
Algebraic Higher-Abstraction for Software
Refactoring Automation

Iaakov Exman and Alexey Nechaev
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, alosha82@gmail.com

Abstract— Software systems losing modularity along their life
cycle require refactoring to restore their understandability.
However, refactoring is very complex and expensive when done at
the lower abstraction source program level. This paper’s message
is: refactoring is both simpler and mathematically rigorous when
done at a higher-abstraction level. This work proposes a novel
algebraic approach to refactoring, done at a higher-abstraction
level, which is then back-translated to a refactored source
program level. The algebraic approach, combining the Modularity
Matrix and Laplacian Matrix representations of software, has two
advantages over conventional source program refactoring. First,
software higher-abstractions refactoring by a spectral approach is
amenable to automation. Second, the algebraic representation is a
reliable source of refactoring rules, with the potential of reaching a
rule set finally leading to full automation. The refactoring
technique is concisely analyzed and illustrated by case studies. 1

Keywords: Software Modularity; Spectral Refactoring; Algebraic
Higher-Abstraction level; Modularity Matrix; Laplacian Matrix;
Refactoring Rule Set; Refactoring Automation.

I. INTRODUCTION

Refactoring of legacy program code is necessary to recover
desirable qualities of software modularity: viz. to enable
software understanding and maintainability by software
engineers. Refactoring has often been done at source code level,
less frequently at a higher model level.

This work proposes that refactoring done at a higher
abstraction level of software is much more productive and
rigorous than the usual lower level approaches.

The higher abstraction level consists of the Linear Software
Models, an algebraic theory of modular software composition,
in which software systems are represented by matrices, such as
a Modularity Matrix and/or a Laplacian Matrix. Spectral
refactoring applied to these matrices is mathematically rigorous
and amenable to automation

Beyond the advantages of the higher model level for
refactoring in practice, the algebraic approach is a reliable
source of refactoring rules that may potentially lead to a
complete automation of refactoring.

DOI: 10.18293/SEKE2020-008

A. Overall Algebraic Higher-Abstraction Approach

The Algebraic Higher-Abstraction Refactoring is depicted in
the right-hand-side of Fig. 1.

Figure 1. Algebraic Higher-Abstraction Refactoring – Conventional refactoring
(left-hand-side of figure) works with complex source code. Algebraic Higher-
abstraction Refactoring (right-hand-side of figure) climbs to a Higher-
Abstraction level, where rigorous spectral tools resolve modules coupling in a
simpler way. Its 3 stages are: 1st: source code translation into Algebraic
Abstraction; 2nd: legacy abstraction modularized into a Refactored abstraction;
3rd: back-translation into Refactored source code. (All figures in color online).

Algebraic Higher-Abstraction Refactoring is simpler because
higher-abstraction focuses on software architecture, ignoring
source code clutter, irrelevant to modularity.

B. Algebraic Software Modularity

Within Linear Software Models, Modularity Matrix
columns stand for structors – generalizing object-oriented
programming classes – and rows stand for functionals –
generalizing class methods. A 1-valued matrix element structor
provides its functional, e.g. a class containing the
declaration/definition of a method, usable by other classes.
Otherwise, an element is zero-valued.

A schematic Modularity Matrix is seen in Fig. 2. It features:
• Linear independent Matrix vectors – true for structors

among themselves and functionals among themselves;
• Block-Diagonal Modules – structors/functionals vectors of

each module are orthogonal to other modules’ vectors.

The matrix in Fig. 2 is a standard Modularity Matrix, i.e.
square and without outliers. A Functional like F2 provided by
two Structors (S2 and S3) is due to inheritance.

Figure 2. Schematic Modularity Matrix – It has 4 structor columns (S1 to S4), 4
functional rows (F1 to F4) and 2 block-diagonal modules (light blue
background): a 3*3 upper-left block and a 1*1 lower-right block. Zero-valued
elements outside modules are omitted for clarity.

A Laplacian Matrix is obtained from the Modularity Matrix
through a bipartite graph [25]. Graph edges fit to Modularity
Matrix 1-valued elements: for instance, the 1-valued (S2,F1)
matrix element (Fig. 2) fits the graph edge from vertex S2 to
vertex F1 (Fig. 3). Bipartite graphs have two vertex sets with
edges linking only vertices in different sets.

Figure 3. Bipartite Graph from Modularity Matrix in Fig. 2 – It has two vertex
sets: an upper structors set (S1 to S4), and a lower functionals set (F1 to F4).
Arrows pointing down mean that structors provide functionals. Rectangles (light
blue) contain vertices belonging to a given module, a connected component.

The Laplacian Matrix [26] (in Fig. 4) is generated from the
bipartite graph (in Fig. 3), according to equation (1):

 L D A= − (1)

where L is the Laplacian matrix, D is the Degree matrix of the
graph vertices and A is the Adjacency matrix of vertex pairs.

Figure 4. Schematic Laplacian Matrix – This Laplacian is generated from the
bipartite graph in Fig. 3 by equation (1). Its diagonal is the Degree matrix D (in
green) displaying vertex’ degrees of the Bipartite graph. The upper-right
quadrant (identical to the Modularity Matrix with a minus sign) together with the
lower-left quadrant is the negative of the graph Adjacency matrix A.

C. A Running Example

We introduce a running example, to clarify the notion of
outlier and its relationship to refactoring.

Outliers are 1-valued matrix elements outside of any block-
diagonal modules. Outliers cause coupling of pairs of modules,
which require refactoring to decouple these modules.

Fig. 5 shows a Modularity Matrix of an actual software sub-
system of Intellij IDEA [15]. This matrix has two block-
diagonal modules, and one outlier element coupling these two
modules. Coupling means that the outlier Structor S5 belongs to
the lower-right module, while its Functional F1 belongs to the
upper-left module. This is an intermediate matrix: one knows the
outlier location, but it must still be refactored (see section V).

Figure 5. Intellij IDEA Modularity Matrix with single outlier – It has 5 structor
columns (S1 to S5), 5 functional rows (F1 to F5) and 2 block-diagonal modules
(light blue background): a 3*3 upper-left block and a 2*2 lower-right block.
There is one outlier element (F1,S5) (hatched red background) coupling the two
modules. Zero-valued elements outside modules are omitted for clarity.

D. Paper Organization

The remaining of the paper is organized as follows. Section
II mentions related work. Section III describes the Algebraic
Higher-Abstraction Refactoring. The refactoring software
architecture of the Re-Factory System is detailed in Section IV.
Section V illustrates and analyzes refactoring by means of a few
case studies. Section VI concludes the paper with a discussion.

II. RELATED WORK

This is a very concise review of the Modularity literature,
due to strict space limitations.

A. Linear Software Models

Linear Software Models, a rigorous linear algebra theory,
were developed by Exman et al. (e.g. [7], [8]), to solve the
problem of software system composition from sub-systems.
Software modularization by spectral methods highlights outliers
coupling modules. A procedure to improve software system
design is described in [9]. The Perron-Frobenius theorem (e.g.
Gantmacher [14]) is central for the Modularity Matrix theory.

Exman and Sakhnini [11] generate from the Modularity
Matrix a Laplacian Matrix, which obtains the same modules as
the Modularity Matrix, by similar spectral methods. The Fiedler
theorem [2], [13] is central to the Laplacian theory. The Fiedler

eigenvector, fitting the lowest non-zero Laplacian eigenvalue,
can be used to split too sparse modules and locate outliers.

B. Alternative Modularity Analysis

There are various less formal matrix techniques for
modularity. Baldwin and Clark describe a Design Structure
Matrix (DSM) in their “Design Rules” book [3]. DSM has been
applied to many fields including software engineering (see e.g.
Browning [5], Cai and Sullivan [6]). For alternative clustering
techniques of software modules see Shtern and Tzerpos [22].

C. Automated Modularity Refactoring

Surveys of the multitude of papers dealing with software
refactoring are found in [19], [20]. Fewer works strictly focus
on automated refactoring (e.g. [23]). The work of Bavota [4]
refactors software by rearranging Java packages, combining
two "machine learning" methods. The paper by Zanetti [27]
uses “networks theory”, with probabilistic class relocation,
depending on numbers of adjacent neighbors. An article by
Abdeen [1] automatically reduces packages coupling and cyclic
connectivity, using a “Genetic Algorithm”, minimally
modifying existing packages.

III. ALGEBRAIC HIGHER-ABSTRACTION REFACTORING

Our refactoring proposal, instead of dealing with a complex
source program, or using specialized algorithms, climbs the
software abstraction levels, and solves the problem in the
Higher-Abstraction level with rigorous and general linear
algebra. It returns to the source level the already refactored
software system.

In the algebraic representation of software systems, the
refactoring problem consists of recognizing each outlier which
couples a pair of modules, and by relocating each outlier to a
block-diagonal module, to decouple the pair of modules.

The approach essence is:
• Preserve overall functionality without change,

while changing/creating structors.

A. 1st Stage: Generate Laplacian and its modules

The Algebraic Higher-Abstraction Refactoring starts from a
Modularity Matrix obtained from classes/methods of a program
source – the SUD (Software Under Design) – and/or its
compiled code (see right-hand side of Fig. 1). The Modularity
Matrix generates a Laplacian Matrix by the following steps:

• extract a bipartite graph from the Modularity Matrix;
• generate the Laplacian from bipartite graph, by eq. (1);
• obtain module sizes and locations from the Laplacian

eigenvectors, fitting zero-valued eigenvalues;
• split sparse modules by the Laplacian Fiedler vector.

For the next stages (especially Back-Translation), the

Algebraic Higher-Abstraction Refactoring saves the SUD source
in a dedicated data structure: a three-columns table, whose
columns are 1- functional declaration; 2- name of structor
providing the functional; 3- functional implementation. The
table length is the number of functionals in the program.

B. 2nd Stage: Matrices Modularization

Next, Modularity Matrix outliers are found and decoupled.

C. 3rd stage: Back-Translation to Refactored Source

Back-Translation demands challenging actions:
a) Software matrices translation – attempting to foresee

every translation problem from a refactored matrix (e.g.
insertion of attribute values) into source code;

b) Gradual Collection of Generic Refactoring Rules –
instead of ad-hoc decisions, obtain a refactoring rule set,
the basis of a future potentially complete Algebraic
Higher-Abstraction automation refactoring.

The Back-Translation pseudo-code is shown next.

Algorithm 1 – Find-&-Decouple outliers

Input: Laplacian Matrix and its modules (from 1st Stage)

Preparation:
Module Info Vector – saves modules size and location;

 Modularity Matrix – insert Laplacian module boundaries
 into the Modularity Matrix;

Find Outliers: – by comparing Modularity Matrix with
 Module Info Vector;
 Create Matrix Outlier Vector – with names of structor
 and functional containing outliers;

Decouple Outliers: – Create new Columns/Rows for
 each outlier (group) – between coupled modules;
 Single Outlier Relocation – to new column/row element;
 Outliers Group Relocation – to new columns/rows group.

Output: Refactored Modularity Matrix & outliers.

Algorithm 2 – Back-Translation to Refactored Source
Program

Input: Refactored Modularity Matrix (from Algorithm 1)

Preparation: Create new source files – e.g. new .java
files;
 Insert untouched Structor Functionals into new files
 – structors from which no functionals were decoupled;
 Insert Decoupled Functionals (DF) into new files – by
 “Module Info Vector” and “Matrix Outlier Vector”;

Loop: (on all DFs) Search for DF Calls –
 Get resources used by DF – to be assembled;
 If (trivial resources) – attribute assignments as x=5,
 copy them from the original DF file, to the new file;
 Else if (non-trivial resources) – as another Function
 call, copy the “ Calling-line” from the original DF file
 to the new file and adjust the relevant path, if needed;
 In any case (including no resources) – write new
method call for the DF, in any class from which the DF
function is called;
 Possibly use consumer matrices [12]–to find DF calls;

Output: Refactored Source Program & its Modularity
 Matrix (for the software engineer convenience).

Some relevant issues are:
– Why create new source files instead of saving old files?

Since the structors having decoupled functionals ought to be
necessarily composed anew, it is desirable to have a single
uniform way of saving the original source, i.e. by the three-
columns table that was created in the 1st Stage (see sub-section
A “1st Stage: Generate Laplacian and its modules”).

D. Conjecture: Finite Refactoring Rule Set

A cardinal issue for the Algebraic Higher-Abstraction
refactoring potential automation is whether the refactoring rule
set is finite. Therefore we state the following conjecture.

The plausibility arguments for this conjecture are
1) The number of refactoring types is finite; these include:

• Single outlier – just a single unit to be relocated;
• Outliers Group – a finite small group of units to be

relocated, of the order of the sub-matrix size;
• Outliers Array (sequential data) and its access

functions – finite group of the order of the array size.

2) The number of refactoring checking cases for each type
referring to a group is finite; these include:

• Direct matrix check – of the order of a sub-matrix size;
• Saved source Check – existence of different specific

implementations, e.g. in an inheritance case with
overridden function, of the order of the group size;

• Conceptual semantic check – where algebraic check
alone is not sufficient, of the order of group size;

• Specific problems after decoupling – e.g. appearance
of empty classes, of the order of the matrix dimension.

Some of these refactoring types and cases will be illustrated
in section V of this paper.

IV. RE-FACTORY SYSTEM: SOFTWARE ARCHITECTURE AND

IMPLEMENTATION

Re-Factory is a prototype software system designed and
implemented to test case studies and the results of this work.

A. Re-Factory System: Software Architecture

The software architecture of the Re-Factory System,
schematically shown in fig. 6, is composed of four sub-systems:

a- Modulaser – based upon an up-to-date version of this
previously existing software tool [10], written in Java;
inputs .class or .jar files and outputs their Modularity
Matrix. In principle this tool may be adapted to deal with
programs in other Object Oriented languages;

Figure 6. Re-Factory System Software Architecture – It has four sub-
systems: a- an up-to-date version of the Modulaser tool outputs a Modularity
Matrix; b- the Laplacianer outputs the corresponding Laplacian Matrix; c-
the Decoupler finds and decouples outliers, then outputs SUD module sizes
and locations; d- the Back-Translator outputs the refactored SUD modules
back-translated to the source level, done in two steps: 1- inserting functionals
in untouched structors; 2- Loop inserting decoupled functionals in new files.

b- Laplacianer – new sub-system, added to the Modulaser,

generates the Laplacian and its eigenvalues/eigenvectors
from the Modularity Matrix. It was extended and tested
by functions of various linear algebra API libraries.

c- Decoupler – this sub-system has two components. One
finds outliers, by direct use of Fiedler eigenvectors [13].
The other one decouples outliers using the current set of
Modularity Matrix refactoring rules. More design details
will be provided in an extended version of this paper.

d- Back-Translator – this last sub-system is also
designed with two components. One of them
reconstitutes the untouched structors. The other one
performs a loop inserting decoupled outliers and
necessary resources composing new source files.

B. Re-Factory System: Implementation

The Re-Factory implementation throughout the system,
adopted the Modulaser Java language for compatibility. This
included some frequently used API linear algebra libraries,
also in Java, to calculate Laplacian eigenvalues/eigenvectors:

• JAMA (A Java Matrix Package) [21];
• LA4J (Linear Algebra for Java) [17];
• JBLAS (Linear algebra for Java, based upon BLAS

and LAPACK) [16].

V. CASE STUDIES: SINGLE AND GROUPS OF OUTLIERS

The Case Studies section illustrates and analyzes two
refactoring case studies with diverse characteristics.

A. Single Outlier Refactoring

The 1st case study is a Javac2 compiler sub-system of the
Intellij IDEA system [15]. This is an interesting case since the
initial Modularity Matrix (Fig. 7) is puzzling: it is difficult to
decide which the modules are and how many outliers are in this
system. Only the Laplacian splitting resolves the puzzle.

Conjecture 1 – Algebraic Higher-Abstraction Finite
Refactoring Rule Set

The number of refactoring rules in the Algebraic Higher-
Abstraction Software Refactoring is finite and small.

Figure 7. Intellij IDEA Javac2 Modularity Matrix with outliers – It has two
potential modules: one upper-left, another lower right (light blue background),
whose actual sizes are not known yet. The potential modules are coupled by one
or two outliers (F1,S4) and (F1,S5) (dark blue background). Coupling issues are
resolved in this work by calculating the eigenvectors of the fitting Laplacian.

From the Modularity Matrix in Fig. 7 a Laplacian was
generated. This Laplacian has a single zero-valued eigenvalue,
thus a single whole matrix module. The Laplacian eigenvectors
are shown in Fig. 8: the single module eigenvector and the
Fiedler eigenvector.

Figure 8. Intellij IDEA Javac2 Laplacian eigenvectors – The upper row has ten
vertex indices – functionals and structors – of the bipartite graph. The mid-row
contains a single whole matrix module equal elements’ eigenvector. The lower
row shows the Fiedler eigenvector elements. It splits the single module into two
smaller modules by the elements signs: negative (blue) and positive (green).

The Fiedler vector element signs split the Modularity matrix

into two modules: upper-left of 3*3 size (F1, F2, F4, S1, S2,
S4) and lower-right of 2*2 size (F3, F5, S3, S5). The unique
outlier (F1,S5) is revealed outside both modules, as seen in the
intermediate matrix (Fig. 5 in Running Example in section I).

Relocating the outlier (F1,S5) is now shown in Fig. 9. It has
been moved to the newly created row/column (F6,S6) diagonal
element. Please compare the neater refactored fig. 9 with fig. 7.

Figure 9. Refactored Intellij IDEA Javac2 Modularity Matrix – It has two
modules: a 3*3 upper-left and a 2*2 lower right (light blue). The outlier (dark
blue) has been relocated to a diagonal position (F6,S6) in the intersection of
newly created column and row, in between the previously coupled modules.
The previous (F1, S5) position is marked (hatched red).

Figure 10. Horizontal row case study – This matrix contains a single 8*8 big
module, since the horizontal row F7 filled with 1-valued matrix elements
couples all the smaller potential modules. The latter are five 1*1 diagonal
modules and one 3*3 lower-right block-diagonal module (light blue
background). The five horizontal matrix elements (dark blue hatched
background) in row F7 are the source of the coupling problems to be solved.

B. Outlier Group Refactoring: Horizontal Row

The 2nd case study, the horizontal row illustrates an outlier
group, with multiple usage of the same function. It is actually
found in several software systems, e.g. the “Modulaser” [10]
itself, and the “Tagger” software program [24]. This horizontal
row example, seen in Fig. 10, may cause 3 potential problems:

a) Non-implemented inheritance – the five 1-valued row
F7 matrix elements, from the left, are an outlier group to
be relocated to the main diagonal. Yet, the 1-valued row
of elements e.g. due to inheritance, may not be present in
the original source code, except the parent class. For
back-translation, an inherited but not overridden outlier
function should be referred to the parent class.

b) Need to check source code for overridden function –
one cannot distinguish which of the five 1-valued matrix
elements were overridden by just checking the matrix.

c) Inability to know if coupled related tasks should not be
decoupled – for example, the whole module in Fig.10
illustrates a Laplacianer task, computing eigenvalues and
eigenvectors by differing linear algebra APIs, (see sub-
section B of section IV); the five outliers perform the
same task in different ways and it is not clear whether
they should be decoupled. This is an example of a
conceptual problem.

VI. DISCUSSION

A. Comparison with other Refactoring Approaches

The case studies in section V illustrate important features of
the Algebraic Higher-Abstraction Refactoring approach:

• Neat Representation – the algebraic representation of
software systems by matrices clearly eliminates
irrelevant source code clutter;

• Generic Rigorous Procedure – the usage of Laplacian
eigenvectors for modularization is a generic rigorous
mathematical procedure, avoiding ad-hoc trial and
error and specialized refactoring algorithms;

• Exact Number of Relocations – no need to guess how
many outlier relocations should be performed; the
Fiedler vector reveals the exact number of outliers, as
illustrated in the Intellij IDEA case study.

• Refactoring Amenable to Automation – the rigorous
mathematical procedure, together with a finite and
small refactoring rule set, is amenable to automation.

On the other hand, there still are specific problems to be
solved on the way to complete automation.

B. Collecting an Algebraic Rule Set

The refactoring Rule Set collection can be seen under two
perspectives: 1- rule classification into groups, as was
tentatively done in sub-section D of section III; 2- rule
conceptualization possibly leading to a more formal (eventually
algebraic) comprehensive and self-consistent rule set.
Conjecture 1 on a plausible Finite Rule Set for Higher-
Abstraction supports the second perspective.

C. Algebraic and Conceptual Refactoring
Separability

This research has been performed under the assumption that
one can refactor software systems exclusively based upon
algebraic considerations, without conceptual semantic
considerations. Some case studies investigated in this work hint
that the assumption is not universal. But it could still be the case
that the assumption is valid in a significant majority of cases.

D. Future Work

The paper’s results, in particular the conjecture of the finite
refactoring rule set, deserve formal proofs and extensive
verification for a variety of software systems. These will be
presented in an extended version of this paper.

E. Main Contribution

This paper’s main contribution is an Algebraic Higher-
Abstraction refactoring, replacing conventional and less formal
approaches, and amenable to software refactoring automation.

REFERENCES
[1] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil and S. Ducasse, “Towards

Automatically Improving Package Structure While Respecting Original
Design Decisions”, in Proc. 20th WCRE Working Conf. on Reverse
Engineering, pp. 212-221, (October 2013). DOI:
https://doi.org/10.1109/WCRE.2013.6671296

[2] N.M.M. de Abreu, “Old and new results on algebraic connectivity of
graphs”, Linear Algebra and its Applications, 423, pp. 53-73, 2007. DOI:
https://doi.org/10.1016/j.laa.2006.08.017.

[3] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of
Modularity, MIT Press, MA, USA, 2000.

[4] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk and A. De Lucia,
“Improving Software Modularization via Automated Analysis of Latent
Topics and Dependencies”, ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol. 23, pp. 4, (February 2014). DOI:
https://doi.org/10.1145/2559935

[5] T.Y. Browning, “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New
Directions”, IEEE Trans. Eng. Management, Vol. 48, pp. 292-306, 2001.

[6] Y. Cai and K.J. Sullivan, “Modularity Analysis of Logical Design
Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[7] I. Exman, “Linear Software Models”, Extended Abstract, in I. Jacobson,
M. Goedicke and P. Johnson (eds.), GTSE 2012, SEMAT Workshop on
General Theory of Software Engineering, pp. 23-24, KTH Royal Institute
of Technology, Stockholm, Sweden, 2012. Video:
http://www.youtube.com/watch?v=EJfzArH8-ls

[8] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal on Software Engineering and Knowledge
Engineering, vol. 24, pp. 183-210, March 2014. DOI:
10.1142/S0218194014500089

[9] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Eigenvectors”, Int. Journal on Software Engineering and
Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015. DOI:
10.1142/S0218194015500308

[10] I. Exman and P. Katz, “Modulaser: A Tool for Conceptual Analysis of
Software Systems”, in Proc. SKY 2016, 7th Int. Workshop on Software
Knowledge, pp. 19-26, ScitePress, Portugal, 2016.

[11] I. Exman and R. Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[12] I. Exman and H. Wallach, “A Software System is Greater than its
Modules’ Sum: Providers & Consumers’ Modularity Matrix”, in
SEKE’2019 31st Int. Conf. on Software Engineering and Knowledge
Engineering, Lisbon, Portugal, pp. 75-81, July 2019. DOI:
https://doi.org/10.18293/SEKE2019-003

[13] M. Fiedler, “Algebraic Connectivity of Graphs”, Czech. Math. J., Vol. 23,
(2) 298-305, 1973.

[14] F.R. Gantmacher, The Theory of Matrices, Volume Two, Chelsea
Publishing Co., New York, NY, USA, 1959. Chapter XIII, page 53,
Available in the Web (out of copyright):
https://archive.org/details/theoryofmatrices00gant.

[15] Intellij IDEA – IDE for Java Virtual Machine (2020).
https://www.jetbrains.com/idea/

[16] JBLAS - fast linear algebra library for Java based on BLAS and LAPACK
(2010) - http://jblas.org/

[17] LA4J – Linear Algebra for Java library (updated 2015) - http://la4j.org/

[18] B. S. Mitchell and S. Mancoridis, On the automatic modularization of
software systems using the Bunch tool, IEEE Trans. Softw. Eng. 32
(2006) 193–208.

[19] T. Mens and T. Tourwe, “A Survey of Software Refactoring”, IEEE
Trans. Software Eng., Vol. 30, pp. 126-139, (2004). DOI:
10.1109/TSE.2004.1265817

[20] M. Mohan and D. Greer, “A Survey of Search-based Refactoring for
Software Maintenance”, J. Soft. Eng. Res. & Dev., (2018) 6:3. DOI:
https://doi.org/10.1186/s40411-018-0046-4

[21] NIST, JAMA: A Java matrix package (2012),
http://math.nist.gov/javanumerics/jama/

[22] M. Shtern and V. Tzerpos, “Clustering Methodologies for Software
Engineering”, in Advances in Software Engineering, vol. 2012, Article ID
792024, 2012. DOI: 10.1155/2012/792024

[23] G. Szoke, C. Nagy, R. Ferenc amd T. Gyimothy, “Designing and
Developing Automated Refactoring Transformations: An Experience
Report”, 23rd IEEE Int. SANER Conf., Vol. 5, pp. 693-697, (2016). DOI:
https://doi.org/10.1109/SANER.2016.17

[24] Tagger – software preprocessor from simple markup language to Adobe
InDesign input – provided by Daniel Jackson, CSAIL, MIT – personal
communication, August 2018.

[25] E. W. Weisstein, Bipartite graph (2020),
http://mathworld.wolfram.com/BipartiteGraph.html

[26] E. W. Weisstein, Laplacian matrix (2020),
http://mathworld.wolfram.com/LaplacianMatrix.html

[27] M.S. Zanetti, C.J. Tessone, I. Scholtes and F. Schweitzer, “Automated
Software Remodularization Based on Move Refactoring”, in Proc.
MODULARITY ’14, pp. 73-83, (April 2014). DOI:
http://dx.doi.org/10.1145/2577080.2577097

