUs). Road
Side Unit (RSU) is the device installed along road side
and communicates with OBUs using Dedicated Short Range
Communication (DSRC) technology. Moreover, RSU can also
get in touch with the gateway to the Internet.

Fig. 1 illustrates that communication in VANET can be
divided into three domains: in-vehicle domain, ad hoc domain
and infrastructure domain [1]. In-vehicle domain contains an
OBU and one or more AUs. Infrastructure domain commu-
nication is between RSUs and infrastructure. Ad hoc domain
is composed of two types of communication. One is Vehicle-
to-Vehicle (V2V) communication which means a vehicle can
connect with other vehicles, and the other is Vehicle-to-
Infrastructure (V2I) communication which represents that a
vehicle can exchange information with infrastructure.

Since VANET is an emergent technology, it has massive
challenges of security issues. Many studies have been carried
out on the topic of communications security in VANET
[2]–[4]. However, the previous solutions cannot comfirm the

∗Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu),
glu@cs.ecnu.edu.cn (G. Lu).

confidentiality-integrity-availability (CIA) property [5]. To se-
cure communications in VANET, a newly proposed archi-
tecture uses end-to-end authentication to avoid intrusion in
VANET and considers VANET as a hierarchical model to
decrease the number of message exchanges [5]. However, the
proposed architecture is not verified formally.

Fig. 1. Basic Architecture of VANET

In this paper, we formalize the model of the proposed
architecture of VANET [5] using process algebra CSP [6],
[7]. Additionally, we use model checking tool PAT [8], [9] to
verify some related properties, including deadlock freedom,
divergence freedom, data leakage, vehicle faking and RSU
faking. From the verification results, we find that the original
proposed architecture [5] is not safe and it may cause data
leakage problem. Hence, we modify the original model by
means of encrypting messages with receiver’s public key to
solve this problem. The verification results of the improved
model show that the modification is truly effective.

The remainder of this paper is organized as follows. In
Section II, we give a brief introduction to VANET which
contains the proposed architecture [5] and the flow of commu-
nications between entities. Besides, the process algebra CSP is
also introduced briefly in this section. Section III presents the
formalized model of VANET [5]. Furthermore, Section IV is
about the verification results of the original model and we also
put forward some improvements of the model. We conclude
our work and propose the future work in Section V.

II. BACKGROUND

In this section, we briefly explain the proposed architecture
of VANET [5] and focus on the communication flow of it. In
addition, an introduction to CSP is given as well.

DOI reference number: 10.18293/SEKE2020-011

Fig. 2. In Ad Hoc and Infrastructure Domain

Fig. 3. In-vehicle Domain (Adapted from[5])

A. VANET

In order to ensure communications security, a newly pro-
posed architecture adopts end-to-end authentication to avoid
intrusion in VANET and considers VANET as a hierarchical
model to decrease the number of message exchanges.

The proposed architecture covers five entities: Vehicle,
RSU, RSU Controller, Zone Controller and CA. Vehicle and
RSU are the same as the entities in the basic architecture
mentioned above, while RSU Controller, Zone Controller and
CA are newly introduced entities in VANET.
• RSU Controller: It is in charge of the communications

in an area with a number of RSUs.
• Zone Controller: It controls multiple RSU Controllers.
• CA (Certification Authority): It is responsible for dis-

tributing the certificates to RSUs, RSU controllers and
Zone controllers. Each certificate contains the entity’s ID,
public key and expiry time.

To ensure security applications in ad hoc domain communi-
cation and infrastructure domain communication, the proposed
architecture emphasizes end-to-end authentication process us-
ing certificates from CA. Fig. 2 shows the flow of this solution.

1. The vehicle sends a request to the RSU.
2. Once a RSU receives this request, it checks the expiry

time and the threshold value of the message control. If they
are both valid, it returns its ID and the timestamp. If not, it
broadcasts an alarm notification.

3. Then, the vehicle executes Deffie-Hellman key exchange
[10] with the RSU and uses the shared key to encrypt the
message with Elliptic Curve Cryptography [11].

4. Afterwards, the RSU decrypts the message and passes it
along with timestamp forward to the RSU controller.

5. If the timestamp is valid, the RSU controller returns its
certificate with an ack to the RSU. It also proceeds to encrypt

and sends the message along with its certificate to the Zone
controller. Otherwise, the RSU controller broadcasts an alarm
notification, i.e., it fails.

6. When the Zone controller receives the message, it checks
the timestamp at first. If the timestamp is valid, the Zone
controller decrypts the message and sends the message to other
Zone controllers and base stations. Otherwise, it fails.

On the other hand, to ensure security in in-vehicle commu-
nication, the proposed architecture emphasizes the verification
of the certificates. The flow is shown in Fig. 3. Here, RSU in
Fig. 3 can also be a service provider. Due to the similarity in
flows of them, we list the flow of the communication among
the vehicle, the RSU and CA.

1. The OBU of a vehicle sends a service request which
includes the certificate of the vehicle.

2. A RSU sends the certificate of the vehicle to CA to check
its validity.

3. CA returns the verification result.
4. Once the RSU receives the verification result which

shows the certificate is valid, it sends its own certificate to
the vehicle along with an ack. If not, it refuses the request.

5. Then, the vehicle sends the received certificate to CA to
check its validity.

6. CA returns the verification result.
7. Once the vehicle receives the verification result which

shows the certificate is valid, the vehicle can use the service
successfully and safely in AU. Otherwise, it rejects the service.

B. CSP

CSP, the abbreviation of Communicating Sequential Pro-
cesses, is a process algebra proposed by C. A. R. Hoare [6].
The syntax of CSP provides many operators to express the
actions of processes and their interactions. We give a brief
definition of the syntax used in this paper as below.

P,Q ::= Skip | a→ P | c?x→ P | c!u→ P

| P ||Q | P�Q | P CB BQ | P [[a← b]]

• Skip denotes that a process terminates successfully.
• a → P describes an object which first engages in the

event a and then behaves exactly as described by P .
• c?x → P represents that a process receives a message

through a channel called c and assigns the value of the
message to x, and then behaves like process P .

• c!u→ P means that a process sends message u through
a channel called c and then behaves like process P .

• P ||Q indicates process P executes in parallel with pro-
cess Q.

• P�Q stands for external choice, which means that a pro-
cess performs like P or Q and the choice is determined
by the environment.

• P C B B Q expresses conditional choice. If B is true,
then the process behaves like P , otherwise behaves like
Q.

• P [[a ← b]] is the syntax of renaming and signifies an
event a is replaced by b in process P .

III. MODELING VANET
In this section, we give the formalized model of VANET.

First, we introduce the definitions of sets, messages and
channels. On this basis, we formalize the model of VANET
using CSP.

A. Sets, Messages and Channels
First, some sets are introduced in our formalized model for

convenience. For communicators, we define the set Vehicles of
the Vehicle components, RSUs of the RSUs and Controllers
of the RSU Controller and the Zone Controller components.

Entity set involves entities mentioned above. Further, each
entity has its own certificates, ID and keys. Cert is the set of
certificates. Id is the set of IDs and Key is the set of keys.
Key = PUBK ∪ PRIK, where PUBK denotes the public
keys and PRIK represents the private keys.

Moreover, we give definitions of Content of the content, T
of the time and State of the states which contain true state
and false state.

Based on the sets above, the messages are further abstracted
as follows.

MSGcert =df {msgreqv.a.b.cert,msgrspv.a.b.state|
a, b ∈ Entity ∪ CA, cert ∈ Cert, state ∈ State}

MSGprdc =df {msgprdc.a.b.E(k, c)|
a, b ∈ Entity ∪ CA, k ∈ Key, c ∈ Content}

MSGreqb =df {msgreqb.a.b.id.t|a, b ∈ Entity, id ∈ Id, t ∈ T}
MSGreqs =df {msgreqs.a.b.rid.vid.cert|

a, b ∈ Entity, rid, vid ∈ Id, cert ∈ Cert}
MSGack =df {msgackr.a.b.rid.ack.cert, msgackrc.a.b.ack.cert|

a, b ∈ Entity, rid ∈ Id, ack ∈ State, cert ∈ Cert}
MSGdata =df {msgd1.a.b.E(k, c),msgd2.a.b.E(k, c).cert.t|

a, b ∈ Entity, k ∈ Key, c ∈ Content, cert ∈ Cert, t ∈ T}
MSGc1 =df MSGcert ∪MSGprdc ∪MSGreqb

∪MSGdata ∪MSGack

MSGc2 =df MSGcert ∪MSGreqs ∪MSGack

MSGc1 is the set of messages in ad hoc and infrastrusture
domain and MSGc2 consists of messages communicated in
in-vehicle domain.

Besides, we use the symbols E and D to represent encryp-
tion function and decryption function respectively.
• E(k,msg) indicates that k is the key which is used to

encrypt the message msg.
• D(k−1,E(k,msg)) means that the corresponding decryp-

tion key k−1 can decrypt the message which is encrypted
with k.

Then, we give the definitions of channels.
• channels of processes between legal entities, denoted by

COM PATH:
ComV C, ComRC, ComRcC, ComZcC,
ComV R, ComRRc, ComRcZc

• channels of intruders faking/intercepting processes, rep-
resented by INTRUDER PATH:
FakeV R, InterceptRV, FakeRV, InterceptV R,
FakeRRc, InterceptRcR, FakeRcR, InterceptRRc,
FakeRcZc, InterceptZcRc, FakeZcRc, InterceptRcZc

• channel of synchronization time: T ime

The declarations of the channels are as follows.
Channel COM PATH , INTRUDER PATH: MSG

B. Overall Modeling
We formalize the whole model as below. V ANET0

represents the system without considering intruders, while
V ANET takes account of the attacks from intruders. The
channels of our model are shown in Fig. 4.
V ANET =df V ANET0 [|INTRUDER PATH|] Intruder
V ANET0 =df V ehicle ||RSU ||RC ||ZC ||CA ||Clock

V ehicle, RSU , RC, ZC and CA describe the performance
of vehicles, RSUs, RSU controllers, Zone controllers and CA
respectively. The process called Clock is used to realize the
synchronization of time. Additionally, we use the process
Intruder to simulate intruders’ actions, such as intercepting
or faking messages.

Fig. 4. Channels of VANET

C. Clock Modeling
When entities deliver messages, they need to check whether

the timestamp is valid. So we define Clock in order to
realize the synchronization of all entities. The Clock process
is responsible for recording time and returning the current time
whenever some entities want it.

Clock(t) =df tick → Clock(t+ 1) � T ime!t→ Clock(t)

D. CA Modeling
CA provides the identities and certificates for all RSUs,

RSU controllers and Zone controllers. Besides, CA can verify
the entities by certificate verification. The model of CA is
given as follows.

CA =df ComRC!msgprdc.C.R.E(cakpri, certr)→ CA

�ComRcC!msgprdc.C.Rc.E(cakpri, certrc)→ CA

�ComZcC!msgprdc.C.Zc.E(cakpri, certzc)→ CA

�ComRC?msgreqv.R.C.certv →
verified := valid(certv)→
ComRC!msgrspv.C.R.certv.verified→ CA

�ComV C?msgreqv.V.C.certr →
verified := valid(certr)→
ComV C!msgrspv.C.V.certr.verified→ CA

valid(cert) is a function to verify whether the certificate is
valid. If the certificate is valid, it returns true and then the
variable verified is set to true.

E. Vehicle Modeling
We formalize the process V ehicle using general choice �

to describe the two types of communication mentioned above.
The model of V ehicle is shown as below.

V ehicle0 =df ComV R!msgreqb.V.R.vid.texp →
ComV R?msgreqb.R.V.rsuid.ts →
dh key change→
ComV R!msgdata1.V.R.E(kdh,msg)→ V ehicle0

� ComV R!msgreqs.V.R.rsuid.vid.certv →
ComV R?msgackr.R.V.rsuid.ack.certr →

 ComV C!msgreqv.V.C.certr →
ComV C?msgrspv.C.V.certr.verified→
(success→ V ehicle0)
C(verified == true)B

(
fail→ V ehicle0

)


C(ack == true)B (fail→ V ehicle0)


In the first half of the model, we describe the behaviors

of the vehicle in ad hoc or infrastructure domain and they
correspond to Steps 1-3 in Fig. 2. texp is the expiry timestamp
and ts records when the RSU sends the reply. We also define
an event called dh key change which denotes that the vehicle
executes Deffie-Hellman key exchange with the RSU. After
the execution, the vehicle and the RSU have a shared key
kdh, which is used to encrypt the message with Elliptic Curve
Cryptography. The remaining actions correspond to Steps 1,
4, 5 and 6 in Fig. 3 and represent the actions of the vehicle
in in-vehicle communication.

Since we have given the model without intruders, then we
need to consider the existence of intruder actions. For example,
we should allow intruders to fake or intercept messages. We
describe the behavior of the intruder via renaming as follows
and the channels that intruders involved are shown in Fig. 5.

V ehicle =df V ehicle0[[

ComV R!{|ComV R|} ← ComV R!{|ComV R|},
ComV R!{|ComV R|} ← InterceptV R!{|ComV R|},
ComV R?{|ComV R|} ← ComV R?{|ComV R|},
ComV R?{|ComV R|} ← FakeRV ?{|ComV R|}]]

Fig. 5. Channels with an Intruder

{|c|} is the symbol which denotes that the set of all
communications over the channel c. The first two formulas
represent that the process performs either a ComV R!msg
or InterceptV R!msg event whenever V ehicle0 performs a
corresponding ComV R!msg event. Similarly, the last two
formulas imply that when the ComV R!msg event occurs in
V ehicle0, the process V ehicle behaves like ComV R?msg or
FakeRV ?msg.

F. RSU Modeling
We formalize RSU process as below.

RSU0 =df ComRC?msgprdc.R.C.E(cakpri, certr)→
ComV R?msgreqb.V.R.vid.texp → T ime?t→



ComV R!msgreqb.R.V.rsuid.ts
{msgcnt := msgcnt + 1} → dh key change→
ComV R?msgdata1.V.R.E(kdh,msg)→ ComRRc!msgdata2.R.Rc.

E(rkpri,msg).certrsu.tv →
ComRRc?msgackrc.Rc.R.ack.certrc
{msgcnt := msgcnt − 1} → RSU0


C(D(k,E(kdh,msg)))B
(fail{msgcnt := msgcnt − 1} → RSU0)


C(msgcnt < mthreshold ∧ t < texp)B (fail→ RSU0)


� ComV R?msgreqs.V.R.rsuid.vid.certv →

ComRC!msgreqv.R.C.certv →
ComRC?msgrspv.C.R.certv.verified→ (

ack := true→
ComV R!msgackr.R.V.rsuid.ack.certr → RSU0

)
C(verified == true)B (fail→ RSU0)


msgcnt is the current number of messages in this RSU.

mthreshold denotes the threshold value of message control and
tv indicates the validity time duration. For the RSU, in ad hoc
or infrastructure domain, the actions on channels ComV R
and ComRRc correspond to Steps 2-5 in Fig. 2. While, in
in-vehicle communication, the actions on channels ComV R
and ComRC correspond to Steps 1-4 in Fig. 3.

The corresponding process RSU is formalized using renam-
ing which is similar to the process V ehicle, so we leave out
details here.

G. Controller Modeling
Controllers are only used in ad hoc or infrastructure domain.

The actions of the RSU controller on channels ComRRc and
ComRcZc correspond to Steps 4-6 in Fig. 2 and the action
of the Zone controller on channel ComRcZc corresponds
to Step 6 in Fig. 2. The models of RSUController and
ZoneController are shown as below.

RC0 =df ComRcC?msgprdc.C.Rc.E(cakpri, certrc)→
ComRRc?msgdata2.R.Rc.E(rkpri,msg).certrsu.tv →
T ime?t→
 ComRRc!msgackr.Rc.R.ack.certrc →

ComRcZc!msgdata1.Rc.Zc.
E(rckpri, E(rkpri,msg)).tr → RC0


C(t < tv)B (fail→ RC0)


ZC0 =df ComZcC?msgprdc.C.Zc.E(cakpri, certzc)→

ComRcZc?msgdata1.Rc.Zc.

E(rckpri, E(rkpri,msg)).tr → T ime?t→


 (success→ ZC0)
C(D(rkpub, E(rkpri,msg)))B
(fail→ ZC0)


C(D(rckpub, E(rckpri, E(rkpri,msg))))B
(fail→ ZC0)


C(t < tr)B (fail→ ZC0)


Similarly, the processes RC and ZC are built using renam-

ing and due to the space limit, we omit the details here.

H. Intruder Modeling
We formalize the intruder as a process which can carry out

attacks such as intercepting and faking messages from valid
communications. Firstly, we have a set Fact, containing all
facts an intruder can learn.
Fact =df {Entity, CA} ∪ Cert ∪ T ∪ {Ikpri, Ikpub}∪
{k, c|k ∈ Key, c ∈ Content} ∪ {E(k, c)|k ∈ Key, c ∈ Content}
Then we define how the intruder deduces new fact f from

given fact set F . We use the symbol F 7→ f to represent that
f can be deduced from the set F . The detailed definition is
given as follows. The first two rules indicate encryption and
decryption. The last rule means that if the intruder can deduce
the fact f from the fact set F and F is the subset of F ′, the
f can also be derived from F ′.

{k, c} 7→ E(k, c) {k−1, E(k, c)} 7→ c

F 7→ f ∧ F ⊆ F ′ ⇒ F ′ 7→ f

We also introduce a function Info(m), which implies the
facts learned by the intruders if they intercept messages.

Info(msgreqv.a.b.cert) =df {a, b, cert}
Info(msgrspv.a.b.state) =df {a, b, state}
Info(msgprdc.a.b.E(k, c)) =df {a, b, E(k, c)}
Info(msgreqb.a.b.id.t) =df {a, b, id, t}
Info(msgd1.a.b.E(k, c)) =df {a, b, E(k, c)}
Info(msgd2.a.b.E(k, c).cert.t) =df {a, b, E(k, c), cert, t}
Info(msgreqs.a.b.rid.vid.cert) =df {a, b, rid, vid, cert}
Info(msgackr.a.b.rid.ack.cert) =df {a, b, rid, ack, cert}
Info(msgackrc.a.b.ack.cert) =df {a, b, ack, cert}

Then, we add a definition of Deduce channel which is used
to deduce new facts.

Channel Deduce : FACT.P (FACT)

Based on this, we give the formalization of Intruder which
is parameterized by the facts he knows.

Intruder(I) =df

�msg∈MSGIntercept.msg → Intruder0(I ∪ Info(msg))

��msg∈MSG∩Info(msg)∈IFake.msg → Intruder0(I)

��f∈Fact,f /∈F,F 7→fInit{data leakage success := false}

→ Deduce.f.F →


(

data leakage success = true
→ Intruder0(F ∪ {f})

)
C(f == Data)B(

data leakage success = false
→ Intruder0(F ∪ {f})

)


If the intruder intercepts the message msg, then it adds
info(msg) into his facts. Also, if the intruder knows
info(msg) , then he can pretend as a legal entity and fake
the message msg. Further, as introduced before, the intruder
can deduce new facts from the known facts as well.

For Intruder0, we define its parameter as IK, which stands
for the intruder’s initial knowledge.

Intruder =df Intruder0(IK), IK =df {Entity, Ikpub, Ikpri}

IV. VERIFICATION AND IMPROVEMENT
In this section, we use model checker PAT to verify the

properties of the above constructed model. Moreover, we
propose an improved model according to the verification
results.

A. Properties Verification

The descriptions and the corresponding assertions of spe-
cific security properties are given below.
Property 1: Deadlock Freedom

Deadlock is a situation in which nothing further can happen.
This property means that we need to ensure the model cannot
get stuck in a deadlock state. In the tool PAT, we use a
primitive to describe this situation.

#assert V ANET deadlockfree;

Property 2: Divergence Freedom
Divergence is a phenomenon in which a process has an

infinite loop or unguarded recursion. To ensure that the model
is well defined, we need to check if the model is divergence
free. We complete the check by means of a primitive in PAT.

#assert V ANET divergencefree;

Property 3: Data Leakage
We also verify whether the intruder can obtain the message

successfully since this property is relevant to the security of
VANET. The assertion is set to check it.

#define Data Leakage Success

data leakage success == true;

#assert V ANET reaches Data Leakage Success;

Property 4: Vehicle Faking
This property means that the system is unaware that

an intruder has succeeded in posing as a legal Vehicle
successfully. The assertions are listed as follows, where
vehicle fake success1 and vehicle fake success2 are
boolean variables defined to verify whether the intruder suc-
ceeded in in-vehicle communication and in ad hoc or infras-
tructure domain respectively.

#define V ehicle Fake Success

vehicle fake success1||vehicle fake success2 == true

#assert V ANET reaches V ehicle Fake Success;

Property 5: RSU Faking
Analogously, this property means that an intruder has dis-

guised as a legal RSU successfully. rsu fake success1 and
rsu fake success2 are used to check whether the intruder
succeeded in in-vehicle communication and in ad hoc or
infrastructure domain. The related assertions are shown as
below.

#define RSU Fake Success

rsu fake success1||rsu fake success2 == true;

#assert V ANET reaches RSU Fake Success;

Verification Results
The verification results are shown in Fig. 6.
• Property 1 and Property 2 are valid, indicating that our

model can never run into a deadlock state and is well
defined.

• Property 3 is valid. It means the intruder has acquired the
message successfully, i.e., data security of the system is
not guaranteed. Therefore, we put forward the improve-
ment next.

• Property 4 and Property 5 are invalid, which represents
that the intruder can never pretend as a legal vehicle or
a legal RSU successfully.

Fig. 6. Verification Results of the Model

Fig. 7. Verification Results of the Improved Model

B. Attack and Improvement
As illustrated in the verification results above, Property 3

is valid. It indicates that the system still has security risk in
spite of the usage of digital signature and encryption. After
executing Deffie-Hellman key exchange with the RSU, the
vehicle sends the message encrypted with the key shared with
the RSU. Later, the RSU uses the shared key to decrypt the
message. After decrypting, the RSU encrypts the decrypted
message with its own private key. Then the RSU sends
the encrypted message along with its certificate to the RSU
controller. Once the intruder gets the RSU’s public key, he can
decrypt the message and obtain it. An example which causes
data leakage is presented as below.

ComV R.msgdata1.V.R.E(kdh,msg)

→ InterceptRRc.msgdata2.R.Rc.E(rkpri,msg).certrsu.tv

→ FakeRcR.msgackrc.Rc.R.ack.certrc

First, the vehicle sends the encrypted message to RSU
through the channel ComV R. Then the intruder intercepts
this message through the channel InterceptRRc. Since every
entity in the system knows the public key of CA, the intruder
can decrypt the certificate of the RSU with CA’s public key.
Also, as the certificate contains the entity’s public key, the
intruder can access the public key and obtain the message.

In order to overcome the above problem, we modify the
architecture by encrypting the original encrypted message with
the receiver’s public key. Thus, we replace MSGdata defined
before with the new following definition.

MSGdata =df {msgdata1.a.b.E(k1, E(k2, c)),

msgdata2.a.b.E(k1, E(k2, c)).cert.t |
a, b ∈ Entity, k1 ∈ PUBK, k2 ∈ PRIK,

c ∈ Content, cert ∈ Cert, t ∈ T}
In this case, the intruder may intercept msgdata without

the ability to decrypt it. Since the intruder cannot get the
receiver’s private key and it cannot decrypt the intercepted
message consequently.

C. Improved Model and Verification
We formalize the following model to verify whether the im-

proved model V ANETNEW can solve data leakage problem
based on the analyses above.

V ANET NEW =df

V ANET NEW1 [|INTRUDER PATH|] Intruder
V ANET NEW1 =df V ehicle||RSU ||RC||ZC||CA||Clock

The new verification results are shown in Fig. 7. Property
3 is invalid, which indicates that the intruder cannot get the
message, i.e., data security is ensured in our new model.

V. CONCLUSION AND FUTUREWORK
Kumar et al. proposed a new architecture to confirm the

security of VANET using end-to-end authentication and
hierarchical structure [5]. In this paper, we have modeled this
proposed architecture of VANET using CSP. With the aid of
model checking tool PAT, we have verified five properties of
this model, including deadlock freedom, divergence freedom,
data leakage, vehicle faking and RSU faking. The verification
results show that the proposed architecture may cause data
leakage. Aiming to handle this problem, we improved the
above proposed model by encrypting the messages with
receiver’s public key. The new verification results indicate
that the improved model is truly secure. We will dive into
more security issues over VANET and explore how to verify
other security properties with formal methods in the future.

Acknowledgements. This work was partly supported by National
Key Research and Development Program of China (grant no.
2018YFB2101300), National Natural Science Foundation of China
(grant no. 61872145), Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (grant no. ZF1213), the
Fundamental Research Funds for the Central Universities of China
and the Opening Project of Shanghai Trusted Industrial Control
Platform (grant no. TICPSH202003007-ZC).

REFERENCES

[1] Saif Al-Sultan, Moath M. Al-Doori, Ali H. Al-Bayatti, Hussein Zedan:
A comprehensive survey on vehicular Ad Hoc network. J. Network and
Computer Applications 37: 380-392 (2014)

[2] H. Hasrouny, C. Bassil, A.E. Samhat, A. Laouiti, ”Security Risk Anal-
ysis of a Trust model for Secure Group Leader-based communication in
VANET”, Ad-hoc Networks for Smart Cities Book IWVSC Malaysia,
pp. 71-83, 2016.

[3] H. Hasrouny, A.E. Samhat, C. Bassil, A. Laouiti, ”VANET Security
Challenges and Solutions: A Survey” in Vehicular Communications
journal, Elsevier, vol. 7, pp. 7-20, January 2017.

[4] Hamssa Hasrouny, Abed Ellatif Samhat, Carole Bassil, Anis Laouiti:
VANet security challenges and solutions: A survey. Vehicular Commu-
nications 7: 7-20 (2017)

[5] Gulshan Kumar, Rahul Saha, Mritunjay Kumar Rai, Tai-Hoon Kim:
Multidimensional Security Provision for Secure Communication in
Vehicular Ad Hoc Networks Using Hierarchical Structure and End-to-
End Authentication. IEEE Access 6: 46558-46567 (2018)

[6] C. A. R. Hoare: Communicating Sequential Processes. Commun. ACM
21(8): 666-677 (1978)

[7] Gavin Lowe, A. W. Roscoe: Using CSP to Detect Errors in the TMN
Protocol. IEEE Trans. Software Eng. 23(10): 659-669 (1997)

[8] Ho T. Dung, Thang H. Bui, Tho T. Quan: Model Checking Control Flow
Petri Nets Using PAT. ICCSA (6) 2013: 124-129

[9] Zhipeng Shao, HanYong Hao, Yuanyuan Ma, Chen Wang, Jiaxuan Fei:
Modeling and Verifying Intelligent Unit Transmission Protocol Using
CSP Model Checker PAT. QRS Companion 2016: 244-251

[10] Whitfield Diffie, Martin E. Hellman: New directions in cryptography.
IEEE Trans. Information Theory 22(6): 644-654 (1976)

[11] Victor S. Miller: Use of Elliptic Curves in Cryptography. CRYPTO 1985:
417-426

