

The Smell of Blood: Evaluating Anemia and
Bloodshot Symptoms in Web Applications

Zijie HUANG, Junhua CHEN, Jianhua GAO*
Department of Computer Science and Technology, Shanghai Normal University, Shanghai, 200234, China

hzjdev@foxmail.com, {chenjh, jhgao}@shnu.edu.cn

Abstract—In web applications that adopt layered architecture,
Domain Layer is formed by Domain Model. Without any
behavior, Anemic Domain Models contain only data. Those
behaviors are dispersed into other layers and causing bloodshot
symptoms in them. Most empirical studies suggest that symptoms
of anemia and bloodshot degrade the maintainability of web
applications, but no quantitative research has been done. This
paper evaluates intensities of anemia and bloodshot symptoms
based on metrics of three Code Smells, i.e. Data Class, Feature
Envy and Blob. Furthermore, correlations of the intensities are
evaluated using Spearman's rank correlation coefficient. The
achieved results of experiments made on multiple versions of
open-sourced projects show that over 65% of the applications are
affected by anemia and bloodshot symptoms, and their intensities
rarely decrease over time. Correlations of the intensities are also
discovered within a single version and among multiple versions.

Keywords-anemic domain model; code smell; web application;
domain driven design

I. INTRODUCTION
Domain Driven Design (DDD) [1] is a model-driven

methodology aims to tackle the complexity of software systems.
DDD introduced a layered architecture consisting of four layers
including Interface, Application (also known as Service [2]),
Domain, and Infrastructure Layer. Data in Domain Layer is
presented by Domain Models. Fowler [3] defines the Domain
Model as an object model of the domain that incorporates both
behavior and data, while Anemic Domain Model (ADM) is a
Domain Model containing little or no such behavior.

Applying ADMs to Domain Layer triggers the anemia of
Domain Layer accompanied by the bloodshot of other layers.
Firstly, the domain behaviors are dispersed into other layers
notably the Service Layer, but those behaviors still depend on
ADMs’ data structure, causing tight coupling of the Service
Layer to the Domain Layer. As a result, the Service Layer
becomes oversized while its cohesion is reduced. Secondly, the
object-oriented program degrades into process-oriented
program [2] with reduced comprehensibility.

Evans [1] suggests the Service Layer should be kept "thin,"
while Fowler [2] concludes that ADM is a common anti-pattern
and their usage should be avoided. Both of them point out that
the core business logic of web applications should be
concentrated on the Domain Layer. However, ADMs are still
widely adopted in enterprise systems [4]. There have been
several discussions questioning whether ADM is an anti-pattern,
which suggests the advantages of ADM should be refocused,
and in some cases, ADM may be the best practice [5, 6].

Above-mentioned symptoms and discussions are presented
in empirical studies. To the best of our knowledge, the pros and
cons of ADMs have not been quantified by any research.

 Code Smell is the symptom of poor design and bad
implementation choices [7]. Fowler [8] proposes 22 Code
Smells for object-oriented programming including God Class
(also known as Blob), Feature Envy, and Data Class. Code Smell
intensities could be evaluated by proper metrics.

 In this paper, we apply metrics of Blob and Feature Envy to
quantify bloodshot symptoms, and Data Class for anemia
symptoms. The source code of 112 MVC-based Java application
together with 96 versions of 10 Java web application are
analyzed, while over 65% of them are affected by anemia and
bloodshot symptoms. The analysis shows that there is a positive
correlation between anemia and bloodshot symptoms, and
intensities of these two symptoms rarely decrease over time. The
results also reveal that although ADMs are built to separate
business logic and data structure completely, most ADM-based
applications are not strictly following the design.

The main contributions of this paper are:

1) Fills the gap in the quantification method of anemia and
bloodshot symptoms in web applications.

2) Confirms Fowler’s empirical discoveries of the negative
impact of ADMs on software systems, while the advantages of
ADMs have not been proved by any experiment.

3) Reveals the persistence and correlations of anemia and
bloodshot symptoms.

The rest of this paper is organized as follows. Section II
introduces the background and related works. Section III details
the Code Smell detection approach and the quantification
methods of anemia and bloodshot symptoms. In Section IV we
have done several experiments to verify the accuracy of our
approaches and presented our evaluation process together with
results. Then, we detail the threats that could affect the validity
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

A. Code Smell Detection
This paper evaluates intensities of 3 following Code Smells.

• Blob is for an oversized class with low cohesion, and it
implements multiple irrelevant responsibilities [9-11].

• Data Class is a class that contains only data but no
behaviors[12].

* Corresponding Author. The work of this paper was supported by the
National Natural Science Foundation of China (Grants 61672355).
DOI reference number: 10.18293/SEKE2019-061

• Feature Envy describes a method more interested in a
class other than the one it is in [9].

Fig. 1. Overview of Code Smell quantifying method

TABLE I. COMPARISON OF APPROACHES FOR FEATURE ENVY

TABLE II. COMPARISON OF APPROACHES FOR BLOB

Lanza et al. [10] quantified Code Smells and proposed
several metrics and relevant thresholds, which are widely
adopted in modern Code Analysis tools such as PMD [13].
JDeodorant [14] and DECOR [15] are notable tools detecting
coupling and cohesion Code Smells.

Palomba et al. [11] proposed a pure textual detection
approach called TACO, which is significantly different to
traditional structural approach, aiming to discover conceptional
coupling and cohesion problems. Furthermore, Palomba et al.
[12] built a detection model based on multiple metrics, and they
also evaluated the co-occurrence of Code Smells.

While Data Class metric is commonly accepted [10,12],
multiple approaches of Feature Envy and Blob detection exists
and their compatibilities to tasks in this paper is worth
discussing. The difference in detection approaches is listed in
Table I and Table II.

For Feature Envy, the main difference of the two approaches
is whether an actual coupling target should be detected.
Clarifying actual coupling targets is a must, as the identification
of layer connections is vital. For Blob, both two methods refer
to low cohesion, while Moha et al. [15]'s approach is more
convenient due to its coupling detection and textual rules. In
layered web application, classes and package names follow
specific rules, and coupling with a Domain Model is the cause
of the bloodshot symptom.

B. Web Application Design Problems
Aniche et al. [16] defined several MVC specific Code

Smells, and evaluated their variation together with lifecycles
based on a public dataset of 120 open-sourced GitHub
repositories. This work developed metrics concerning specific
web application code components such as Data Access Object
(DAO), Repository, Controller and Service.

 Cemus et al. and Cerny et al. [17,18] empirically
investigated the negative impacts of ADMs and RDMs, and
proposed a generic modeling method to ensure maintainability.
According to their case studies, ADMs could cause Information
Restatement and Concerns Tangling. RDMs also trigger
coupling and cohesion problems, but intensities of design
problems among Domains are decreased. The coupling
problems within a single Domain could be resolved using
Aspect Domain Model (AsDM).

C. Class Role Inference and Layering
Sakar et al. [19] generated Dependency Graph of modules

and determined layer of each vertex according to their number
of indegree and outdegree, while Hayashi et al. [20] inferred the
role of code component in MVC-based applications using
Dependency Graph.

Hickey et al. [21] split classes into layers according to their
names, this method could lose its accuracy due to different
naming strategies. Fokaefs [14] et al. and Aniche et al. [16]
mentioned role detection of code components using class name
and annotation name in their works.

III. APPROACH
Several fundamental data, i.e. Code Smell intensities and

layers of classes, should be collected before evaluating anemia
and bloodshot intensities. The overview of Code Smell
quantifying method is illustrated in Fig. 1. In the following
paragraphs, we explain each of the steps in detail.

A. Evaluating Data Class Intensity
Data Class is a class with interfaces that (i) provide almost

no functionality and (ii) declare data fields. [10]

As shown in Fig. 2, WMC metric is used for (i), and
NOPA+NOAM together with WOC are adopted for (ii).

 WOC is the number of public methods (with accessors and
constructors excluded) divided by the total number of public
members. NOPA is the number of public attributes of a class,
while NOAM is the number of accessor methods, i.e. getter and
setter. WMC sums the complexity of all methods of a class.

Name / Approach Lanza et al.[10] Fokaefs et al. [14]
Couples With Multiple classes A single class

Precise Coupling
Target

No. It detects coupling
of a class generally.

Yes. It focus on both couplin
g source and target.

Metrics Access to Foreign Data
(ATFD), Local Attribu
te Access(LAA), Forei
gn Data Provider(FDP)

Access to Distinct Foreign
Members, Access to Distinct
 Local Members

Chosen No Yes (Extended to detect mult
iple coupling targets)

Name / Approach Lanza et al.[10] Moha et al. [15]
Metrics Structural:

Access to Foreign D
ata (ATFD),
Weighted Method C
ount (WMC),
Tight Class Cohesio
n (TCC)

Structural: Number of Methods
Defined (NMD), Number of Attr
ibutes Defined(NAD), Lack of C
ohesion of Methods(LCOM5)．
Textual: Class name contains M
anager, Process, Control, etc.
Coupling: Access to at least one
Data Class．

Chosen No Yes

Fig. 2. Data Class detection approach

The CYCLO metric is used to calculate method complexity.
The calculation approach of CYCLO defined in PMD following
the standard rules given below is used in this paper:

• Methods have a base complexity of 1;

• +1 for every control flow statement (if, case, catch,
throw, do, while, for, break, continue) and conditional
expression (?:) ;

• else, finally and default do not count;

• +1 for every Boolean operator (&&, ||) .

Thus, the intensity of Data Class could be calculated as (1):

 (1)

B. Evaluating Feature Envy Intensities
 A class is affected by Feature Envy if it access members of
another class more frequently than its local members. [14]

 Given a class Ccurrent, the approach calculates ATLM as the
frequency of distinct local member accessed by Ccurrent. Then, a
set C for all classes in the software system is formed, for each
class Ci in C, the frequency of distinct member access from
Ccurrent to Ci named ai is evaluated. Finally, the classes in C is
sorted by ai in descending order. A class is affected by Feature
Envy if the first class Ctop is not equivalent to Ccurrent.

For each ai, calculate diff=ai－ ATLM(C) and treat all
negative diff value as zero. Then we sum all diffs to obtain the
result of ATFM metric. For each diff > 0, the approach treats the
related Ci as the coupling target of Ccurrent.

The intensity is calculated as (2):

 (2)

C. Evaluating Blob Intensities
As shown in Fig. 3, a Blob class is oversized, with low

cohesion, having controller name pattern and couples with Data
Classes. [15] We ignore name pattern as it is mentioned in
Section D.

Size of a class could be measured according to the sum of
NMD and NAD metrics. The cohesion of class could be
evaluated by LCOM5 metric, the main idea of LCOM5 is to
calculate the rate of access to local members.

 Given a class C, the approach determines the number of
method members k, the number of attribute members l, and the
frequency of access to distinct local members a. LCOM5 could
be calculated as (3):

Fig. 3. Blob detection approach

TABLE III. CLASS ROLE INFERENCE APPROACH

Role/
Approach

Domain Persistence Service Interface

Lowercas
ed name
includes

{domain, vo,
entity, entities}

{dao, repo,
repository}

service {controller, ctrl,
api}

Expected
Layer

1(bottom) 2 3 4(top)

 We pick the 3rd-quartile in Al Dallal's work [22] as threshold
of LCOM5 metric, and the fixed value in Palomba et al. 's [12]
work as threshold of NMD+NAD metric.

The intensity of Blob could be calculated as (4):

 (4)

D. Class Layering
There is no common and generic approach for class layering.

Related works mainly consider two features, class dependencies
[19,20] and class names [14,16,21]. This paper proposed a
mixed layering approach that fits web applications.

 First, the approach generates a Directed Acyclic Graph
(DAG) according to class dependencies. Given a set of all
classes in an application named C, a vertex is generated for each
class. Then, pairs of vertexes are connected as follows:
According to Table III, the likely role of each class could be
inferred. For Ci∈C, Cj∈C and Ci≠Cj, if Ci accessed or called
any member of Cj, and Ci and Cj have different inferred roles,
an edge from Ci to Cj should be generated.

Then, the DAG should be split into 4 layers. At the very
beginning, the approach splits the DAG into 3 layers. Vertexes
with 0 in-degree are moved to the bottom (i.e. Domain) while
those with 0 out-degree are moved to the top (i.e. Interface). For
the rest of the vertexes kept in a temporary layer, we split them
into 2 new layers using the similar method but ignore the
connection of middle layer vertexes with the ones in the top and
the bottom layer. Vertexes with 0 in-degree are moved to the
lower layer (i.e. Persistence classes of Infrastructure), while
other vertexes remain in the upper layer (i.e. Service).

 Additionally, there exist some exceptions. For the vertexes
whose roles cannot be inferred through names, their roles could
be determined according to their actual layers as mentioned in
Table III. If any Data Class has the naming pattern of Data
Transfer Object and are only accessed by Interface Layer
classes, they should be excluded from the DAG as their sole
function is to normalize data during the transfer process.

 Domains of an application could also be detected according
to DAG and class name patterns. A set of words could be derived
through splitting the Camel-cased Domain class names. If any
word in the set appears in the name set of classes in other layers,

() ()() () ()()1dcI C WOC C NOPA C NOAM C= - ´ +

() () () feI C ATFM C ATLM C= -

() () ()() ()5blobI C NMD C NAD C LCOM C= + ´

 (3) 5() a klLCOM C
l kl
-

=
-

Fig. 4. The strategy of Anemic Class detection

Fig. 5. The strategy of Bloodshot Class detection

and the two vertexes of classes are connected, a domain could
be determined.

E. Quantifying the symptoms of anemia and bloodshot
For now, we have collected the fundamental data including

the layer of each class and their Code Smell intensities. The
intensities of symptoms should be evaluated as follows.

As mentioned in Fig. 4, ADM is determined if a Data Class
belongs to the Domain Layer, the intensity of anemia is Idc.

As Fig. 5 illustrates, if a non-Domain-Layer class affected
by Feature Envy and couples with a Data Class, we consider it
bloodshot with intensities of two metrics: the extent of low
cohesion Iblob and the extent of high coupling Ife. For any
bloodshot class with Iblob >0 or couples with multiple ADMs, we
regard it as a Severe Bloodshot Class (SBC).

IV. EXPERIMENTS
 This paper implements Code Smell metrics based on PMD
[13] with necessary modifications [23]. Statistical data and plots
are produced by Python scripts after generating reports of Code
Smell intensities. Experiments are conducted to address the
following 5 research questions:

• RQ1 Accuracy: Is the approach able to evaluate class
layers and Code Smell intensities accurately?

• RQ2 Severity: How severe is the symptom of anemia
and bloodshot in web application?

• RQ3 Correlation: What is the relationship between the
symptom of anemia and bloodshot?

• RQ4 Survivability: Do intensities of anemia and
bloodshot symptom decrease over time?

• RQ5 Evaluation: What is the effect of applying ADM?

A. Accuracy of fundamental data
 A typical web application called military-shop is picked
from the dataset [16] consisting of 120 open-sourced Java
applications based on MVC architecture from GitHub. RQ1 is
to be answered in this section using military-shop as a demo.

 Precision and Recall metrics are used to evaluate accuracy.
The metrics can be calculated as (5) and (6):

TABLE IV. ACCURACY OF LAYERING APPROACH

TABLE V. LEVELS OF CORRELATION

Range of ρ Correlation Level
[0.8,1.0] Very Strong
[0.6,0.8) Strong
[0.4,0.6) Moderate
[0.2,0.4) Weak
[0.0,0.2) Very Weak

Fig. 6. Layers, dependencies and domains. The size of a vertex grows if
overlapped. Edges are hidden if they connect vertexes in the same layer.

where Correct denotes the set of items manually identified and
Detected represents the set of items detected by the heuristic.

 Fig. 6 shows the layered DAG of the project, while Table IV
lists the accuracy of the layering approach. A few classes with
ambiguous patterns were not correctly layered. The approach
also detected all 8 domains of the project, and classes with
correct inferred role were all placed into proper domain. The
domain detection heuristic had a Precision of 100% and a Recall
of 91.58%. Relevant Code Smell intensities were also validated.

Compared with the results of manual detection, we can
conclude that fundamental data could be detected correctly.
Manual detection is done independently by the first author and
a developer having 3 years of enterprise web application
development experience. A few disagreements were discussed
and resolved later.

B. The Experiment conducted on single application
 This section use Shopizer [24] as an example to demonstrate
the experiment conducted on each project. The results will not
be fully presented in this section as they are listed in Table VII
and VIII instead.

 For Q2, as shown in Table VII, 60.97% of the classes in the
Domain Layer were ADMs, while Bloodshot occured in 95.16%
of the Interface and Service classes within detected Domain.
About 70% bloodshot classes were SBCs.

 In order to answer Q3, the correlations of Iblob, Ife and Idc
should be evaluated. This paper uses the Spearman's rank
correlation coefficient [25] with a P-value of 0.05 to analyze the
correlation between every pair of intensities. The metric takes
the input value of two sets of values equal in length and produces
the correlation coefficient ρ together with the significance level
P. With P<0.05, the level of correlation could be considered
statically significant with a level presented by ρ ranges in [-1, 1]
as shown in Table V. For example, the metric reported a strong

Role/Metric Domain
Model

Persistence Service Interface Utility

Precision 100% 100% 100% 90% 85.71%
Recall 88.57% 100% 85.71% 94.73% 100%

Samples 35 7 14 19 12

Interface Class

Service Class

Persistence Class

Domain Model
1 2 3 4 5 6 7 8 Domain No.

Inner Domain Dependency

Cross Domain Dependency

Domain Irrelevant Dependency

 Precision	=	 Correct ∩ Detected
Correct

 (5)

 Recall	=	 Correct ∩ Detected
Detected

 (6)

A Domain
A Layer

TABLE VI. DETECTION RESULTS OF 59 OPEN-SOURCED PROJECTS

TABLE VII. PROJECT COMPOSITIONS OF 10 OPEN-SOURCED JAVA WEB APPLICATIONS

TABLE VIII. Ρ VALUES OF 10 OPEN-SOURCED JAVA WEB APPLICATIONS

correlation between Iblob and Ife with ρ=0.71 (P=2.62e-12).

 In order to answer Q4, it is necessary to analyze the variation
of the 3 concerned intensities (ΔIblob, ΔIfe and ΔIdc) among all 6
release versions. Intensities between two neighboring versions
were calculated and normalized to the range [0,1]. The
correlations of variations were also evaluated.

For Q5, we calculated the rate of ADMs’ contributions to Ife
in domains, i.e. the sum of Ife of every domain class coupled with
at least 1 ADM divided by the sum of Ife in all domains.

C. Results
Following a similar process of Section B, the experiment

was conducted on 120 applications mentioned in Section A, in
which 112 projects were available for access on GitHub. Among
the 112 projects, 66.96% of them were affected by anemia and
bloodshot symptoms(ADM rate > 0% and bloodshot class rate
> 0%) and 52.68% of them had at least 1 valid ρ value (P<0.05
and 0<|ρ|<1). Table VI reports the result of the applications with
valid ρ value.

The primary cause of the invalid ρ values were: (i) The
project was too lightweight, i.e. contained few lines of code. (ii)
No such correlation exists. Domains were not detected in some
of the applications, in most of the cases they did not have valid
ρ values owing to the fact that these projects were not layered or
they were not web applications.

This dataset was collected using the filter "exists at least 10
controllers" for the analysis of MVC-based applications, most
of them lacked valid release information, which were not
capable for analysis based on multiple versions. So a new dataset
must be picked.

We selected 10 Java web applications with more than 100
commits, more than 100 classes, and at least one commit in
recent 6 months. For each project, we analyzed its latest 10
versions available. 9 out of the 10 projects were affected by
anemia and bloodshot symptoms. DDDLib was an exception
that follows the DDD specification. Dataverse did not have a
clear layering pattern, and the size of each layer was not enough
for the metrics to evaluate correlation data.

“The proportion of decreasing anemia or bloodshot
intensities” named Rdec was calculated as the ratio of “the
number of classes with any of the three intensities decreased” to
“the number of SBCs and ADMs”.

Table VII reports the composition of the applications, while
Table VIII lists multiple correlation coefficients (ρ), any ρ with
P>0.05 will be marked as unavailable(-).

D. Discussions
 For Q2, more than 65% of the 112 projects analyzed by the
experiment were affected by anemia and bloodshot symptoms.
For web application domains based on ADMs, the proportion of
bloodshot classes exceeded 90%, and most of them were SBCs,
indicating the symptoms were common and severe.

 Class/
Domain
Count

SBC rate for
bloodshot classes

Bloodshot rate for
Services and Inter
faces of Domains

ADM contrib
ution to Dom
ain coupling

ADM rate for
Domain Layer

Classes

ρ of
Iblob ,

Ife

ρ of
Idc ,
Iblob

ρ of
Idc ,
Ife Service Interface

Mean 645.34/23 65.30% 65.98% 97.76% 49.88% 50.64% 0.68 0.07 0.09
Variance 333845.04/330 0.09 0.09 0.01 0.05 0.05 0.02 0.15 0.11

Project Name Commit/Fork/
Release

Latest
Version

Class/Do
main

Count

SBC rate for
bloodshot classes

Bloodshot rate for
Services and Interf

aces of Domains

ADM contrib
ution to Dom
ain coupling

ADM rate for D
omain Layer Cl

asses Service Interface
Shopizer 193/941/6 2.2.0 811/31 72.22% 68.18% 95.16% 68.85% 60.97%

OpenLegislation 3192/88/28 2.17 787/36 95.65% 61.11% 98.96% 32.70% 32.04%
LibrePlan 9657/148/32 1.4.1 1294/50 66.67% 100% 99.14% 41.33% 13.91%
OpenCMS 22750/321/228 10.5.4 3382/54 84.61% 76.92% 97.67% 43.63% 18.84%

Thingsboard 1514/676/17 2.1 797/31 100% 63.64% 98.73% 35.67% 8.70%
Sakai 46898/535/21 12.3 4951/45 71.43% 92.00% 100% 38.85% 30.86%

OpenClinica 8521/167/30 4.5.2 1436/38 81.48% 65.06% 96.85% 71.94% 58.41%
Apollo 1944/2873/14 1.0.0 458/24 68.32% 78.27% 100% 57.79% 78.92%

Dataverse 12042/180/30 4.9.2 675/19 33.33% 55.56% 97.43% 44.30% 42.30%
DDDLib 2310/153/18 4.6.1 392/- 0% 0% - 0% 10.00%

Project Name Analyzed
Versions

ρ of
Iblob , Ife

ρ of
Idc , Iblob

ρ of
Idc , Ife

ρ of
ΔIblob ,ΔIfe

ρ of
ΔIdc ,ΔIblob

ρ of
ΔIdc ,ΔIfe

Rdec

Shopizer 6 1.00 - - 0.78 0.70 0.79 0.70%
OpenLegislation 10 0.81 0.71 0.94 0.67 - 0.31 0.00%

LibrePlan 10 - - 0.85 - 0.73 0.64 3.84%
OpenCMS 10 0.80 - - 0.95 0.58 0.47 1.72%

Thingsboard 10 0.99 0.62 - 0.81 0.61 0.74 2.38%
Sakai 10 0.94 - 0.63 0.87 0.51 0.38 1.47%

OpenClinica 10 0.57 - 0.71 0.70 0.28 0.51 0.45%
Apollo 10 1.00 0.96 0.96 0.70 0.36 0.42 1.11%

Dataverse 10 - - - 0.78 - - 0.00%
DDDLib 10 - - - - - - 0.00%

For Q3, regarding the ρ values of Table VI and Table VIII,
the two intensities of bloodshot correlated in most of the cases.
Among different versions of the same project, the variations of
the three intensities often correlated. We also analyzed the
correlation of symptom intensities in different layers within
single domains. But we did not find any significant correlation.
The cause might be a large number of design problems within
the domain are related to other domains instead of itself.

For Q4, as shown in the last column of Table VIII, the
symptoms of anemia and bloodshot rarely reduced, which also
confirms the conclusion about structural Code Smells that they
tend to become more severe and are rarely removed [9,15].

For Q5, the result of our experiment is not showing any
advantages of ADM, but confirmed the widely-accepted
conclusion that there are a lot of coupling and cohesion
problems within an ADM-based domain resulting in SBCs. To
our astonishment, applying ADM will not result in a complete
separation of data and business logic as it is designed for in most
of the cases. The ADM-based applications often contain 30% to
70% of non-ADM domain models, in which domain behaviors
are implemented. In conclusion, ADM has an obvious shortage
of keeping single responsibilities.

V. THREATS TO VALIDITY
A threat to Internal Validity is that the layering approach

uses name patterns. If the layering pattern in class name is
ambiguous, the detection will be completed only according to
dependency information, and accuracy will be affected.

 Threats to External Validity are listed as follows: (1)
Detection process could lose its validity on small applications,
as thresholds derive from enterprise applications. (2)There exist
a few applications that do not follow layered design. (3) Our
approach analyses Java-based web application, the conclusion
may not satisfy applications based on weakly-typed languages.

VI. CONCLUSIONS AND FUTURE WORK
It has been 15 years since Fowler first proposed the concept

of ADM and its negative impacts, but ADM-based domain
modeling is still popular. This paper analyzed source code of
112 MVC patterns based Java applications in a public dataset
and 96 versions of 10 Java web applications, and concluded that
over 65% of applications are affected by anemia and bloodshot
symptoms. The analysis also suggests a positive correlation
between the two symptoms, and they rarely decrease over time.
The shortage of ADM are confirmed by experiment results,
furthermore, in most of the cases, the complete separation of
data and business logic are not implemented as ADMs are
designed for.

Our future work involves the investigation of the impact of
commit changes on anemia and bloodshot symptoms, and the
application of Deep Learning approaches to improve the
accuracy of class role detection is also worth trying.

REFERENCES
[1] E. Evans, Domain-driven design: tackling complexity in the heart of softw

are. Boston: Addison-Wesley Professional, 2004.
[2] AnemicDomainModel[Online]. Available: https://www.martinfowler.com/

bliki/AnemicDomainModel.html. [Accessed Feb 28, 2019].
[3] M. Fowler, Patterns of enterprise application architecture. Boston: Addiso

n-Wesley Longman Publishing Co., Inc., 2002.
[4] F. Wang, L. Yan, Z. Peng, S. Wei, and D. Yuan. “The investigation of WEB

software system based on domain-driven design.” in International
Conference on Web Information Systems and Mining, Taiyuan, China, 2011,
pp. 11-18.

[5] The Anaemic Domain Model is no Anti-Pattern, it’s a SOLID design
[Online].Available:https://blog.inf.ed.ac.uk/sapm/2014/02/04/the-anaemic-
domain-model-is-no-anti-pattern-its-a-solid-design/ [Accessed Feb 28,
2019].

[6] R. Wirfs-Brock. "Are software patterns simply a handy way to package
design heuristics?." in Proceedings of the 24th Conference on Pattern
Languages of Programs, Vancouver, Canada, 2017, p. 3.

[7] M. Tufano, F. Palomba, G.Bavota, R. Oliveto, M. Di Penta, A. De Lucia et
al., "When and Why Your Code Starts to Smell Bad (and Whether the
Smells Go Away)," IEEE Transactions on Software Engineering, vol. 43,
no. 11, pp. 1063-1088, 1 Nov. 2017.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts. Refactoring:
improving the design of existing code. Boston: Addison-Wesley
Professional, 1999.

[9] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto and A. De Lucia, "The
Scent of a Smell: An Extensive Comparison Between Textual and Structural
Smells," IEEE Transactions on Software Engineering, vol. 44, no. 10, pp.
977-1000, 1 Oct. 2018.

[10] M. Lanza, R. Marinescu. Object-oriented metrics in practice: Using
software metrics to characterize, evaluate, and improve the design of object-
oriented systems, Berlin: Springer Science & Business Media, 2007

[11] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto and A. Zaidman, "A
textual-based technique for Smell Detection," in IEEE 24th International
Conference on Program Comprehension, Austin, TX, USA, 2016, pp. 1-10.

[12] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia and R. Oliveto, "Toward
a Smell-Aware Bug Prediction Model," IEEE Transactions on Software
Engineering, vol. 45, no. 2, pp. 194-218, 1 Feb. 2019.

[13] PMD[Online].Available: https://pmd.github.io [Accessed Feb 28, 2019].
[14] M. Fokaefs, N. Tsantalis and A. Chatzigeorgiou, "JDeodorant:

Identification and Removal of Feature Envy Bad Smells," in IEEE
International Conference on Software Maintenance, Paris, France, 2007, pp.
519-520.

[15] N. Moha, Y. Gueheneuc, L. Duchien and A. Le Meur, "DECOR: A Method
for the Specification and Detection of Code and Design Smells," IEEE
Transactions on Software Engineering, vol. 36, no. 1, pp. 20-36, Jan.-Feb.
2010.

[16] M. Aniche, G. Bavota, C. Treude, M. Gerosa, and A. Deursen, "Code smells
for model-view-controller architectures." Empirical Software Engineering,
vol. 23, no. 4, pp. 2121-2157, Aug. 2018.

[17] K. Cemus, T. Cerny, L. Matl and J. Michael, “Aspect, Rich, and Anemic
Domain Models in Enterprise Information Systems,” in International
Conference on Current Trends in Theory and Practice of Informatics,
Harrachov, Czech, 2016, pp. 445-456.

[18] T. Cerny, M. Donahoo, “How to reduce costs of business logic maintenance,”
in IEEE International Conference on Computer Science and Automation
Engineering, Shanghai, China, pp. 77-82

[19] S. Sarkar, G. M. Rama and S. R, "A Method for Detecting and Measuring
Architectural Layering Violations in Source Code," in 13th Asia Pacific
Software Engineering Conference, Bangalore, India, 2006, pp. 165-172.

[20] S.Hayashi, F.Minami, M.Saeki, “Detecting Architectural Violations Using
Responsibility and Dependency Constraints of Components,” IEICE
TRANSACTIONS on Information and Systems,vol.101, no.7, pp. 1780-
1789,1 Jul. 2018 .

[21] S. Hickey, M.O. Cinnéide, "Search-Based Refactoring for Layered
Architecture Repair: An Initial Investigation,"in Proceedings of the North
American Search Based Software Engineering Symposium, Dearborn, MI,
USA, 2015, pp:1-16.

[22] J. Al Dallal, "Measuring the Discriminative Power of Object-Oriented Clas
s Cohesion Metrics," IEEE Transactions on Software Engineering, vol. 37,
 no. 6, pp. 788-804, Nov.-Dec. 2011.

[23] Our fork of PMD[Online].Available: https://github.com/CodeSmellD/pmd-
mini [Accessed Feb 28, 2019].

[24] Shopizer[Online].Available: https://github.com/shopizer-ecommerce/shopizer
[Accessed Feb 28, 2019].

[25] J. H. Zar, "Significance testing of the Spearman rank correlation coefficien
t," Journal of the American Statistical Association, vol. 67, no.339, pp.578
-580, 1 Oct. 1

