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Abstract— Software systems losing modularity along their life 
cycle require refactoring to restore their understandability. 
However, refactoring is very complex and expensive when done at 
the lower abstraction source program level. This paper’s message 
is: refactoring is both simpler and mathematically rigorous when 
done at a higher-abstraction level. This work proposes a novel 
algebraic approach to refactoring, done at a higher-abstraction 
level, which is then back-translated to a refactored source 
program level. The algebraic approach, combining the Modularity 
Matrix and Laplacian Matrix representations of software, has two 
advantages over conventional source program refactoring. First, 
software higher-abstractions refactoring by a spectral approach is 
amenable to automation. Second, the algebraic representation is a 
reliable source of refactoring rules, with the potential of reaching a 
rule set finally leading to full automation. The refactoring 
technique is concisely analyzed and illustrated by case studies. 1 
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I.  INTRODUCTION 

Refactoring of legacy program code is necessary to recover 
desirable qualities of software modularity: viz. to enable 
software understanding and maintainability by software 
engineers. Refactoring has often been done at source code level, 
less frequently at a higher model level.  

This work proposes that refactoring done at a higher 
abstraction level of software is much more productive and 
rigorous than the usual lower level approaches.  

The higher abstraction level consists of the Linear Software 
Models, an algebraic theory of modular software composition, 
in which software systems are represented by matrices, such as 
a Modularity Matrix and/or a Laplacian Matrix. Spectral 
refactoring applied to these matrices is mathematically rigorous 
and amenable to automation 

Beyond the advantages of the higher model level for 
refactoring in practice, the algebraic approach is a reliable 
source of refactoring rules that may potentially lead to a 
complete automation of refactoring.  
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A. Overall Algebraic Higher-Abstraction Approach 

The Algebraic Higher-Abstraction Refactoring is depicted in 
the right-hand-side of Fig. 1. 
 

 
 

Figure 1. Algebraic Higher-Abstraction Refactoring – Conventional refactoring 
(left-hand-side of figure) works with complex source code. Algebraic Higher-
abstraction Refactoring (right-hand-side of figure) climbs to a Higher- 
Abstraction level, where rigorous spectral tools resolve modules coupling in a 
simpler way. Its 3 stages are: 1st: source code translation into Algebraic 
Abstraction; 2nd: legacy abstraction modularized into a Refactored abstraction; 
3rd: back-translation into Refactored source code. (All figures in color online). 
 
Algebraic Higher-Abstraction Refactoring is simpler because 
higher-abstraction focuses on software architecture, ignoring 
source code clutter, irrelevant to modularity. 

 

B. Algebraic Software Modularity 

Within Linear Software Models, Modularity Matrix 
columns stand for structors – generalizing object-oriented 
programming classes – and rows stand for functionals – 
generalizing class methods. A 1-valued matrix element structor 
provides its functional, e.g. a class containing the 
declaration/definition of a method, usable by other classes. 
Otherwise, an element is zero-valued. 

A schematic Modularity Matrix is seen in Fig. 2. It features:  
• Linear independent Matrix vectors – true for structors 

among themselves and functionals among themselves; 
• Block-Diagonal Modules – structors/functionals vectors of 

each module are orthogonal to other modules’ vectors. 



The matrix in Fig. 2 is a standard Modularity Matrix, i.e. 
square and without outliers. A Functional like F2 provided by 
two Structors (S2 and S3) is due to inheritance.  
 

 
 

Figure 2. Schematic Modularity Matrix – It has 4 structor columns (S1 to S4), 4 
functional rows (F1 to F4) and 2 block-diagonal modules (light blue 
background): a 3*3 upper-left block and a 1*1 lower-right block. Zero-valued 
elements outside modules are omitted for clarity. 
 

A Laplacian Matrix is obtained from the Modularity Matrix 
through a bipartite graph [25]. Graph edges fit to Modularity 
Matrix 1-valued elements: for instance, the 1-valued (S2,F1) 
matrix element (Fig. 2) fits the graph edge from vertex S2 to 
vertex F1 (Fig. 3).  Bipartite graphs have two vertex sets with 
edges linking only vertices in different sets. 
 

 
 

Figure 3. Bipartite Graph from Modularity Matrix in Fig. 2 – It has two vertex 
sets: an upper structors set (S1 to S4), and a lower functionals set (F1 to F4). 
Arrows pointing down mean that structors provide functionals. Rectangles (light 
blue) contain vertices belonging to a given module, a connected component.  

 

The Laplacian Matrix [26] (in Fig. 4) is generated from the 
bipartite graph (in Fig. 3), according to equation (1): 

 

 L D A= −          (1) 
 

where L is the Laplacian matrix, D is the Degree matrix of the 
graph vertices and A is the Adjacency matrix of vertex pairs.  

 
Figure 4. Schematic Laplacian Matrix – This Laplacian is generated from the 
bipartite graph in Fig. 3 by equation (1). Its diagonal is the Degree matrix D (in 
green) displaying vertex’ degrees of the Bipartite graph. The upper-right 
quadrant (identical to the Modularity Matrix with a minus sign) together with the 
lower-left quadrant is the negative of the graph Adjacency matrix A. 

C. A Running Example 

We introduce a running example, to clarify the notion of 
outlier and its relationship to refactoring. 

Outliers are 1-valued matrix elements outside of any block-
diagonal modules. Outliers cause coupling of pairs of modules, 
which require refactoring to decouple these modules. 

Fig. 5 shows a Modularity Matrix of an actual software sub-
system of Intellij IDEA [15]. This matrix has two block-
diagonal modules, and one outlier element coupling these two 
modules. Coupling means that the outlier Structor S5 belongs to 
the lower-right module, while its Functional F1 belongs to the 
upper-left module. This is an intermediate matrix: one knows the 
outlier location, but it must still be refactored (see section V). 

 

 
 

Figure 5. Intellij IDEA Modularity Matrix with single outlier – It has 5 structor 
columns (S1 to S5), 5 functional rows (F1 to F5) and 2 block-diagonal modules 
(light blue background): a 3*3 upper-left block and a 2*2 lower-right block. 
There is one outlier element (F1,S5) (hatched red background) coupling the two 
modules. Zero-valued elements outside modules are omitted for clarity. 

D. Paper Organization 

The remaining of the paper is organized as follows. Section 
II mentions related work. Section III describes the Algebraic 
Higher-Abstraction Refactoring. The refactoring software 
architecture of the Re-Factory System is detailed in Section IV. 
Section V illustrates and analyzes refactoring by means of a few 
case studies. Section VI concludes the paper with a discussion. 

II. RELATED WORK 

This is a very concise review of the Modularity literature, 
due to strict space limitations. 

A. Linear Software Models 

Linear Software Models, a rigorous linear algebra theory, 
were developed by Exman et al. (e.g. [7], [8]), to solve the 
problem of software system composition from sub-systems. 
Software modularization by spectral methods highlights outliers 
coupling modules. A procedure to improve software system 
design is described in [9]. The Perron-Frobenius theorem (e.g. 
Gantmacher [14]) is central for the Modularity Matrix theory. 

Exman and Sakhnini [11] generate from the Modularity 
Matrix a Laplacian Matrix, which obtains the same modules as 
the Modularity Matrix, by similar spectral methods. The Fiedler 
theorem [2], [13] is central to the Laplacian theory. The Fiedler 



eigenvector, fitting the lowest non-zero Laplacian eigenvalue, 
can be used to split too sparse modules and locate outliers. 

B. Alternative Modularity Analysis 

There are various less formal matrix techniques for 
modularity. Baldwin and Clark describe a Design Structure 
Matrix (DSM) in their “Design Rules” book [3]. DSM has been 
applied to many fields including software engineering (see e.g. 
Browning [5], Cai and Sullivan [6]). For alternative clustering 
techniques of software modules see Shtern and Tzerpos [22]. 

C. Automated Modularity Refactoring 

Surveys of the multitude of papers dealing with software 
refactoring are found in [19], [20]. Fewer works strictly focus 
on automated refactoring (e.g. [23]). The work of Bavota [4] 
refactors software by rearranging Java packages, combining 
two "machine learning" methods. The paper by Zanetti [27] 
uses “networks theory”, with probabilistic class relocation, 
depending on numbers of adjacent neighbors. An article by 
Abdeen [1] automatically reduces packages coupling and cyclic 
connectivity, using a “Genetic Algorithm”, minimally 
modifying existing packages.  

III.  ALGEBRAIC HIGHER-ABSTRACTION REFACTORING 

Our refactoring proposal, instead of dealing with a complex 
source program, or using specialized algorithms, climbs the 
software abstraction levels, and solves the problem in the 
Higher-Abstraction level with rigorous and general linear 
algebra. It returns to the source level the already refactored 
software system. 

In the algebraic representation of software systems, the 
refactoring problem consists of recognizing each outlier which 
couples a pair of modules, and by relocating each outlier to a 
block-diagonal module, to decouple the pair of modules. 

The approach essence is:  
• Preserve overall functionality without change, 

while changing/creating structors. 
  

A. 1st Stage: Generate Laplacian and its modules 

The Algebraic Higher-Abstraction Refactoring starts from a 
Modularity Matrix obtained from classes/methods of a program 
source – the SUD (Software Under Design) – and/or its 
compiled code (see right-hand side of Fig. 1). The Modularity 
Matrix generates a Laplacian Matrix by the following steps: 

• extract a bipartite graph from the Modularity Matrix;  
• generate the Laplacian from bipartite graph, by eq. (1); 
• obtain module sizes and locations from the Laplacian 

eigenvectors, fitting zero-valued eigenvalues; 
• split sparse modules by the Laplacian Fiedler vector.  
 
For the next stages (especially Back-Translation), the 

Algebraic Higher-Abstraction Refactoring saves the SUD source 
in a dedicated data structure: a three-columns table, whose 
columns are 1- functional declaration; 2- name of structor 
providing the functional; 3- functional implementation. The 
table length is the number of functionals in the program. 

B. 2nd Stage: Matrices Modularization 

Next, Modularity Matrix outliers are found and decoupled.  
 

 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

C. 3rd stage: Back-Translation to Refactored Source 

Back-Translation demands challenging actions: 
a) Software matrices translation – attempting to foresee 

every translation problem from a refactored matrix (e.g. 
insertion of attribute values) into source code; 

b) Gradual Collection of Generic Refactoring Rules – 
instead of ad-hoc decisions, obtain a refactoring rule set, 
the basis of a future potentially complete Algebraic 
Higher-Abstraction automation refactoring. 
  

The Back-Translation pseudo-code is shown next. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 

Algorithm 1 – Find-&-Decouple outliers 
 

Input:  Laplacian Matrix and its modules (from 1st Stage) 
 

Preparation: 
Module Info Vector – saves modules size and location; 

   Modularity Matrix  – insert Laplacian module boundaries 
                                  into the Modularity Matrix; 
 

Find Outliers: – by comparing Modularity Matrix with 
                                                      Module Info Vector; 
    Create Matrix Outlier Vector  – with names of structor  
                              and functional containing outliers; 
 

Decouple Outliers: – Create new Columns/Rows for 
            each outlier (group) – between coupled modules;  
 Single Outlier Relocation – to new column/row element; 
 Outliers Group Relocation – to new columns/rows group. 
 

Output:       Refactored Modularity Matrix & outliers. 

Algorithm 2 – Back-Translation to Refactored Source 
Program 

 

Input:   Refactored Modularity Matrix (from Algorithm 1) 
 

Preparation: Create new source files – e.g. new .java 
files; 
    Insert untouched Structor Functionals into new files 
      – structors from which no functionals were decoupled; 
    Insert Decoupled Functionals (DF) into new files – by 
         “Module Info Vector” and “Matrix Outlier Vector”; 
 

Loop: (on all DFs) Search for DF Calls – 
   Get resources used by DF – to be assembled; 
   If (trivial resources) – attribute assignments as x=5, 
          copy them from the original DF file, to the new file; 
   Else if (non-trivial resources) – as another Function 
      call, copy the “ Calling-line” from the original DF file 
        to the new file and adjust the relevant path, if needed; 
   In any case (including no resources) – write new 
method call for the DF, in any class from which the DF 
function is called; 
    Possibly use consumer matrices [12]–to find DF calls; 
 

Output:  Refactored Source Program & its Modularity 
             Matrix (for the software engineer convenience).  
 



Some relevant issues are: 
– Why create new source files instead of saving old files? 

Since the structors having decoupled functionals ought to be 
necessarily composed anew, it is desirable to have a single 
uniform way of saving the original source, i.e. by the three-
columns table that was created in the 1st Stage (see sub-section  
A “1st Stage: Generate Laplacian and its modules”). 
 

D. Conjecture: Finite Refactoring Rule Set 

A cardinal issue for the Algebraic Higher-Abstraction 
refactoring potential automation is whether the refactoring rule 
set is finite. Therefore we state the following conjecture. 
 
 
 
 
 

 
 
The plausibility arguments for this conjecture are 
1) The number of refactoring types is finite; these include: 

 

• Single outlier – just a single unit to be relocated; 
• Outliers Group – a finite small group of units to be 

relocated, of the order of the sub-matrix size; 
• Outliers Array (sequential data) and its access 

functions – finite group of the order of the array size. 
 

2) The number of refactoring checking cases for each type 
referring to a group is finite; these include: 
 

• Direct matrix check – of the order of a sub-matrix size; 
• Saved source Check – existence of different specific 

implementations, e.g. in an inheritance case with 
overridden function, of the order of the group size; 

• Conceptual semantic check – where algebraic check 
alone is not sufficient, of the order of group size; 

• Specific problems after decoupling – e.g. appearance 
of empty classes, of the order of the matrix dimension. 

 

Some of these refactoring types and cases will be illustrated 
in section V of this paper. 
 

IV. RE-FACTORY SYSTEM: SOFTWARE ARCHITECTURE AND 

IMPLEMENTATION 

Re-Factory is a prototype software system designed and 
implemented to test case studies and the results of this work. 

A. Re-Factory System: Software Architecture 

The software architecture of the Re-Factory System, 
schematically shown in fig. 6, is composed of four sub-systems: 

 

a- Modulaser – based upon an up-to-date version of this 
previously existing software tool [10], written in Java; 
inputs .class or .jar files and outputs their Modularity 
Matrix. In principle this tool may be adapted to deal with 
programs in other Object Oriented languages; 

 
 

Figure 6. Re-Factory System Software Architecture – It has four sub-
systems: a- an up-to-date version of the Modulaser tool outputs a Modularity 
Matrix; b- the Laplacianer outputs the corresponding Laplacian Matrix; c- 
the Decoupler finds and decouples outliers, then outputs SUD module sizes 
and locations; d- the Back-Translator outputs the refactored SUD modules 
back-translated to the source level, done in two steps: 1- inserting functionals 
in untouched structors; 2- Loop inserting decoupled functionals in new files. 

 
b- Laplacianer – new sub-system, added to the Modulaser, 

generates the Laplacian and its eigenvalues/eigenvectors 
from the Modularity Matrix. It was extended and tested 
by functions of various linear algebra API libraries. 

 

c- Decoupler – this sub-system has two components. One 
finds outliers, by direct use of Fiedler eigenvectors [13]. 
The other one decouples outliers using the current set of 
Modularity Matrix refactoring rules. More design details 
will be provided in an extended version of this paper. 

 

d- Back-Translator – this last sub-system is also 
designed with two components. One of them 
reconstitutes the untouched structors. The other one 
performs a loop inserting decoupled outliers and 
necessary resources composing new source files.  

 
B. Re-Factory System: Implementation 

The Re-Factory implementation throughout the system, 
adopted the Modulaser Java language for compatibility. This 
included some frequently used API linear algebra libraries, 
also in Java, to calculate Laplacian eigenvalues/eigenvectors: 

 

• JAMA  (A Java Matrix Package) [21];  
• LA4J    (Linear Algebra for Java) [17];  
• JBLAS (Linear algebra for Java, based upon BLAS 

and LAPACK) [16]. 
 

V. CASE STUDIES: SINGLE AND GROUPS OF OUTLIERS  

The Case Studies section illustrates and analyzes two 
refactoring case studies with diverse characteristics. 

A. Single Outlier Refactoring 

The 1st case study is a Javac2 compiler sub-system of the 
Intellij IDEA system [15]. This is an interesting case since the 
initial Modularity Matrix (Fig. 7) is puzzling: it is difficult to 
decide which the modules are and how many outliers are in this 
system. Only the Laplacian splitting resolves the puzzle. 
 

Conjecture 1 – Algebraic Higher-Abstraction Finite 
Refactoring Rule Set 
 

The number of refactoring rules in the Algebraic Higher-
Abstraction Software Refactoring is finite and small. 



 

 
 

Figure 7. Intellij IDEA Javac2 Modularity Matrix with outliers – It has two 
potential modules: one upper-left, another lower right (light blue background), 
whose actual sizes are not known yet. The potential modules are coupled by one 
or two outliers (F1,S4) and (F1,S5) (dark blue background). Coupling issues are 
resolved in this work by calculating the eigenvectors of the fitting Laplacian. 
 

From the Modularity Matrix in Fig. 7 a Laplacian was 
generated. This Laplacian has a single zero-valued eigenvalue, 
thus a single whole matrix module. The Laplacian eigenvectors 
are shown in Fig. 8: the single module eigenvector and the 
Fiedler eigenvector. 

 
 

 
 

Figure 8. Intellij IDEA Javac2 Laplacian eigenvectors – The upper row has ten 
vertex indices – functionals and structors – of the bipartite graph. The mid-row 
contains a single whole matrix module equal elements’ eigenvector. The lower 
row shows the Fiedler eigenvector elements. It splits the single module into two 
smaller modules by the elements signs: negative (blue) and positive (green). 

 
The Fiedler vector element signs split the Modularity matrix 

into two modules: upper-left of 3*3 size (F1, F2, F4, S1, S2, 
S4) and lower-right of 2*2 size (F3, F5, S3, S5). The unique 
outlier (F1,S5) is revealed outside both modules, as seen in the 
intermediate matrix (Fig. 5 in Running Example in section I). 

Relocating the outlier (F1,S5) is now shown in Fig. 9. It has 
been moved to the newly created row/column (F6,S6) diagonal 
element. Please compare the neater refactored fig. 9 with fig. 7. 

 
 

 
Figure 9. Refactored Intellij IDEA Javac2 Modularity Matrix – It has two 
modules: a 3*3 upper-left and a 2*2 lower right (light blue). The outlier (dark 
blue) has been relocated to a diagonal position (F6,S6) in the intersection of 
newly created column and row, in between the previously coupled modules. 
The previous (F1, S5) position is marked (hatched red). 
 

 

 
 

Figure 10. Horizontal row case study – This matrix contains a single 8*8 big 
module, since the horizontal row F7 filled with 1-valued matrix elements 
couples all the smaller potential modules. The latter are five 1*1 diagonal 
modules and one 3*3 lower-right block-diagonal module (light blue 
background). The five horizontal matrix elements (dark blue hatched 
background) in row F7 are the source of the coupling problems to be solved. 
 

B. Outlier Group Refactoring: Horizontal Row 

The 2nd case study, the horizontal row illustrates an outlier 
group, with multiple usage of the same function. It is actually 
found in several software systems, e.g. the “Modulaser” [10] 
itself, and the “Tagger” software program [24]. This horizontal 
row example, seen in Fig. 10, may cause 3 potential problems: 

 

a) Non-implemented inheritance – the five 1-valued row 
F7 matrix elements, from the left, are an outlier group to 
be relocated to the main diagonal. Yet, the 1-valued row 
of elements e.g. due to inheritance, may not be present in 
the original source code, except the parent class. For 
back-translation, an inherited but not overridden outlier 
function should be referred to the parent class.  

 

b) Need to check source code for overridden function – 
one cannot distinguish which of the five 1-valued matrix 
elements were overridden by just checking the matrix. 

 

c) Inability to know if coupled related tasks should not be 
decoupled – for example, the whole module in Fig.10 
illustrates a Laplacianer task, computing eigenvalues and 
eigenvectors by differing linear algebra APIs, (see sub-
section B of section IV); the five outliers perform the 
same task in different ways and it is not clear whether 
they should be decoupled. This is an example of a 
conceptual problem.  

 

VI. DISCUSSION 

A. Comparison with other Refactoring Approaches 

The case studies in section V illustrate important features of 
the Algebraic Higher-Abstraction Refactoring approach: 

• Neat Representation – the algebraic representation of 
software systems by matrices clearly eliminates 
irrelevant source code clutter; 

• Generic Rigorous Procedure – the usage of Laplacian 
eigenvectors for modularization is a generic rigorous 
mathematical procedure, avoiding ad-hoc trial and 
error and specialized refactoring algorithms; 



• Exact Number of Relocations – no need to guess how 
many outlier relocations should be performed; the 
Fiedler vector reveals the exact number of outliers, as 
illustrated in the Intellij IDEA case study. 

• Refactoring Amenable to Automation – the rigorous 
mathematical procedure, together with a finite and 
small refactoring rule set, is amenable to automation. 

 

On the other hand, there still are specific problems to be 
solved on the way to complete automation. 

B. Collecting an Algebraic Rule Set 

The refactoring Rule Set collection can be seen under two 
perspectives: 1- rule classification into groups, as was 
tentatively done in sub-section D of section III; 2- rule 
conceptualization possibly leading to a more formal (eventually 
algebraic) comprehensive and self-consistent rule set. 
Conjecture 1 on a plausible Finite Rule Set for Higher-
Abstraction supports the second perspective. 

C. Algebraic and Conceptual Refactoring 
Separability 

This research has been performed under the assumption that 
one can refactor software systems exclusively based upon 
algebraic considerations, without conceptual semantic 
considerations. Some case studies investigated in this work hint 
that the assumption is not universal. But it could still be the case 
that the assumption is valid in a significant majority of cases. 

D. Future Work 

The paper’s results, in particular the conjecture of the finite 
refactoring rule set, deserve formal proofs and extensive 
verification for a variety of software systems. These will be 
presented in an extended version of this paper. 

E. Main Contribution 

This paper’s main contribution is an Algebraic Higher-
Abstraction refactoring, replacing conventional and less formal 
approaches, and amenable to software refactoring automation. 
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