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Abstract—Machine-learning based anomaly detection in dis-
tributed systems is a challenging task. With thousands of dy-
namically changing parameters, prediction of events requires
considerable effort on feature selection, feature engineering, and
training. For the unstructured and multi- dimensional data
in IT infrastructure, many traditional machine-learning meth-
ods are unsuitable and perform poorly. Graph-based machine
learning is a powerful tool capable of representing this data
without losing the temporal and logical connections that are
critical in making accurate predictions. Furthermore, graph-
based embedding can effectively reduce the data complexity,
without losing key relations. In this paper, we investigate the use
of graphs for representing IT infrastructure data, in particular
with the node2vec algorithm, and evaluate the performance of
a random forest model. The results show that the embedded
graph representation improves the precision and AUC, compared
to other conventional approaches, while significantly reducing
the memory needed for training and validation, thereby making
it more suitable for inference on edge devices, where compute
resources could be limited.

Index Terms—Graph, Embedding, Node2Vec, Random Walk,
Machine Learning

I. INTRODUCTION

Any distributed system must ensure high availability and
high consistency. To resolve performance degradations, which
cause dissatisfaction to users, detection and prediction of
anomalies can help engineers provide more reliable services,
and thereby save money and time. Anomaly detection has
a wide range of applications in detecting cyber-intrusion,
fraud, industrial damage, and safety issues . There are var-
ious approaches including classification, clustering, statistical,
information-theoretic, and spectral [1] approaches.

To effectively detect anomalies, data must accurately repre-
sent the logical dependencies, attributes, and domain character-
istics [2]. Graph data structures are a powerful tool to represent
data with strong inter-dependencies. For a system that can
be represented as a graph, the connectivity and interaction
between data points make the graph turn into a number of
linked paths for finding out these relations, to detect and
analyze an anomaly. Traditional graph analysis methods based
on graph statistics and features are helpful, but designing them
can be a time-consuming and expensive process [3].

Alternatively, a graph embedding approach can be utilized,
which automatically transforms graph into feature vectors.
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This embedding will ideally contain all the relevant graph in-
formation. After optimizing the embedding space, the learned
embedding can be used as feature inputs for downstream
machine learning tasks [3].

In this work we present a graph-based machine learning
anomaly detection approach for identifying anomalies in the
response times of APIs in a distributed system. We propose
a Node2Vec approach for graph embedding, with Random
Forest Classifier method for anomaly prediction. We find the
graph-based ML approach shows improved performance, com-
pared to traditional approaches, with a significant reduction in
required compute resources.

Overall the contribution of this work includes:
• The graph representation of the data that keeps all the

knowledge intact.
• The graph dimensionality reduction, which enables faster

development of models
• Classification and labeling for an anomaly prediction

problem.
• Prediction performance improvement, compared to con-

ventional data approaches.
In Section 2, related work is reviewed. In Section 3, our new

methodology is presented. In Section 4, the implementation
process is explained. In Section 5, the approach is evaluated.
And in Section 6, we provide the conclusion.

II. RELATED WORK

There has been much recent work in anomaly detection on
graph-like data. Kandel et. al. [4] detect anomalies by using
the node attribute information, together with the structural
connectivity. To preserve closeness information, they consider
similarities between node values with multiple attributes. To
discover the similarity between attributes, they use discretiza-
tion, distance- based similarity measures, and a k-means
clustering approach.Ahmed et. al. [5] propose neighborhood-
structure-assisted negative-matrix-factorization (NMF) and its
application in unsupervised point anomaly detection. They
consider the incorporation of the neighborhood structural sim-
ilarity information, within the NMF framework, by modeling
the data with a minimum spanning tree.Tosyali et. al. [6]
proposed a cluster-based outlier score function to identify
outliers in citation networks based on NMF. They represent
citation data as a directed graph and cluster it into logical



groupings of nodes.Markovitz et. al. [7] propose pose clus-
tering for anomaly detection of human actions. They apply a
deep-embedded-clustering model with three parts: an encoder,
decoder, and soft clustering layer. Venkatesan et. al. [8]
propose graph-based unsupervised models for edge anomaly
and node anomaly detection in social network data. They
apply the HDBSCAN clustering algorithm for node anomaly
detection with various dimensionality reduction algorithms. Lu
et. al [9] proposes anomaly detection for container-based cloud
environments by monitoring the response time and resource
usage of components.

Our work is a supervised learning classification approach
for anomaly prediction in distributed systems. We represent
data with graphs and embed each to feature vectors. We
define labels based on the response time thresholds. Many
of these previous works use graph statistic information and
dimension reduction methods to modify the data and feed it
to an unsupervised learning algorithm for clustering anomaly
purposes. However, so far we did not find any other work that
use a graph embedding with neural networks [10] as input for
ML algorithm and dimension reduction, which keep all the
knowledge of the data. Most of the anomaly detection works
used unsupervised learning approach, however we define it as
a supervised learning problem with domain expert knowledge,
help to achieve more reliable performance than unsupervised
approaches.

III. METHODOLOGY

Distributed systems are time-sensitive. When a user makes
a request to an API, a response should be quickly received.
Identifying and predicting APIs with anomalous response
times help operators quickly resolve and prevent anomalous
behavior.

Our data is represented as a directed graph, with nodes
being various servers and APIs, connected to each other with
a weight equal to the response time (Fig. 1). Individual servers
are not connected to other servers, and APIs are not connected
to other APIs. As mentioned before, in this system, the
definition of an anomaly is when an API fails to respond in a
timely manner to a request. In the graph view, this corresponds
to an edge weight which exceeds a certain threshold.

The differences between the graph embedding algorithms
depend on the graph property being maintained. Different
graph embedding algorithms have different definitions of the
node, edge, substructure and whole-graph similarities. Node
embedding represents each node as a vector in a low di-
mensional space. Nodes that are similar to each other in the
graph have similar vector representations [3]. Our problem is a
node embedding problem, as we want to identify which node
is acting abnormally, and predict the anomalous behavior of
that node in the future. Graph embedding techniques, such as
Node2Vec, exploits the structure of the graph and can be used
for transformation of graphs into the necessary feature vector
space.

Fig. 1: A directed graph (of a two-minute snapshot) of a
distributed system (three APIs, multiple servers).

A. Node2Vec

Node2Vec is one of the most common approaches for
projecting nodes into feature vectors. In Node2Vec, nodes are
mapped into a low-dimensional space of features that max-
imizes the likelihood of preserving network neighborhoods
of nodes [10]. Node2Vec has two steps: random walk and
word2vect. The former creates a corpus of acyclic subgraphs.
The latter embeds this corpus to the feature vector space.

1) Random Walk: The parameters for the random walk step
include: number of walks to be generated from each node, the
number of nodes in each walk, the return parameter (p) and
the out parameter (q). The random walk starts with a random
node and proceeds through a path based on value of weight∗α
where α is 1/p or 1/q, depending on if the path navigation is
backward or forward.

2) Word2Vec: The output of the random walk step is a
corpus of subgraphs. Each random walk corresponds to a
sentence-like structure, in which each node corresponds to a
word. The Word2Vec model transforms this corpus into an
embedding, by using a SkipGram model with a neural-network
layer into an N-dimensional embedding.

B. Anomaly Prediction

Anomaly Prediction can be implemented by either su-
pervised classification algorithms or unsupervised clustering
algorithms. Classification-based techniques can be thought of
as operating in two phases. In the training phase the classifier
learns using labeled training data. In the validation phase the
classifier categorizes validation data as normal or abnormal.
Classification based anomaly detection techniques operate
under the general assumption that normal and anomalous
classes can be distinguished in a given feature space [2]. Based
on our data, we can define labels for each generated graph,
and thereby develop a supervised algorithm for graph label
classification. The random forest classifier is fast and easy to
implement. It can produce highly accurate predictions, handle
a very large number of input variables, and tolerate unbalanced
or missing data [11].



IV. IMPLEMENTATION

A. Dataset

The dataset consists of two-minute snapshots, over two days
of synthetic data, generated based on three months of real data,
from a distributed system. In each snapshot, there are multiple
servers and three APIs. Each API has its own response time
threshold, based on domain knowledge. In some snapshots
there may not be any response time, which means that API was
not been called in the two-minute snapshot. In other words,
there is no edge. For each series of graphs, their embeddings,
labeling, and predictions will be separately implemented for
each API.

To minimize the presence of overly-sparse graphs, we aggre-
gate three two-minute snapshot graphs into six-minute graphs.
These aggregated graphs are the input to Node2Vec, which
outputs the embedded feature vectors. We feed these into
the Python Sklearn Random Forest Classifier, which outputs
predictions.

1) Nature of Dynamic graphs: One of the challenges in
our work is the nature of time series data. The system gets
a snapshot for every two minutes of the processes, requests
and related latencies. In the graph representation, it will be
translated to the nodes and the connectivities with weights
on the edges, respectively. In each two-minute time slot, the
numbers of nodes connected (involved servers and APIs) and
latency of API requests (edge’s weight) in the system are
varying. In other words, the whole data set is a group of
consecutive dynamic graphs. The graph of each time stamp
might be very different compared to the graphs from the next
or previous time stamp. In this case, the cosine similarity of
an embedded node of the different graphs are high. With a
high cosine similarity between each pair of graph embedding
vectors, the prediction will not be accurate.

Graphs can be dynamic in number of nodes, connectiv-
ity/edges between nodes, edge directions, edge attributes, node
attributes and etc (Fig. 2). In our dataset the changes over time
in the graphs include the number of nodes, latency connectivity
or weight value of edges. For example, in time stamp 00:00:00
we might have servers that are calling specific APIs with a
very low latency and in the next time stamp 00:00:02, the
same servers and APIs might have connection but with some
different higher latency values on the edges which categorize
some APIs of that graph as anomalous APIs. In addition,
the variation of node numbers and connectivities in different
graphs is eliminated with aggregating the graphs; therefore,
all the six-minute graphs will have the same connectivity.

Fig. 2: Event detection in time Series of graph data [1].

Random walk is a good method if dynamic graphs with
different connectivity are used as data. Weight is used for

walking decision just per graph. In that case, random walks
of a graph with very high weight edges might be equal to
random walk of another graph with a way lower weight edges
containing the same links. Therefore, the embedding of the
two different graphs that has very different link weights will
be the same although one might not have anomaly and the
other one might have anomaly.

We make the data more informative when feeding it to the
Random walk. We modify each six-minute graph, we consider
an undirected graph and then we assumed all the edge weights
as 1 or 0 based on the threshold values of the APIs in the data.
The directed graph only guide each walk through the direction
from an server to an API and will not cover all the possible
nodes.

After implementing this method, we are able to lower the
cosine similarity between graphs as the similarity of the graphs
are not just based on the connectivity but also based on the
weight on the edges, which plays an important role to capture
the temporal dynamic information between graphs.

2) Two-minute graphs: We generate directed weighted
graphs of two-minute snapshots and add all the nodes and
edges with the assigned weights to each graph. In the case in
which a graph contains multiple overlapping edges, the edge
with the maximum weight (i.e. response time) is used. If any
response time in the graph exceeds the threshold, it is labeled
as 1, otherwise 0.

3) Six-miutes graphs: The two-minute snapshots are unnec-
essarily short intervals for anomaly prediction in this system.
Therefore, we consider each aggregated undirected six-minute
graph as the feature window, and the subsequent undirected
six-minute graph as the prediction window. The label of each
six-minute graph is the logistic OR of the label values in the
next immediate three two-minute graphs. The weights of the
edges in a six-minute graph is based on an API threshold,
if the weight is more than the API threshold that the graphs
have been generated and labeled for, then those edges will
have weight value 1 otherwise 0.

We consider a rolling window for feature and prediction
window, with no gap between feature windows and prediction
windows. For example, the first six-minute feature graph will
be the aggregation of three two-minute graphs from indexes 0
to 2 with the label, which is based on the prediction window
from two-minute graphs with indexes 3 to 5. And the second
six-minute feature graph will be the aggregation of two-minute
graphs indexes from 1 to 3 with the label, which is based
on the prediction window from two-minute graphs indexes
from 4 to 6. And the last six-minute feature graph will be
the aggregation of two-minute graphs from indexes n-5 to n-
3 with the label, which is based on the prediction window
from two-minute graphs indexes from n-2 to n. Mostly in the
six-minute graph, we have multiple edges between the same
pair of nodes, so we just consider edge with maximum weight
between the same pairs.



B. Node2Vec Embedding

Node2Vec uses a random walk algorithm and then word2vec
to create embedding of the random walks. We use the python
Node2Vec package, which takes as input a graph, the di-
mensionality N for Word2Vec neural network layer, the walk
length, the number of walks, the number of neural network
workers, and the p and q parameter values. For the six-minute
graphs, we find out the optimal values of these parameter by
trying various measurements. The random walk is a flexible
neighborhood sampling strategy which allows smooth inter-
polation between breadth-first-search and depth-first-search, in
which the p and q parameters guide the walk [10].

The optimal values for parameters which we find through
tuning are dimensions = 50, walklength = 20, numwalks =
20, p = 1, and q = 1. We should mention that although
increasing dimension will improve the accuracy, it can also
cause overfitting if the embedded dimension goes close or
beyond the original dimension. Algorithm. 1 explains all the
steps in more details.

V. RESULTS AND EVALUATION

Data is recorded every two minutes, with seventeen servers
that call three different APIs (Fig. 3). We group data by two-
minute snapshots in a way that each time stamp will have
one row in the data frame. To mitigate issues with sparsity,
we consider a six-minute feature and prediction window. The
reason we choose a window size of six minutes and not larger,
is that for larger sizes, the label does not have a reliable value,
and the models overfit.

Fig. 3: Initial data from distributed system with three APIs
and multiple IPs in each two-minute snapshot.

A. Original Data

We flatten the latency values of the APIs for all the servers
in each two-minute window to have one row, 51 columns for
each row by grouping the snapshot data (17 servers x 3 APIs
= 51 columns, Table. 4). For the six-minute duration feature
window, we flatten all the rows of three sequential two-minute
flattened rows to generate a row of six-minute snapshot (3
rows x 51 columns = 153 columns). The label column for a
six-minute snapshot row depends on all the label values in
the next three sequential two-minutes data. If any of the label
values of the three two-minute snapshot that show up in the
predict window is 1, then the label for six-minute snapshot
feature is 1 otherwise 0 (Fig . 5).

We should mention that, another reason that we consider
six-minute for feature and prediction window was that the

Algorithm 1 Anomaly detection with Graph Embedding for
node API1
Params:df=dataframe,k=100,d=50,num walk=50
length walk=50,p=1.5,q=0.5

Function MAIN()
API1← threshold API1
API2← threshold API2
API3← threshold API3
k ← 100
G2 list, label2 list← 2MIN-GRAPH(API1, API2, API3, df)
G6 list, label6 list← 6MIN-GRAPH(G2 list, label2 list)
EMB list← EMBED-GRAPH(G10 list)
Accuracy ← RANDOM-FOREST(EMB list, label6 list, k)

End Function

Function 2MIN-GRAPH(API1, API2, API3, df)
time list← GET-TIME(df)
For time in time list:

df2← df [time]
API list← GET-APIS(df2)
IP list← GET-IPS(df2)
For API in API list:

For IP in IP list:
latency ← GET-LATENCY(IP,API)
If latency >= API1:

G2← CREATE GRAPH(IP,API,wight = 1)
G2 list← APPEND-TOLIST(G2)

If AP1 threshold 2min >= API1:
label2← 1

else:
label2← 0

label2 list← APPEND-TOLIST(label2)
return G2 list, label2 list

End Function

Function 10MIN-GRAPH(G2 list, label2 list)
For (i = 0; i < size(G2 list); i++) :

G6← MERGE(G2 list[i]..G2 list[i+ 3])
G6 list← APPEND-TOLIST(G6)
If (OR(, label2 list[i].., label2 list[i+ 3]) == 1):

label6← 1
else:

label6← 0
label6 list← APPEND-TOLIST(label6)

return G6 list, label6 list
End Function

Function EMBED-GRAPH(G6 list)
For G6 in G6 list:

EMB ← NODE2VEC(G6, d, num walk, length walk, p, q)
EMB list← APPEND-TOLIST(EMB)

return EMB list
End Function

flattening of all the values of 10 and 20 minute feature window
is a much more computationally intensive aggregation for this
particular data set. In this case the number of feature columns
will be 5 rows x 51 columns = 255 rows and 10 rows x 51
columns = 510 rows for 10 minutes and 20 minutes feature
window, respectively.

B. Graph Represented Data

We create a graph for each grouped two-minute data, with
nodes including servers and APIs (Fig. 6). So, the type of the



Fig. 4: Flattened two-minute data

Fig. 5: Flattened six-minute data.

data is not a row of some values of response times anymore.
Each row represent a two-minute graph that keeps all the
connectivity and knowledge intact. All the represented links
have weight value 1 and the pairs of nodes with no link have
weight value 0 based on the threshold of the connected API
(or there was no request between the pairs in the beginning at
all). For six minutes duration, we aggregate three consecutive
two-minute graphs to one graph (Fig. 7) with a reduced
dimensionality compared to original flattened data (10, 20 and
50). The Six-minute graphs will be embedded by Node2Vec
algorithm (Fig. 8). Then the feature vectors are ready to be
fed to the prediction algorithm.

Fig. 6: A graph of a two-minute snapshot.

In the six-minute data aggregation, we shift the feature and
prediction windows by 1. So, the feature windows’ indices are

Approach AUC
original 0.49514
Grpah d=10 0.54983
Grpah d=20 0.50564
Grpah d=50 0.59208

TABLE I: Evaluation of original data and graph representation
of data for API1

Fig. 7: A graph of a six-minute snapshot.

Fig. 8: Embedding feature vectors of a six-minute graph.

from 0 to n-1 and the labels’ index are 1 to n. Then we applied
k-fold cross validation with k=100. We measure the AUC for
each API (Table. I). The threshold values of API1, API2, and
API3 are 16770, 2184 and 4635 milliseconds, respectively.

The result can be improved significantly if the proposed
approach is to be applied on the non-synthetic dataset. In
the real dataset, the number of calls is more various in each
snapshot window, and there are higher number of calls. The
variations of latency are higher, and the threshold of values
are more realistic.

This result also indicates that graph is a well-designed rep-
resentation that improves predictability by 19.58% for graph
d=50 compared to the original data (Table. I), by leveraging
the temporal and dynamic additional information embedded in
graph. We also present the training and inference time result
for the original flattened and graph data with six minutes, ten
minutes, and twenty minutes window times. The machine that
is used to run these experiments has Windows 10 64-bit OS
with core i7 CPU and 32GB RAM memory. For the largest
dimension of the graph data, fifty, Table. II shows that the
original data has higher training and inference time compared
to the graph data. The consumed time has been decreased

Approach 6 minutes 10 minutes 20 minutes
Flattend 0.47 0.6 1
Grpah d=50 0.42 0.42 0.42

TABLE II: Training and inference time (seconds) of original
and graph d=50 data for 6, 10 and 20 minute time window.



by 10.46% by using graph with six-minute window size. The
consumed time with the ten and twenty minute window size
decrease by 30% and 58% by using graph data, compared to
original flattened data. The reason is that graph representation
of the data always has 50 features, however, the original
dataset has 153, 255 and 510 for 6 minutes, 10 minutes and
20 minutes time window, respectively.

VI. CONCLUSION

We implement node2vec graph embedding for our simulated
distributed system data and compared it to the original data
with a random forest classifier. Node2vec has two parts:
random walk and word2vec. The random walk generates
subgraphs of the original graph, and by considering it as
a corpus, word2vec embeds the graph nodes to a desired
dimension size. We achieve the dimensionality reduction in
a way that all the relevant knowledge of the data remains
intact. We used classification machine learning algorithm to
predict a future anomalous event. The embedded graph shows
better AUC than raw data. For future work, we could use
graph representation to discover potential causality given that
a proper DAG (directed acyclic graph) can be derived based
on domain knowledge. In addition, edge and graph embedding
and prediction can be further explored to identify the system
dynamics from a different perspective. These can be interesting
areas for future work. Based on our experiment, the random
walk algorithm is not the best way to traverse a weight-
based dynamic graph and the anomalous event has a direct
relationship to an edge weight. We may be able to consider
additional data with different features other than response time
such as CPU, memory, and database event logs to enrich
the graph design, in hope of improving both adaptability and
prediction effectiveness.
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