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Abstract—Although the machine learning-based software de-
fect prediction (SDP) method has shown promising value in
software engineering, yet challenges remain. To improve the
performance of SDP, some researchers have used deep learning
algorithms to extract the semantic and structural features of
the program. However, in more practical cross-project defect
prediction (CPDP) tasks, whether deep learning-generated fea-
tures can be directly used should be explored due to the data
distribution shift that usually exists in different projects. In this
paper, we propose a Transferable Hybrid Features Learning with
Convolutional Neural Network (CNN-THFL) framework to con-
duct CPDP. Specially, CNN-THFL mines deep learning-generated
features from token vectors extracted from programs’ abstract
syntax trees via convolutional neural network. Furthermore,
CNN-THFL learns the transferable joint features simultaneously
considering deep learning-generated and handcrafted features by
applying a transfer component analysis algorithm. Finally, the
features generated by CNN-THFL are fed to the classifier to
train a defect prediction model. Extensive experiments verify that
CNN-THFL can outperform referential methods on 72 pairs of
CPDP tasks formed by 9 open-source projects.

Keywords—Software defect prediction, Cross-project defect
prediction, Transfer learning, Semantic feature learning

I. INTRODUCTION

Under the trend of increasing software scale and complexity,
how to effectively ensure the reliability of software has become
a popular research topic. Software defect prediction (SDP),
as a novel proposition of quality assurance technology, has
received a great deal of attention from researchers [1]–[3]. It is
designed to build a predictive model with the machine-learning
model and historical software defect data before detecting the
defect-prone modules or files in the software. Effective defect
prediction can help software quality assurance teams or code
reviewers allocate testing resources more reasonably.

SDP usually consists of two phases: extracting features
from program files and training the predictor via the machine-
learning [4] method. In previous studies, the discriminant
features adopted to construct predictive models were elabo-
rately extracted. These handcrafted features mainly include
Halstead features [5] based on operators and operands, Mc-
Cabe features [6] based on dependencies, and CK features [7]
based on the object-oriented concept. In recent years, some
researchers [4], [8] have suggested that it is not enough to only
consider handcrafted features. To expand the features available
in SDP for improving predictive performance, they tried to
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use the deep-learning methods (e.g., Deep Belief Network,
DBN and Convolutional Neural Network, CNN) to mine
the semantic and structural features hidden in the software
program. The main idea of these methods is to extract the deep
learning-generated features from the token vectors generated
by programs’ Abstract Syntax Trees (ASTs) and feed to the
data with these generated features to the machine-learning
classifier to obtain the SDP model. Their experiments show
that DBN and CNN methods are superior to the traditional
SDP methods that use only handcrafted features in the cross-
version defect prediction tasks [9].

In practice, it is often difficult to establish an accurate defect
predictor for new projects due to the scarcity of defect labels.
To overcome this problem, cross-project defect prediction
(CPDP) [7] was proposed as an alternative solution to defect
predictors that learn new projects (called target projects)
by using labeled data from mature projects (called source
projects). Then, in the tasks of CPDP, there is a research
question of whether deep learning-generated features extracted
from the source project can be directly used for the SDP
task of the target project. In [10], Wang et al. explore the
effect of DBN-generated features on CPDP tasks; however,
their experiments were based only on the assumption that the
semantic features generated by DBN can capture the common
features of defects, which means the features obtained from a
project can be used in other projects. In this paper, we posit
that this assumption may not always hold. We suggest that,
because the data of the source and target projects usually have
different distributions, the deep learning-generated features
should not be used directly in CPDP tasks.

Let us use an example to show this distribution discrepancy.
As shown in Figure 1, we present the data distribution of
two real projects, Apache Lucene v2.4 and Apache Ant v1.7.
Using these two projects, we can form a sample based on
DBN-generated features (Figure 1a) and a sample based on
CNN-generated features (Figure 1b). For a comparable demon-
stration, we selected two-dimensional features to be drawn
on the X and Y axes, respectively. We normalized the data
to be displayed with min-max scaling and charted the main
distributions in the coordinates. In Figure 1, the discrepancy
of the data distribution is clearly shown to exist in the two
projects (Pr(Xs) 6= Pr(Xt)). As we know, if the distribution
of training and test data do not match, we are facing sample
selection bias or covariate shift problems that will greatly



affect the performance of the predictive model [11].
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(a) Distribution discrepancy based on DBN-generated features
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(b) Distribution discrepancy based on CNN-generated features

Fig. 1: The distribution discrepancy existed between projects.

To solve this problem, we proposed the Transferable Hy-
brid Features Learning framework with Convolutional Neural
Network (CNN-THFL) to perform CPDP. Specifically, we
parsed the source files into ASTs and selected representative
nodes on the AST to form token vectors. By converting
the token vectors into integer vectors, we adopted CNN to
extract the deep learning-generated features. In the process,
we concatenated deep learning-generated features with the
traditional handcrafted features to construct the hybrid fea-
tures [4]. To enhance the transferability of hybrid features
in CPDP tasks, we attempted to learn transfer components
across projects in a reproducing kernel Hilbert space (RKHS)
using transfer component analysis (TCA), which could match
the data distribution between projects. Finally, the transferable
hybrid features generated by CNN-THFL could be fed to the
base classifier to train the CPDP model.

The main contributions of this paper are:

- We propose a features-learning framework called
CNN-THFL, which jointly considers the transferability
of deep learning-generated and handcrafted features
in cross-project programs, to handle the distributions
discrepancy between projects in CPDP tasks.

- To validate the effectiveness of CNN-THFL, we evaluate
it on 72 pairs of CPDP tasks formed by 9 open-source
projects. The experimental results show that in terms of
average MCC, CNN-THFL improves the TCA by 30.1%

and the DP-CNN by 62.8%.

- By experimental comparison, we found that when using
CNN or DBN to mine deep learning-generated features,
better results can be attained if this is simultaneously
combined with handcrafted features and TCA algorithm,
indicating the necessity of using hybrid features and
considering their transferability.

We have organized the rest of this paper as follows. In
Section II, we review some related works. In Section III, we
show the high-level framework of CNN-THFL and elaborate
its steps. In Section IV, we provide the experimental setup.
In Section V, we show the experimental results to validate
the effectiveness of CNN-THFL framework. In Section VI,
we discuss the threats to validity. We concludes our work and
point out the potential future works in Section VII.

II. RELATED WORK

In this section, we briefly review the related CPDP works.
To effectively apply the SDP technique early in the software

lifecycle, CPDP is proposed as a more feasible solution. Its
central concept is learning a defect predictor for a new project
(target project) by using labeled data from a mature project
(source project). In a previous study of CPDP, Zimmermann
et al. [12] conducted a large-scale experimental study on its
feasibility. They selected 12 real-world projects and analyzed
a total of 622 pairs of CPDP tasks. The results show that only
3.4% of tasks were able to achieve acceptable performance.
To enhance the performance of the CPDP, Ma et al. [13]
developed a transfer Naive Bayes model (TNB) that uses the
weighted source data based on target set information to train
a weighted Naive Bayes classifier. Nam et al. [14] applied a
transfer-learning approach TCA+, which extended TCA [15]
with customized normalizing rules, to make data distributions
in source and target projects similar. The experimental results
show that TCA+ can improve the performance of CPDP by
transferable feature learning.

However, the aforementioned methods only use handcrafted
features (e.g., Halstead [5], McCabe [6], and CK features [7]).
In fact, if we can reasonably mine and use the semantic and
structural information of the programs, it will be possible to
further improve the performance of SDP. Recently, Wang et
al. [10] tried to leverage DBN to automatically learn semantic
features using token vectors extracted from the programs’
ASTs. Their evaluation of 10 open-source projects shows
that the DBN-learned features improve the performance of
SDP. Based on the framework of DBN method, Li et al. [4]
proposed that CNN is more advanced than DBN in capturing
local patterns. They proposed a framework called Defect
Prediction via Convolutional Neural Network (DP-CNN) to
extract semantic and structural features from token vectors.
The experimental results show that on average, DP-CNN
improves the performance of SDP. It is worth mentioning that
DP-CNN concatenates the CNN-learned feature vectors with
traditional handcrafted feature vectors to avoid losing potential



④ Performing defect prediction
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Fig. 2: Overview of our CNN-THFL framework to perform CPDP.

information in the latter. However, neither the DBN nor the
CNN has considered the situation that there is distribution
discrepancy across projects in CPDP tasks (Wang et al. [10]
only assume that semantic features can capture the common
features of defects and directly use DBN-generated features in
CPDP tasks). Furthermore, this situation is exactly what we
want to study and handle in this paper.

III. METHODOLOGY

A. Overall Framework

As presented in Figure 2, our CNN-THFL framework con-
sists of four major steps: 1) parsing source code into tokens
and converting them into integer vectors; 2) leveraging the
CNN to automatically extract deep learning-generated features
and constructing hybrid features; 3) generating transferable hy-
brid features via TCA; and 4) building classifier and predicting
defects.

B. Parsing Source Code and Converting into Integer Vectors

AST is a tree representation of source code, and each struc-
ture in the source code can be represented as a node in the tree.
Related work [10] has proven that ASTs can be used to detect
the integrity and defects of source code. In this paper, we used
the Javalang1, an open-source Python package, to parse the
Java files and generate corresponding token vectors. Table I
lists the node categories and types used in this report. We use
the name of the node type as the identifier for each node in the
token vector. Considering that the names of methods, classes,
and types are project-specific [8], we also used the type name
(e.g., MethodDeclarations and ClassInvocation) to label nodes
instead of the specific name used in [4].

The token vector extracted by Javalang cannot be directly
used as input for CNN model training. To solve this problem,

1https://pypi.org/project/javalang/0.9.2/

TABLE I: The selected AST nodes.

Node Category Node Type

Nodes of method in-
vocations and instance
creations

MethodInvocation, SuperMethodInvocation,
ClassCreator

Declaration-related
nodes

PackageDeclaration, InterfaceDeclaration,
ClassDeclaration, ConstructorDeclaration,
MethodDeclaration, VariableDeclarator,
FormalParameter

Control-flow-related
nodes

IfStatement, ForStatement, WhileStatement,
DoStatement, AssertStatement, BreakState-
ment, ContinueStatement, ReturnStatement,
ThrowStatement, TryStatement, Synchro-
nizedStatement, SwitchStatement, Block-
Statement, CatchClauseParameter, TryRe-
source, CatchClause, SwitchStatementCase,
ForControl, EnhancedForControl

Other nodes BasicType, MemberReference, Reference-
Type, SuperMemberReference, Statement-
Expression,

referring to [4], we established a mapping dictionary between
tokens and integers so that the same token would be repre-
sented as the same integer. In this way, we could convert the
token vectors into integer vectors. Furthermore, because CNN
requires input vectors to have the same length, all input vectors
would be filled with zero to the length of the longest vector.

C. Extracting Deep Learning-Generated Features and Con-
structing Hybrid Features

In this study, we applied CNN’s feature-generation capa-
bility to capture the semantics and local structure of source
code [4]. Our CNN included an embedded layer, a convolu-
tional layer, a maximum pool layer, a full-connection layer,
and the last output layer as input to the base classifier. All
other layers adopted the ReLU activation function except the



output layer, which used the sigmoid as the activation function.
We implemented CNN by Pytorch2, which has efficient tools
for neural networks construction and enables fast, flexible
experimentation.

To apply the knowledge carried in the handcrafted features
at the same time, we stitched the these features of each project
with the deep learning-generated features. The handcrafted
features used in this paper were drawn from the metrics used
by Jureczko and Madeyski in their defect prediction work [16].
Notice that we used the same handcrafted features from the
source and target projects. We spliced deep learning-generated
feature vectors with handcrafted feature vectors using the
Concatenate method of Python to obtain hybrid feature vectors
as the input for the next step.

D. Generating Transferable Features

In this study, we hoped to find transferable feature represen-
tation to handle the distribution discrepancy between source
and target projects. TCA [15] is a transfer-learning method
that allows knowledge of defects from a source project to be
transferred to a target project. TCA attempts to learn some
of the transferable components in the RKHS using maximum
mean discrepancy [17]. In the subspace spanned by these
transferable components, the properties of source and target
data are preserved, and the data distributions in different
projects are similar to each other. Therefore, through the new
mapping data in this RKHS, we could train the base classifier
in the source project, which was also available for the target
project.

E. Performing Defect Prediction

For this paper, we chose logistic regression (LR) as a base
classifier. We followed the aforementioned steps to process
the files in the source and target projects and obtain the
transferable hybrid feature for each file. After we fed the TCA-
handled data of source project and corresponding label to the
LR model, the weights and deviations in our LR would be
obtained. Then we used the trained model to predict whether
the instances of the target project were defective.

IV. EXPERIMENTAL SETUP

A. Evaluated Projects

To assess the CNN-THFL framework, we collected 9 Java
open-source projects from the PROMISE repository, which has
been commonly used in recent CPDP researches [18]–[20].
Table II presents the basic information for the 9 projects. Each
project consists of a collection of Java files, their correspond-
ing 20 static code attributes (the detailed descriptions of which
can be found in [18]), and a label (defective or clean). To verify
the generality of our approach, the data sets were composed
of several projects with different sizes (ranging from 205 to
815) and defective rates (a minimum value of 11.4% and a
maximum value of 98.8%). In our CPDP task, given one of
the projects as the training data, another eight projects could

2https://pytorch.org

TABLE II: The 9 projects selected from the PROMISE repos-
itory.

Project Name Project Version Instance Count Defect Rate

Ant 1.7 745 22.3%

Camel 1.6 965 19.5%

Ivy 2.0 352 11.4%

Log4j 1.2 205 92.2 %

Lucene 2.4 340 59.7%

Synapse 1.2 256 33.6%

Velocity 1.6.1 229 34.1%

Xalan 2.7 909 98.8%

Xerces 1.4.4 588 74.3%

be used as the test data, respectively (e.g., using the data of
Ant v1.7 as a training set and the data of Camel v1.6 as the
test set). Thus, 72 pairs of CPDP tasks could be performed in
this study.

Software defect data have the typical characteristic of im-
balanced distribution [21], [22], with the number of minority
instances being less than the number of majority instances
(e.g., in the Ivy-v2.0 project, the number of defective instances
is far less than that of clean instances). In this study, we used
the method of random oversampling to avoid imbalanced data
that would degrade the performance of our model.

B. Evaluation Metrics

The metric of predictive performance is very important. Al-
though the F1-socre has been widely used in recent years [18],
[19], we believe that it has problems in SDP tasks [3], espe-
cially when there are imbalanced data sets. For example, F1-
score excludes true negatives (TN) from calculations, which
may be problematic. The test manager will be happy to know
whether the component is truly defect-free. Thus, we adopted
the Matthews Correlation Coefficient [23] (MCC), as a metric
of predictive performance.

As shown in Table III, there may be four outputs when
using the dichotomous classifier in the SDP task.

TABLE III: Confusion Matrix

Truly Defective Truly Clean

Predictively Defective TP FP

Predictively Clean FN TN

MCC is the geometric mean of the regression coefficients
of the problem and its dual. Based on the confusion matrix,
MCC is calculated by the following formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

As a correlation coefficient, MCC measures the relationship
between predictive class and true class by taking into account
all components of confusion matrix. Its return value is on a
scale [-1,1] where 1 means a perfect positive correlation and



-1 means a perfect negative correlation. Specifically, MCC can
take into account TN, and it is less sensitive to the imbalanced
data set.

C. Comparative Methods
We compared CNN-THFL with 9 methods including:
- LR. Traditional method, which builds a LR classifier only

using handcrafted features.
- TCA. A classic transferable features learning

method [15].
- DBN. A standard DBN model to extract semantic features

for SDP [10].
- DBN-TCA. A variant of DBN, which applies TCA to

obtain transferable DBN-learned features.
- DBN-DP. An improved version of DBN proposed by [4],

which concatenates the DBN-learned features with the
handcrafted features.

- DBN-THFL. A variant of CNN-THFL framework which
adopted DBN to generate deep learning features.

- CNN. A SDP method that extracts deep learning-
generated features via standard CNN.

- CNN-TCA. A variant of CNN that applies TCA to obtain
transferable CNN-learned features.

- CNN-DP. A state-of-the-art SDP method that is an im-
proved version of CNN proposed by [4].

Regarding the implementation of DBN, we adopted the
same network architectures and parameters as in [10], i.e.,
10 hidden layers and 100 nodes in each hidden layer. When
implementing CNN, referring to [4], we set the batch size as
32, the epoch number as 15, the embedding dimension as 30,
the number of hidden nodes as 100, the number of filters as 10,
and filter length as 5. To make fair comparisons, we followed
the same code-parsing process to generate integer vectors for
neural networks. For TCA, we used the source code provided
by its author [15]. For LR, we used the same implementation
of LogisticRegression in sklearn.linear model, and we adopted
default parameters settings by sklearn. Considering the process
of random oversampling and batch shuffle involve randomness,
we conducted each method 20 times, recording their average
result of MCC.

V. RESULTS

Because some data sets tend to produce over- or under-
performing models, we adopted the Scott-Knott ESD [24], [25]
test to compare the performance of the methods we examined
(see Figure 3). The Scott-Knott ESD test used here is a mean
comparison method that leverages hierarchical clustering to
divide a set of MCCs into statistically distinct groups with
non-negligible differences. The approach of this test consists
of two steps: (1) finding the partitions that maximize the MCC
means between groups, and (2) splitting into two groups or
merging them together in one group. A detailed description of
the Scott-Knott ESD test can be seen in [24]. We can use the sk

esd function of the ScottKnottESD3 R package to implement
the test easily and quickly.

3https://github.com/klainfo/ScottKnottESD
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Figure 3 presents the Scott-Knott ESD test of the MCC
results (including for 72 CPDP tasks). By comparing 9
referential methods, the average MCC of CNN-THFL was
0.18, which respectively outperformed DBN-THFL, CNN-
TCA, LR, TCA, DBN-DP, CNN-DP, and CNN by 8.9%,
10.5%, 17.1%, 30.1%, 50.8%, 62.8%, and 76.1%.

The following two points can be observed from Figure 3:
1) DBN-DP and CNN-DP, which consider concatenating the

deep learning-generated features with the handcrafted features,
will perform better than pure DBN and CNN.

2) Better prediction performance (in terms of MCC) can
be obtained by combining the THFL framework with deep-
learning methods. Among them, CNN-THFL can perform
better.

In summary, our CNN-THFL framework improves the
performance of CPDP tasks with the consideration of
distribution discrepancy between projects. It is worth
mentioning that not only CNN-THFL but also DBN-THFL
will achieve better performance than the methods without
THFL, so we recommend using hybrid features and
adapting the distribution discrepancy between projects
when performing CPDP. We believe that this improvement
of SDP would provide more effective help to test teams
for detecting software defects and reasonably allocating
test resources.

VI. THREATS TO VALIDITY

A. Implementation of DBN and DP-CNN
In this study, we compared the DBN method [10] and

DP-CNN method [4], which are the state-of-the-art deep
learning-based SDP methods. Because their implementations
have not been publicly released, we tried to reimplement the
corresponding methods by Pytorch with the same network



structures and parameters. However, we still cannot guarantee
that the effects of DBN and DP-CNN that we re-implemented
are exactly the same as those in [10] and [4]. However, in
our experiments, we used the unified processes (e.g., code-
parsing and oversampling steps) and tools (e.g., Pytorch and
LR classifier) to implement the CPDP framework. As such,
our comparative experiment should be fair.

B. Experimental Results Might Not Be Generalizable
In our experiments, 9 open-source projects were selected

from the PROMISE repository to access the CPDP methods.
The experimental results of these 9 projects (72 CPDP tasks)
do not represent all cases. For some other programming
languages and commercial software, our proposed method
might obtain better or worse results.

C. MCC Might Not Be the Only Appropriate Measure
In our work, we used MCC as the metric of predictive

performance. In fact, other metrics (e.g., F-score and G-
measure) can also be used in the SDP task. In this paper, we
recommend using MCC because it can take TN into account,
and it is less sensitive to the problem of imbalanced data sets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a features learning framework
called CNN-THFL to improve the performance of CPDP.
CNN-THFL aims to mine both transferable deep learning-
generated and handcrafted features between source and target
projects. An important advantage of CNN-THFL is that it
explores the necessity for distribution adaptation of hybrid
features that concatenate deep learning-generated features with
the traditional handcrafted features in a CPDP task. CNN-
THFL is robust to differences in distribution between projects.
A large number of experiments on 9 projects with 72 CPDP
tasks have been carried out to verify that the proposed frame-
work can achieve better performance in terms of MCC than
the advanced referential methods. In future work, we plan
to investigate the up-to-date distribution adaptation method
to reduce the distribution discrepancy between projects. In
addition, we will try to solve the defect prediction across
multiple projects with CNN-THFL.
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