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Abstract—In web applications that adopt layered architecture, 
Domain Layer is formed by Domain Model. Without any 
behavior, Anemic Domain Models contain only data. Those 
behaviors are dispersed into other layers and causing bloodshot 
symptoms in them. Most empirical studies suggest that symptoms 
of anemia and bloodshot degrade the maintainability of web 
applications, but no quantitative research has been done. This 
paper evaluates intensities of anemia and bloodshot symptoms 
based on metrics of three Code Smells, i.e. Data Class, Feature 
Envy and Blob. Furthermore, correlations of the intensities are 
evaluated using Spearman's rank correlation coefficient. The 
achieved results of experiments made on multiple versions of 
open-sourced projects show that over 65% of the applications are 
affected by anemia and bloodshot symptoms, and their intensities 
rarely decrease over time. Correlations of the intensities are also 
discovered within a single version and among multiple versions. 

Keywords-anemic domain model; code smell; web application; 
domain driven design 

I. INTRODUCTION 
Domain Driven Design (DDD) [1] is a model-driven 

methodology aims to tackle the complexity of software systems. 
DDD introduced a layered architecture consisting of four layers 
including Interface, Application (also known as Service [2]), 
Domain, and Infrastructure Layer. Data in Domain Layer is 
presented by Domain Models. Fowler [3] defines the Domain 
Model as an object model of the domain that incorporates both 
behavior and data, while Anemic Domain Model (ADM) is a 
Domain Model containing little or no such behavior. 

Applying ADMs to Domain Layer triggers the anemia of 
Domain Layer accompanied by the bloodshot of other layers. 
Firstly, the domain behaviors are dispersed into other layers 
notably the Service Layer, but those behaviors  still depend on 
ADMs’ data structure, causing tight coupling of the Service 
Layer to the Domain Layer. As a result, the Service Layer 
becomes oversized while its cohesion is reduced. Secondly, the 
object-oriented program degrades into process-oriented 
program [2] with reduced comprehensibility. 

Evans [1] suggests the Service Layer should be kept "thin," 
while Fowler [2] concludes that ADM is a common anti-pattern 
and their usage should be avoided. Both of them point out that 
the core business logic of web applications should be 
concentrated on the Domain Layer. However, ADMs are still 
widely adopted in enterprise systems [4]. There have been 
several discussions questioning whether ADM is an anti-pattern, 
which suggests the advantages of ADM should be refocused, 
and in some cases, ADM may be the best practice [5, 6].  

Above-mentioned symptoms and discussions are presented 
in empirical studies. To the best of our knowledge, the pros and 
cons of ADMs have not been quantified by any research.  

 Code Smell is the symptom of poor design and bad 
implementation choices [7]. Fowler [8] proposes 22 Code 
Smells for object-oriented programming including God Class 
(also known as Blob), Feature Envy, and Data Class. Code Smell 
intensities could be evaluated by proper metrics.  

 In this paper, we apply metrics of Blob and Feature Envy to 
quantify bloodshot symptoms, and Data Class for anemia 
symptoms. The source code of 112 MVC-based Java application 
together with 96 versions of 10 Java web application are 
analyzed, while over 65% of them are affected by anemia and 
bloodshot symptoms. The analysis shows that there is a positive 
correlation between anemia and bloodshot symptoms, and 
intensities of these two symptoms rarely decrease over time. The 
results also reveal that although ADMs are built to separate 
business logic and data structure completely, most ADM-based 
applications are not strictly following the design.  

The main contributions of this paper are: 

1)  Fills the gap in the quantification method of anemia and 
bloodshot symptoms in web applications.  

2)  Confirms Fowler’s empirical discoveries of the negative 
impact of ADMs on software systems, while the advantages of 
ADMs have not been proved by any experiment. 

3)  Reveals the persistence and correlations of anemia and 
bloodshot symptoms. 

The rest of this paper is organized as follows. Section II 
introduces the background and related works. Section III details 
the Code Smell detection approach and the quantification 
methods of anemia and bloodshot symptoms. In Section IV we 
have done several experiments to verify the accuracy of our 
approaches and presented our evaluation process together with 
results. Then, we detail the threats that could affect the validity 
in Section V. Finally, Section VI concludes the paper.  

II. RELATED WORKS 

A. Code Smell Detection 
This paper evaluates intensities of 3 following Code Smells.     

• Blob is for an oversized class with low cohesion, and it 
implements multiple irrelevant responsibilities [9-11].     

• Data Class is a class that contains only data but no 
behaviors[12].     
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• Feature Envy describes a method more interested in a 
class other than the one it is in [9].    



 
 

 

 

 

 

 

Fig. 1. Overview of Code Smell quantifying method

TABLE I.  COMPARISON OF APPROACHES FOR FEATURE ENVY 

TABLE II.  COMPARISON OF APPROACHES FOR BLOB 

Lanza et al. [10] quantified Code Smells and proposed 
several metrics and relevant thresholds, which are widely 
adopted in modern Code Analysis tools such as PMD [13]. 
JDeodorant [14] and DECOR [15] are notable tools detecting 
coupling and cohesion Code Smells.  

Palomba et al. [11] proposed a pure textual detection 
approach called TACO, which is significantly different to 
traditional structural approach, aiming to discover conceptional 
coupling and cohesion problems. Furthermore, Palomba et al. 
[12] built a detection model based on multiple metrics, and they 
also evaluated the co-occurrence of Code Smells. 

While Data Class metric is commonly accepted [10,12], 
multiple approaches of Feature Envy and Blob detection exists 
and their compatibilities to tasks in this paper is worth 
discussing. The difference in detection approaches is listed in 
Table I and Table II. 

For Feature Envy, the main difference of the two approaches 
is whether an actual coupling target should be detected. 
Clarifying actual coupling targets is a must, as the identification 
of layer connections is vital. For Blob, both two methods refer 
to low cohesion, while Moha et al. [15]'s approach is more 
convenient due to its coupling detection and textual rules. In 
layered web application, classes and package names follow 
specific rules, and coupling with a Domain Model is the cause 
of the bloodshot symptom. 

B. Web Application Design Problems 
Aniche et al. [16] defined several MVC specific Code 

Smells, and evaluated their variation together with lifecycles 
based on a public dataset of 120 open-sourced GitHub 
repositories. This work developed metrics concerning specific 
web application code components such as Data Access Object 
(DAO), Repository, Controller and Service. 

 Cemus et al. and Cerny et al. [17,18] empirically 
investigated the negative impacts of ADMs and RDMs, and 
proposed a generic modeling method to ensure maintainability. 
According to their case studies, ADMs could cause Information 
Restatement and Concerns Tangling. RDMs also trigger 
coupling and cohesion problems, but intensities of design 
problems among Domains are decreased. The coupling 
problems within a single Domain could be resolved using 
Aspect Domain Model (AsDM). 

C. Class Role Inference and Layering 
Sakar et al. [19] generated Dependency Graph of modules 

and determined layer of each vertex according to their number 
of indegree and outdegree, while Hayashi et al. [20] inferred the 
role of code component in MVC-based applications using 
Dependency Graph.  

Hickey et al. [21] split classes into layers according to their 
names, this method could lose its accuracy due to different 
naming strategies. Fokaefs [14] et al. and Aniche et al. [16] 
mentioned role detection of code components using class name 
and annotation name in their works. 

III. APPROACH 
Several fundamental data, i.e. Code Smell intensities and 

layers of classes, should be collected before evaluating anemia 
and bloodshot intensities. The overview of Code Smell 
quantifying method is illustrated in Fig. 1. In the following 
paragraphs, we explain each of the steps in detail. 

A. Evaluating Data Class Intensity 
Data Class is a class with interfaces that (i) provide almost 

no functionality and (ii) declare data fields. [10] 

As shown in Fig. 2, WMC metric is used for (i), and 
NOPA+NOAM together with WOC are adopted for (ii). 

 WOC is the number of public methods (with accessors and 
constructors excluded) divided by the total number of public 
members. NOPA is the number of public attributes of a class, 
while NOAM is the number of accessor methods, i.e. getter and 
setter. WMC sums the complexity of all methods of a class.  

Name / Approach Lanza et al.[10] Fokaefs et al. [14] 
Couples With Multiple classes A single class 

Precise Coupling 
Target 

No. It detects coupling  
of a class generally. 

Yes. It focus on both couplin
g source and target. 

Metrics  Access to Foreign Data 
(ATFD), Local Attribu
te Access(LAA), Forei
gn Data Provider(FDP) 

Access to Distinct Foreign 
Members, Access to Distinct
 Local Members  

Chosen No Yes (Extended to detect mult
iple coupling targets) 

Name / Approach Lanza et al.[10] Moha et al. [15] 
Metrics Structural:  

Access to Foreign D
ata (ATFD), 
Weighted Method C
ount (WMC), 
Tight Class Cohesio
n (TCC) 

Structural: Number of Methods 
Defined (NMD), Number of Attr
ibutes Defined(NAD), Lack of C
ohesion of Methods(LCOM5)． 
Textual: Class name contains M
anager, Process, Control, etc. 
Coupling: Access to at least one 
Data Class． 

Chosen No Yes 



 

 
Fig. 2. Data Class detection approach 

The CYCLO metric is used to calculate method complexity. 
The calculation approach of CYCLO defined in PMD following 
the standard rules given below is used in this paper:  

• Methods have a base complexity of 1; 

• +1 for every control flow statement (if, case, catch, 
throw, do, while, for, break, continue) and conditional 
expression (?:) ; 

• else, finally and default do not count; 

• +1 for every Boolean operator (&&, ||) . 

Thus, the intensity of Data Class could be calculated as (1): 

                           (1) 

B. Evaluating Feature Envy Intensities 
 A class is affected by Feature Envy if it access members of 
another class more frequently than its local members. [14] 

 Given a class Ccurrent, the approach calculates ATLM as the 
frequency of distinct local member accessed by Ccurrent. Then, a 
set C for all classes in the software system is formed, for each 
class Ci in C, the frequency of distinct member access from 
Ccurrent to Ci named ai is evaluated. Finally, the classes in C is 
sorted by ai in descending order. A class is affected by Feature 
Envy if the first class Ctop is not equivalent to Ccurrent.  

For each ai, calculate diff=ai－ ATLM(C) and treat all 
negative diff value as zero. Then we sum all diffs to obtain the 
result of ATFM metric. For each diff > 0, the approach treats the 
related Ci as the coupling target of Ccurrent. 

The intensity is calculated as (2): 

                                          (2) 

C. Evaluating Blob Intensities 
As shown in Fig. 3, a Blob class is oversized, with low 

cohesion, having controller name pattern and couples with Data 
Classes. [15] We ignore name pattern as it is mentioned in 
Section D. 

Size of a class could be measured according to the sum of 
NMD and NAD metrics. The cohesion of class could be 
evaluated by LCOM5 metric, the main idea of LCOM5 is to 
calculate the rate of access to local members. 

 Given a class C, the approach determines the number of 
method members k, the number of attribute members l, and the 
frequency of access to distinct local members a. LCOM5 could 
be calculated as (3):                               

 
Fig. 3. Blob detection approach  

TABLE III.  CLASS ROLE INFERENCE APPROACH 

Role/ 
Approach 

Domain Persistence  Service   Interface  

Lowercas
ed name 
includes 

{domain, vo, 
entity, entities} 

{dao, repo, 
repository} 

service {controller, ctrl, 
api} 

Expected 
Layer 

1(bottom) 2 3 4(top) 

 We pick the 3rd-quartile in Al Dallal's work [22] as threshold 
of LCOM5 metric, and the fixed value in Palomba et al. 's [12] 
work as threshold of NMD+NAD metric. 

The intensity of Blob could be calculated as (4): 

                          (4) 

D. Class Layering 
There is no common and generic approach for class layering. 

Related works mainly consider two features, class dependencies 
[19,20] and class names [14,16,21]. This paper proposed a 
mixed layering approach that fits web applications. 

 First, the approach generates a Directed Acyclic Graph 
(DAG) according to class dependencies. Given a set of all 
classes in an application named C, a vertex is generated for each 
class. Then, pairs of vertexes are connected as follows: 
According to Table III, the likely role of each class could be 
inferred. For Ci∈C, Cj∈C and Ci≠Cj, if Ci accessed or called 
any member of Cj, and Ci and Cj have different inferred roles, 
an edge from Ci  to Cj should be generated. 

Then, the DAG should be split into 4 layers. At the very 
beginning, the approach splits the DAG into 3 layers. Vertexes 
with 0 in-degree are moved to the bottom (i.e. Domain) while 
those with 0 out-degree are moved to the top (i.e. Interface). For 
the rest of the vertexes kept in a temporary layer, we split them 
into 2 new layers using the similar method but ignore the 
connection of middle layer vertexes with the ones in the top and 
the bottom layer. Vertexes with 0 in-degree are moved to the 
lower layer (i.e. Persistence classes of Infrastructure), while 
other vertexes remain in the upper layer (i.e. Service).  

 Additionally, there exist some exceptions. For the vertexes 
whose roles cannot be inferred through names, their roles could 
be determined according to their actual layers as mentioned in 
Table III. If any Data Class has the naming pattern of Data 
Transfer Object and are only accessed by Interface Layer 
classes, they should be excluded from the DAG as their sole 
function is to normalize data during the transfer process.  

 Domains of an application could also be detected according 
to DAG and class name patterns. A set of words could be derived 
through splitting the Camel-cased Domain class names. If any 
word in the set appears in the name set of classes in other layers, 

( ) ( )( ) ( ) ( )( )1dcI C WOC C NOPA C NOAM C= - ´ +

( ) ( ) ( ) feI C ATFM C ATLM C= -

( ) ( ) ( )( ) ( )5blobI C NMD C NAD C LCOM C= + ´

         (3)  5( ) a klLCOM C
l kl
-

=
-



 

Fig. 4. The strategy of Anemic Class detection 

Fig. 5. The strategy of Bloodshot Class detection 

and the two vertexes of classes are connected, a domain could 
be determined.  

E. Quantifying the symptoms of anemia and bloodshot 
For now, we have collected the fundamental data including 

the layer of each class and their Code Smell intensities. The 
intensities of symptoms should be evaluated as follows. 

As mentioned in Fig. 4, ADM is determined if a Data Class 
belongs to the Domain Layer, the intensity of anemia is Idc.  

As Fig. 5 illustrates, if a non-Domain-Layer class affected 
by Feature Envy and couples with a Data Class, we consider it 
bloodshot with intensities of two metrics: the extent of low 
cohesion Iblob and the extent of high coupling Ife. For any 
bloodshot class with Iblob >0 or couples with multiple ADMs, we 
regard it as a Severe Bloodshot Class (SBC). 

IV. EXPERIMENTS 
 This paper implements Code Smell metrics based on PMD 
[13] with necessary modifications [23]. Statistical data and plots 
are produced by Python scripts after generating reports of Code 
Smell intensities. Experiments are conducted to address the 
following 5 research questions:  

• RQ1 Accuracy: Is the approach able to evaluate class 
layers and Code Smell intensities accurately? 

• RQ2 Severity: How severe is the symptom of anemia 
and bloodshot in web application? 

• RQ3 Correlation: What is the relationship between the 
symptom of anemia and bloodshot? 

• RQ4 Survivability: Do intensities of anemia and 
bloodshot symptom decrease over time? 

• RQ5 Evaluation: What is the effect of applying ADM? 

A. Accuracy of fundamental data  
 A typical web application called military-shop is picked 
from the dataset [16] consisting of 120 open-sourced Java 
applications based on MVC architecture from GitHub. RQ1 is 
to be answered in this section using military-shop as a demo. 

 Precision and Recall metrics are used to evaluate accuracy. 
The metrics can be calculated as (5) and (6): 

 

TABLE IV.  ACCURACY OF LAYERING APPROACH 

TABLE V.   LEVELS OF CORRELATION 

Range of ρ Correlation Level 
[0.8,1.0] Very Strong 
[0.6,0.8) Strong 
[0.4,0.6)  Moderate 
[0.2,0.4) Weak 
[0.0,0.2) Very Weak 

     
Fig. 6. Layers, dependencies and domains. The size of a vertex grows if 
overlapped. Edges are hidden if they connect vertexes in the same layer. 

where Correct denotes the set of items manually identified and 
Detected represents the set of items detected by the heuristic.  

 Fig. 6 shows the layered DAG of the project, while Table IV 
lists the accuracy of the layering approach. A few classes with 
ambiguous patterns were not correctly layered. The approach 
also detected all 8 domains of the project, and classes with 
correct inferred role were all placed into proper domain. The 
domain detection heuristic had a Precision of 100% and a Recall 
of 91.58%. Relevant Code Smell intensities were also validated.  

Compared with the results of manual detection, we can 
conclude that fundamental data could be detected correctly. 
Manual detection is done independently by the first author and 
a developer having 3 years of enterprise web application 
development experience. A few disagreements were discussed 
and resolved later. 

B. The Experiment conducted on single application 
 This section use Shopizer [24] as an example to demonstrate 
the experiment conducted on each project. The results will not 
be fully presented in this section as they are listed in Table VII 
and VIII instead. 

 For Q2, as shown in Table VII, 60.97% of the classes in the 
Domain Layer were ADMs, while Bloodshot occured in 95.16% 
of the Interface and Service classes within detected Domain. 
About 70% bloodshot classes were SBCs.  

 In order to answer Q3, the correlations of Iblob, Ife and Idc 
should be evaluated. This paper uses the Spearman's rank 
correlation coefficient [25] with a P-value of 0.05 to analyze the 
correlation between every pair of intensities. The metric takes 
the input value of two sets of values equal in length and produces 
the correlation coefficient ρ together with the significance level 
P. With P<0.05, the level of correlation could be considered 
statically significant with a level presented by ρ ranges in [-1, 1] 
as shown in Table V. For example, the metric reported a strong

Role/Metric  Domain 
Model 

Persistence  Service  Interface  Utility 

Precision  100% 100%  100%  90%  85.71% 
Recall  88.57% 100%  85.71%  94.73% 100% 

Samples  35 7  14 19 12 

Interface Class 

Service Class 

Persistence Class 

Domain Model 
1  2 3 4  5  6 7 8  Domain No. 

Inner Domain Dependency 

Cross Domain Dependency 

Domain Irrelevant Dependency 

                Precision	=	  Correct ∩ Detected
Correct 

   (5) 

                Recall	=	  Correct ∩ Detected
Detected 

  (6) 

A Domain 
A Layer 



 

TABLE VI.  DETECTION RESULTS OF 59 OPEN-SOURCED PROJECTS 

TABLE VII.  PROJECT COMPOSITIONS OF 10 OPEN-SOURCED JAVA WEB APPLICATIONS

TABLE VIII.  Ρ VALUES OF 10 OPEN-SOURCED JAVA WEB APPLICATIONS 

correlation between Iblob and Ife with ρ=0.71 (P=2.62e-12). 

 In order to answer Q4, it is necessary to analyze the variation 
of the 3 concerned intensities (ΔIblob, ΔIfe and ΔIdc) among all 6 
release versions. Intensities between two neighboring versions 
were calculated and normalized to the range [0,1]. The 
correlations of variations were also evaluated. 

For Q5, we calculated the rate of ADMs’ contributions to Ife 
in domains, i.e. the sum of Ife of every domain class coupled with 
at least 1 ADM divided by the sum of Ife in all domains.  

C. Results 
Following a similar process of Section B, the experiment 

was conducted on 120 applications mentioned in Section A, in 
which 112 projects were available for access on GitHub. Among 
the 112 projects, 66.96% of them were affected by anemia and 
bloodshot symptoms(ADM rate > 0% and bloodshot class rate 
> 0%) and 52.68% of them had at least 1 valid ρ value (P<0.05 
and 0<|ρ|<1). Table VI reports the result of the applications with 
valid ρ value. 

The primary cause of the invalid ρ values were: (i) The 
project was too lightweight, i.e. contained few lines of code. (ii) 
No such correlation exists. Domains were not detected in some 
of the applications, in most of the cases they did not have valid 
ρ values owing to the fact that these projects were not layered or 
they were not web applications. 

This dataset was collected using the filter "exists at least 10 
controllers" for the analysis of MVC-based applications, most 
of them lacked valid release information, which were not 
capable for analysis based on multiple versions. So a new dataset 
must be picked.  

We selected 10 Java web applications with more than 100 
commits, more than 100 classes, and at least one commit in 
recent 6 months. For each project, we analyzed its latest 10 
versions available. 9 out of the 10 projects were affected by 
anemia and bloodshot symptoms. DDDLib was an exception 
that follows the DDD specification. Dataverse did not have a 
clear layering pattern, and the size of each layer was not enough 
for the metrics to evaluate correlation data. 

“The proportion of decreasing anemia or bloodshot 
intensities” named Rdec was calculated as the ratio of “the 
number of classes with any of the three intensities decreased” to 
“the number of SBCs and ADMs”. 

Table VII reports the composition of the applications, while 
Table VIII lists multiple correlation coefficients (ρ), any ρ with 
P>0.05 will be marked as unavailable(-).  

D. Discussions 
 For Q2, more than 65% of the 112 projects analyzed by the 
experiment were affected by anemia and bloodshot symptoms. 
For web application domains based on ADMs, the proportion of 
bloodshot classes exceeded 90%, and most of them were SBCs, 
indicating the symptoms were common and severe. 

 Class/ 
Domain  
Count 

SBC rate for  
bloodshot classes 

Bloodshot rate for 
Services and Inter
faces of Domains 

ADM contrib
ution to Dom
ain coupling 

ADM rate for  
Domain Layer  

Classes 

ρ of 
Iblob , 

Ife 

ρ of 
Idc , 
Iblob 

ρ of 
Idc , 
Ife Service Interface 

Mean 645.34/23 65.30% 65.98% 97.76% 49.88% 50.64% 0.68 0.07 0.09 
Variance 333845.04/330 0.09 0.09 0.01 0.05 0.05 0.02 0.15 0.11 

Project Name Commit/Fork/ 
Release 

Latest  
Version 

Class/Do
main 

Count 

SBC rate for  
bloodshot classes 

Bloodshot rate for 
Services and Interf

aces of Domains 

ADM contrib
ution to Dom
ain coupling 

ADM rate for D
omain Layer Cl

asses Service Interface 
Shopizer 193/941/6 2.2.0 811/31 72.22% 68.18% 95.16% 68.85% 60.97% 

OpenLegislation 3192/88/28 2.17 787/36 95.65% 61.11% 98.96% 32.70% 32.04% 
LibrePlan 9657/148/32 1.4.1 1294/50 66.67% 100% 99.14% 41.33% 13.91% 
OpenCMS 22750/321/228 10.5.4 3382/54 84.61% 76.92% 97.67% 43.63% 18.84% 

Thingsboard 1514/676/17 2.1 797/31 100% 63.64% 98.73% 35.67% 8.70% 
Sakai 46898/535/21 12.3 4951/45 71.43% 92.00% 100% 38.85% 30.86% 

OpenClinica 8521/167/30 4.5.2 1436/38 81.48% 65.06% 96.85% 71.94% 58.41% 
Apollo 1944/2873/14 1.0.0 458/24 68.32% 78.27% 100% 57.79% 78.92% 

Dataverse 12042/180/30 4.9.2 675/19 33.33% 55.56% 97.43% 44.30% 42.30% 
DDDLib 2310/153/18 4.6.1 392/- 0% 0% - 0% 10.00% 

Project Name Analyzed 
Versions 

ρ of  
Iblob , Ife 

ρ of  
Idc , Iblob 

ρ of  
Idc , Ife 

ρ of 
ΔIblob ,ΔIfe 

ρ of 
ΔIdc ,ΔIblob 

ρ of 
ΔIdc ,ΔIfe 

Rdec 

Shopizer 6 1.00 - - 0.78 0.70 0.79 0.70% 
OpenLegislation 10 0.81 0.71 0.94 0.67 - 0.31 0.00% 

LibrePlan 10 - - 0.85 - 0.73 0.64 3.84% 
OpenCMS 10 0.80 - - 0.95 0.58 0.47 1.72% 

Thingsboard 10 0.99 0.62 - 0.81 0.61 0.74 2.38% 
Sakai 10 0.94 - 0.63 0.87 0.51 0.38 1.47% 

OpenClinica 10 0.57 - 0.71 0.70 0.28 0.51 0.45% 
Apollo 10 1.00 0.96 0.96 0.70 0.36 0.42 1.11% 

Dataverse 10 - - - 0.78 - - 0.00% 
DDDLib 10 - - - - - - 0.00% 



 

For Q3, regarding the ρ values of Table VI and Table VIII, 
the two intensities of bloodshot correlated in most of the cases. 
Among different versions of the same project, the variations of 
the three intensities often correlated. We also analyzed the 
correlation of symptom intensities in different layers within 
single domains. But we did not find any significant correlation. 
The cause might be a large number of design problems within 
the domain are related to other domains instead of itself. 

For Q4, as shown in the last column of Table VIII, the 
symptoms of anemia and bloodshot rarely reduced, which also 
confirms the conclusion about structural Code Smells that they 
tend to become more severe and are rarely removed [9,15]. 

For Q5, the result of our experiment is not showing any 
advantages of ADM, but confirmed the widely-accepted 
conclusion that there are a lot of coupling and cohesion 
problems within an ADM-based domain resulting in SBCs. To 
our astonishment, applying ADM will not result in a complete 
separation of data and business logic as it is designed for in most 
of the cases. The ADM-based applications often contain 30% to 
70% of non-ADM domain models, in which domain behaviors 
are implemented. In conclusion, ADM has an obvious shortage 
of keeping single responsibilities.  

V. THREATS TO VALIDITY 
A threat to Internal Validity is that the layering approach 

uses name patterns. If the layering pattern in class name is 
ambiguous, the detection will be completed only according to 
dependency information, and accuracy will be affected.  

 Threats to External Validity are listed as follows: (1) 
Detection process could lose its validity on small applications, 
as thresholds derive from enterprise applications. (2)There exist 
a few applications that do not follow layered design. (3) Our 
approach analyses Java-based web application, the conclusion 
may not satisfy applications based on weakly-typed languages. 

VI. CONCLUSIONS AND FUTURE WORK 
It has been 15 years since Fowler first proposed the concept 

of ADM and its negative impacts, but ADM-based domain 
modeling is still popular. This paper analyzed source code of 
112 MVC patterns based Java applications in a public dataset 
and 96 versions of 10 Java web applications, and concluded that 
over 65% of applications are affected by anemia and bloodshot 
symptoms. The analysis also suggests a positive correlation 
between the two symptoms, and they rarely decrease over time. 
The shortage of ADM are confirmed by experiment results, 
furthermore, in most of the cases, the complete separation of 
data and business logic are not implemented as ADMs are 
designed for. 

Our future work involves the investigation of the impact of 
commit changes on anemia and bloodshot symptoms, and the 
application of Deep Learning approaches to improve the 
accuracy of class role detection is also worth trying. 
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