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Abstract—Multistep flow prediction is an essential task for
the car-sharing systems. An accurate flow prediction model
can help system operators to pre-allocate the cars to meet the
demand of users. However, this task is challenging due to the
complex spatial and temporal relations among stations. Existing
works only considered temporal relations (e.g., using LSTM) or
spatial relations (e.g., using CNN) independently. In this paper,
we propose an attention multi-graph convolutional sequence-
to-sequence model (AMGC-Seq2Seq), which is a novel deep
learning model for multistep flow prediction. The proposed model
uses the encoder-decoder architecture, wherein the encoder part,
spatial and temporal relations are encoded simultaneously. Then
the encoded information is passed to the decoder to generate
multistep outputs. In this work, specific multiple graphs are
constructed to reflect spatial relations from different aspects, and
we model them by using the proposed multi-graph convolution.
Attention mechanism is also used to capture the important
relations from previous information. Experiments on a large-scale
real-world car-sharing dataset demonstrate the effectiveness of
our approach over state-of-the-art methods.

Index Terms—Car-sharing systems, Multistep flow prediction,
Graph convolution network

I. INTRODUCTION

In recent years, car-sharing systems have been introduced to
a number of cities as a means of increasing mobility, reducing
congestion, and pollution [1]. Car-sharing systems involve a
small to medium fleet of cars, which are available at several
stations, to be used by a relatively large group of users. Users
can pick up a car in a station and drop off it at another station,
which is called the one-way system [2]. The key to success of
the car-sharing systems is an accurate flow prediction model,
which plays a vital role in various tasks such as car rebalancing
[3]. Furthermore, instead of predicting only for the next step
(e.g., next day), the multistep flow prediction is more attractive
to the system operators since it offers information on a long-
term trend.

Traditional time series prediction methods like ARIMA
have been widely used for traffic prediction problem [4, 5].
However, these approaches are often applied to a single station
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separately and ignore the spatial relations with each other. For
example, if a station near a railway station has high flow,
another one close to it may also have high flow. Furthermore,
building a separate prediction model for each station is time-
consuming and impractical if there are hundreds of stations.
Hence, the key challenge for this problem lies in how to
model complex spatial relations and temporal dynamics. To
tackle the above challenges, we propose a novel deep learning
model, named attention multi-graph convolutional sequence-
to-sequence model (AMGC-Seq2Seq), which captures spatial-
temporal relations effectively for station-level flow prediction.

In this work, a new multistep flow prediction model for car-
sharing systems is designed. Multiple graphs among stations
are defined to represent their heterogeneous spatial relations.
Then we employ the proposed multi-graph convolution to
model these spatial correlations. Furthermore, a novel deep
learning framework, named AMGC-Seq2Seq, is proposed to
capture the spatial and temporal relations simultaneously by
incorporating the encoder-decoder architecture with graph
convolution networks. The proposed method is validated on
a large-scale real-world car-sharing dataset from EVCARD.
The dataset contains car orders through EVCARD service in
the city of Shanghai in China over three months, with about
480,000 orders per month on average. We conducted extensive
experiments to compare with state-of-the-art methods and
have demonstrated the superior performance of our proposed
method.

The rest of this paper is organized as follows: Section
II reviews the existing works. Section III first formulates
the multistep flow prediction problem and then describes the
details of the proposed AMGC-Seq2Seq model. Section IV
presents the experiment settings and discusses the obtained
results. Section V concludes this work.

II. RELATED WORK

The problem of car-sharing system flow prediction is similar
to traffic prediction problem, of which the goal is to predict
the traffic-related value (e.g., traffic flow or traffic speed) for
a period of time through historical data. A number of studies
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have investigated traffic prediction for decades. In this section,
we discuss the related work on traffic prediction problem.

The early research on traffic prediction focused on the
prediction of the individual station using classical empirical
statistical methods. Among all the traditional methods, the
autoregressive integrated moving average (ARIMA) and its
variants are the most widely used [6]. Based on this time series
model, recent studies also consider adding external context
data, such as weather, wind speed and event information
[7]. Besides, various techniques have been used to model
spatial interactions. Deng et al. [8] apply non-negative matrix
factorization on road networks to capture correlations between
roads. Tong et al. [9] mainly adopt POI data as the spatial
features. However, all of these methods are based on the time
series model and ignore complex spatial-temporal relations.

With the success in deep learning, more and more re-
searchers attempt to use deep learning techniques on traffic
prediction problem. Zhao et al. [10] use the long short-term
memory (LSTM) networks to capture non-linear temporal
relations. Wang et al. [11] propose the DeepSD, which utilizes
multiple data sources and predict the gap between the car-
hailing supply and demand. These methods focus on temporal
features extraction but do not model the spatial-temporal
relations.

To effectively model the complex spatial relations, some
researchers use convolutional neural network (CNN) to capture
adjacent relations among the traffic networks. Yao et al. [12]
propose the DMVST-NET, which models both spatial and
temporal relations by local CNN and LSTM. Since the traffic
networks are naturally non-Euclidean as the data format is
no longer a matrix and CNN becomes less helpful, some
researchers turn to use graph convolutional network (GCN) to
model this non-Euclidean structures. Chai et al. [13] propose
a multi-graph convolutional network to catch heterogeneous
inter-station spatial correlations. However, all of these methods
are proposed for one-step prediction. Specifically, for multistep
prediction, the output from the previous step is taken as
the input to the current step, which usually leads to error
accumulation and poor prediction performance.

Several researchers have recently attempted to investigate
multistep prediction. Cai et al. [14] propose an improved
KNN model to achieve multistep forcasting. They describe
the traffic state of a road segment by a spatial-temporal state
matrix and use the Gaussian weighted Euclidean distance to
measure the similarity. Park et al. [15] propose the AGC-
Seq2Seq for multistep speed prediction, which learns the
spatial-temporal relations simultaneously by integrating LSTM
and GCN. They utilize encoder-decoder to model the multistep
prediction problem. However, they use only one graph to
model the spatial relations, which may not be enough to reflect
the complex spatial relations, and they have not capture the
local temporal relations for the individual station.

Inspired by those research accomplishments and the real-
world problem observations, a potential solution for more
accurate and practical prediction should be an integrated
analysis for both spatial and temporal relations of stations.

III. PROPOSED MODEL

In this section, we first formulate the problem and then
describe how to model the spatial and temporal relations using
the proposed attention multi-graph convolutional sequence-to-
sequence model (AMGC-Seq2Seq).

A. Problem Formulation

In car-sharing systems, there are two types of flows: outflow
and inflow. The outflow of station i is defined as the pick-up
frequency at the time slot t (e.g. one day), which is denoted
by youti,t . The inflow of station i is defined as the drop-off
frequency at the time slot t, which is denoted by yini,t.

Suppose we have N stations, then the outflow of all stations
at time slot t can be denoted as Y out

t = [yout1,t , y
out
2,t , . . . , y

out
N,t],

and inflow of all stations at time slot t can be denoted as
Y in
t = [yin1,t, y

in
2,t, . . . , y

in
N,t].

Suppose the current time slot is t, and we have the historical
data [(Y in

1 , Y out
1 ), (Y in

2 , Y out
2 ), . . . , (Y in

t , Y out
t )], the problem

considered in this work is to predict the flow at next T steps
[(Ŷ in

t+1, Ŷ
out
t+1 ), (Ŷ

in
t+2, Ŷ

out
t+2 ), . . . , (Ŷ

in
t+T , Ŷ

out
t+T )], aiming to:

min

T∑
k=1

∥∥∥Ŷ in
t+k − Y in

t+k

∥∥∥2
2
,min

T∑
k=1

∥∥∥Ŷ out
t+k − Y out

t+k

∥∥∥2
2

(1)

B. Framework Overview

Figure 1 shows the architecture of our proposed model. Gen-
erally, our model uses the encoder-decoder architecture. In the
encoder, we form a ”hamburger” structure with two LSTMs
and one multi-graph convolution layer(M-GCN) in between to
model the spatial and temporal relations. First, LSTM is used
to model local temporal information for each station. After
that, multi-graph convolution is used to model heterogeneous
spatial realtions among stations. Finally, another LSTM is
used to aggregate spatial-temporal relations together. Then the
encoded information is passed to the decoder and incorporated
with attention mechanism to generate multistep outputs. The
details of each module are described as follows.

C. Encoder

1) Temporal relations modeling: Since the flow pattern for
each station varies a lot, we adopt Long Short-Term Memory
(LSTM) network [16] to model this local temporal relation.
At each time step t, LSTM takes two inputs: memory of the
last time step ht−1 and the related information at current time
step xt. Based on these inputs, LSTM learns to remove or
add new information to the memory, and finally generates
a new memory state ht which accumulates all the previous
information. This process is controlled by three gates: forget
gate, input gate, and the output gate, which can be formulated
as follows:



Fig. 1. The architecture of AMGC-Seq2Seq.

fi,t = σ(Wf [hi,t−1, xi,t] + bf ) (2)
ii,t = σ(Wi[hi,t−1, xi,t] + bi) (3)

C̃i,t = tanh(WC [hi,t−1, xi,t] + bc) (4)

Ci,t = fi,t ◦ Ci,t−1 + i ◦ C̃i,t (5)
oi,t = σ(Wo[hi,t−1, xi,t] + bo) (6)
hi,t = oi,t ◦ tanh(Ci,t) (7)

Where ◦ denotes the Hadamard product. fi,t, ii,t and oi,t are
the forget gate, the input gate and the output gate respectively.
σ and tanh are the nonlinear activation functions. Wf , Wi

and Wo are all trainable parameters, while bf , bi and bo are
the corresponding bias vectors.

As for the inputs of step t, we concatenate flow yi,t
with external features ei,t (e.g., weather, weekday/weekend)
together:

xi,t = yi,t ⊕ ei,t (8)

It should be noted that all stations share the same weights
of LSTM in the proposed model. The reason is that sharing
LSTM among all stations may encourage the desired model
becomes more general and reduce complexity.

2) Spatial relations modeling: To capture the spatial rela-
tions between stations, we propose a multi-graph convolution
layer. The goal of the multi-graph convolution layer is to learn
a function of features on graphs. Here we define the graphs
which will be used later.

The car-sharing systems can be modeled as a weighted
undirected graph, of which a node represents one station and
an edge represents the relation between two stations. Usually,
the large the weight of an edge is, the strong correlations there
are between two stations. The simplest graph is the distance

graph, where the weight of an edge is defined as the reciprocal
of the distance. In addition to the distance graph, there can
be more graphs used to model the relation of stations. In
this work, we propose and define the following two graphs:
distance graph and POI graph.

Distance Graph: According to our observation, stations in
the same area are likely to have similar flows. Therefore, the
edge in the distance graph between two stations is defined to
be the reciprocal of the distance.

Adis,i,j =

{
di,j
−1, i 6= j

0, i = j
(9)

Where di,j is the distance between station i and j.

POI Graph: Intuitively, stations sharing similar function-
ality may have similar flows. For example, stations in the
commercial area usually have more flows on weekends, and
stations in the office area are expected to have more flows on
weekdays. Point of interest, or POI, is a specific point location
that someone may find useful or interesting(e.g., schools,
shops, post offices are all POIs). Therefore, we can use POIs
around a station to represent its functionality. Accordingly, we
define the edge in a POI graph between two stations as the
cosine similarity of POIs.

Adis,i,j =

{
Pi·Pj

‖Pi‖‖Pj‖ , i 6= j

0, i = j
(10)

Here Pi and Pj are the POI vectors of station i and j
respectively. The dimension of the vector is the category of
POIs, and the value in the vector is the number of the specific
POI category around the station.

Recall that in the temporal modeling, we have the hidden
state hi,t, which contains the temporal information of station
i at t time step. Here we define Ht = [h1t , h

2
t , ..., h

N
t ], which



represents the temporal information of all stations at the time t.
Then with the above graphs constructed, we propose the multi-
graph convolution to model the spatial relations as defined in
eq.(11).

Gt = σ(
∑
A∈A

A ∗Ht ∗W ) (11)

Where A is the set of graphs, H is the feature matrix of all
stations, and W is a trainable matrix which will be updated
during the training. Here σ is a non-linear activation function,
which is ReLU in our model.

Eq.(11) indicates that for each station, we update its feature
by a weighted sum of the features of all the other stations.
The larger the weight of the edge is between two stations, the
more the feature of that station contributes. However, there are
some problems need to be resolved.

First of all, according to the definition of the graph, the
diagonal of the graph matrix contains all zeros. As a result,
if we multiply it with the feature matrix, the vector of itself
contributes nothing, which loses a lot of important information
of itself. We fix this by adding an identity matrix to A.

Another problem is that since we combine multiple graphs
by adding the transformed feature matrices together, the ob-
tained graph matrices may vary a lot. Hence, we normalize A
by dividing each value by the row sum such that all rows sum
to one.

Therefore, we modify the eq.(11) as follows:

Di,j =


N∑

k=1

Ai,k, i = j

0, i 6= j

(12)

Â = D−1A+ I (13)

Gt = σ(
∑
Â∈Â

Â ∗Ht ∗W ) (14)

Where D is a diagonal matrix of which the value in the
main diagonal is the row sum of A. Multiplying D−1 with A
makes all rows of A sum to one. Finally, we add it with the
identity matrix I to ensure self-loops in the graph.

Finally, another LSTM is applied to each station to aggre-
gate both temporal and spatial relations for station i. The final
hidden state hi,t is selected as the context vector ci for station
i which stores all the information of the encoding, and then
this vector is passed to the decoder as the initial state to be
decoded as shown below.

ĥi,t = LSTM(ĥi,t−1, gi,t) (15)

ci = ĥi,T ′ (16)

D. Decoder

In the decoder, a separate LSTM is used to decode context
vector ci to obtain the multistep outputs. The LSTM part is the
same as the equations (2)-(7), while the initial state is set as

the context vector which stores all the information of previous
time steps.

hi,0 = ci, (17)

hi,t = LSTM(ĥi,t−1, xi,t) t > 0 (18)

Furthermore, we employ the attention mechanism which is
widely used in most of NLP scenarios [17]. At a high-level,
an attention mechanism enables our neural network to focus
on relevant parts of the inputs more than the irrelevant parts
when performing a prediction task. For example, if the current
time step is Sunday then the information of the Sunday before
a week are considered as much help to predict the current
output. Let t and t

′
denote the time step at decoder and encoder

respectively, and the attention mechanism works as follows:

ut
′

i,t = qTa tanh(Wa[hi,t + ĥi,t′ ]) (19)

at
′

i,t =
exp(ut

′

i,t)∑T ′

t′=1 exp(ui,t′ )
(20)

si,t =
∑T

′

t′=1
at

′

i,tĥi,t′ (21)

Where the weight at
′

i,t measures the importance of the time

step t
′

in t. Here at
′

i,t is derived by comparing the current
hidden state hi,t with the previous spatial-temporal hidden
state ĥi,t′ . The attention vector sit is a weighted sum of hidden
states in each previous time step t

′
.

Finally, we concatenate attention vector si with current
hidden state hi as h

′

i. Then we feed h
′

i to a fully connected
layer and get the final prediction. Noted that in this work, we
predict inflow and outflow simultaneously.

h̃i,t = hi,t ⊕ si,t (22)

[ŷini,t, ŷ
out
i,t ] =Wyh̃i,t + by (23)

Since this is a multistep problem, the loss function is defined
as the mean squared error:

loss =
1

T

T∑
t=1

(yini,t − ŷini,t)2 + (youti,t − ŷouti,t )2 (24)

IV. EXPERIMENT

A. Dataset

We use a large-scale car-sharing dataset provided by EV-
CARD, which is one of the biggest hourly rental operators
in China. The dataset contains the orders from 5/1/2017 to
7/31/2017 in Shanghai, and there are about 15,000 orders per
day. The order includes pick-up station, drop-off station, pick-
up time and drop-off time. Weather data is collected from
JUHE1 website. POI data is collected through AMap API2,

1https://www.juhe.cn/docs/api/id/277
2https://lbs.amap.com/



which contains 15 primary categories. For each station, we
collected POIs within 1km around it and represented them in
a vector, whose entry is the number of a specific POI category.
We summarize the statistics of the dataset in Table I.

The data from 5/1/2017 to 6/30/2017 are used for training
(61 days), and the data from 7/1/2017 to 7/31/2017 are used
for testing (31 days).

TABLE I
DATASET STATISTICS

Data Source EVCARD
Time from 5/1/17 7/1/17
to 6/30/17 7/31/17
#days 61 31
#stations 1433 1433
#orders 964,531 498,856

Data Source AMap API
POI type number POI type number
food 520,779 shopping 1,065,138
life service 550,200 sports 103,723
medical service 80,934 accommodation 56,490
tourist 11,773 residence 217,018
government 138,298 education 161,613
transportation 248,822 finance service 81,673
enterprises 455,720

B. Experiment settings

In the experiment, we use the past 14-day historical data
to predict the flow in the next 7 days. The number of hidden
layers for LSTM is two with 64 hidden units. The dimension
of graph convolution is set to 64. Adam [18] is selected as
the optimization algorithm, and the initial learning rate is set
to 0.001. Here 10% of the training data were selected as the
validation set for parameter tuning, and early stopping is used.
To speed up convergence, teacher forcing [19] is applied,
which means we feed the actual flow to the decoder at the
training stage. We perform Xavier initialization to initialize
all the trainable parameters. The training process takes about
8 hours on a single TITAN XP GPU.

C. Baseline & Metric

We compare the proposed model (AMGC-Seq2Seq) with
the following methods:
• Historical Average (HA): The historical average model

predicts the flow by using the average value of history.
In our experiment, the prediction is the average from the
same time in previous weeks.

• Autoregressive Integrated Moving Average (ARIMA):
ARIMA is a widely used time series prediction model.
There are three parameters (p, d, q) need to be set for the
model. The degree of differencing is set as d = 1. Here
p and q are determined by grid search on the training set.

• Seq2Seq: Sequence to sequence model has been proved
to be effective for time series prediction problem. Same
as our model, Seq2Seq model is trained on all stations.

• AGC-Seq2Seq [15]: AGC-Seq2Seq is a graph based
seq2seq model to predict traffic speeds. The encoder of

that model is different from ours in two aspects: (1) They
employ only one graph while we combine multi-graphs,
and (2) we have one more LSTM which is used to capture
the local temporal relations for each station.

We use Mean Average Percentage Error (MAPE) and
Rooted Mean Square Error (RMSE) to evaluate the proposed
model, which are defined as follows:

MAPE =
1

NT

N∑
i=1

T∑
j=1

∣∣ŷit+j − yit+j

∣∣
yit+j

(25)

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
j=1

(ŷit+j − yit+j)
2 (26)

D. Performance comparison

Table II shows the performance of the proposed model
compared to all other competing models. AMGC-Seq2Seq
achieves the lowest RMSE (6.15) and the lowest MAPE
(23.66) among all the methods. More specifically, HA and
ARIMA perform poorly, as they rely on only historical data for
prediction. Deep learning methods, including Seq2Seq, AGC-
Seq2Seq, and AMGC-Seq2Seq, which are able to model the
spatial-temporal relations, generally outperform the traditional
methods. Compared with AGC-Seq2Seq, the proposed model
further utilizes multi-graph convolution and one more LSTM
to capture the local temporal relation for the individual station,
which results the lowest RMSE and MAPE.

TABLE II
PERFORMANCE OF DIFFERENT METHODS

Method RMSE MAPE(%)
HA 8.03 30.23
ARIMA 7.54 27.89
Seq2Seq 6.73 25.93
AGC-Seq2Seq 6.48 24.82
AMGC-Seq2Seq 6.15 23.66

E. Effect of multi-graph convolution

Here we study the effect of multi-graph convolution. Table
III shows the results when we only use a single graph (distance
or POI graph) for prediction. According to the results, we
observe that a single graph can be worse than the baseline
method(e.g., the model of POI graph yields a result which is
worse than Seq2Seq model). However, by combining them,
our model beats the AGC-Seq2Seq with the lowest RMSE
and MAPE, which proves the effectiveness of the proposed
multi-graph convolution.

TABLE III
PERFORMANCE OF DIFFERENT GRAPH

Method RMSE MAPE
AGC-Seq2Seq + POI Graph 7.46 30.26
AGC-Seq2Seq + Distance Graph 6.52 25.35
AMGC-Seq2Seq 6.15 23.66



F. Effect of attention
Figure 2 shows the prediction of station 1 from 7/6 to 7/26,

where the data from 7/6 to 7/19 are used as the historical
data, and the flow from 7/20 to 7/26 are predicted by our
model. In the attention mechanism, at

′

i,t in eq.(20) measures
the relevance of the historical information in the predicted
state. The corresponding attention heatmap of station 1 is
depicted in Figure 3, where the darker the color is, the more the
relevance there are between two dates. One interesting finding
is that when predicting flows on weekdays, the model tends to
look at the latest history. However, when predicting flows on
weekends (7/22 and 7/23 in this example), the model tends to
look at the information on weekends from the history (7/15,
7/16, 7/8 and 7/9 in this example). These results confirm that
our model can automatically capture the relevant information
to make a more robust prediction.

Fig. 2. Outflow of station 1

Fig. 3. Attention heatmap of station 1

V. CONCLUSION

In this paper, we propose a novel deep learning model
AMGC-Seq2Seq for flow prediction in a car-sharing system.
There are two novelties of the proposed model. The first is
that we utilize multi-graph convolution to model the spa-
tial relations from different aspects. The second is that we
incorporate LSTMs with a graph convolution network in a
”hamburger” structure which capture both spatial and temporal
relations effectively. We evaluated the model on a large-scale
real-world car-sharing dataset from EVCARD. The experiment
results show that the proposed model achieved better results
than state-of-the-art baselines. In future, we plan to investigate
the following aspects: (1) evaluate the proposed model on
other datasets. (2) incorporate more diverse features (e.g., road
network) in a car-sharing system.
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