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Abstract—Learning how to build software systems using
new tools can be a daunting task to anyone new to the job.
This is especially true of tools that provide a large number
of functionalities and views on the system under development,
such as IDES for Model-Driven Development (MDD). Applying
Machine Learning (ML) techniques can help in this state of
affairs by pointing out to appropriate next actions to rookie
or even intermediate developers. AutoFOCUS3 (AF3) is a
mature MDD tool we are building in-house and for which we
provide regular tutorials to new users. These users come from
both the academia (e.g, students/professors) and the industry
(e.g. managers/software engineers). Nonetheless, AF3 remains
a complex tool and we have found there is a need to speedup
the learning curve of the tool for students that attend our
tutorials – or alternatively and more importantly for others that
simply download the tool and attempt using it without human
supervision. In this paper, we describe a machine learning-based
recommendation system named MAGNET for aiding beginner
and intermediate users of AF3 in learning the tool. We describe
how we have gathered data and trained an ML model to suggest
new commands, how a recommender system was integrated in
the AF3, experiments we have run thus far, and the future
directions of our work.

AF3– MAGNET demo video: https://tinyurl.com/y5skeeks

Index Terms—Model-Driven Development (MDD), AutoFO-
CUS3, Machine Learning, Intelligent Recommendation Systems
(IRS), Eclipse IDE, Domain-Specific Languages () development
interaction data

I. INTRODUCTION

Modern IDES are extremely rich in functionality. Envi-
ronments such as the Eclipse IDE [4] or the whole range
of tools proposed by JETBRAINS [6] are complex, offer an
ever-increasing amount of functionalities and are highly cus-
tomizable. Clearly, over the past decade, IDES have become
increasingly competent at their jobs and help the user in a
smart manner, by offering intelligent auto-completion, con-
textual quick fixes and intentions that help with development
productivity while lowering learning curves.

For the past 15 years, we have been developing at fortiss
the Eclipse-based AF3 tool [14], [28], for building embedded
systems. AF3 is mature and stable and includes articulated
perspectives for the complete lifecycle of the development
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of embedded systems: from requirements, to architecture,
deployment, code generation, simulation and verification.

The goal of AF3 is to demonstrate the feasibility, applica-
bility and relevance of MDD tools. It is an open source tool
with a 6-month release period and has served and serves as a
means to demonstrate state-of-the-art MDD technology. It is
also used as a boiler plate to develop proof-of-concept projects
with industrial partners [15], [16], [22], [23].

We have recently started offering a tutorial on AF3 [2] to
the academic community and to partner or interested com-
panies. The tutorial involves creating and deploying control
software onto a real vehicle and implies manipulating different
types of software development perspectives (mostly graphical
but also textual) via the Eclipse IDE. Given the learning the
necessary IDE manipulations requires effort and constant at-
tention and explanations from dedicated human tutors, we have
decided to develop an intelligent and non-invasive automated
tutor that can be invoked at the press of a button.

Because AF3 offers interconnected visual (model-based)
perspectives of the logic of a system under development,
providing automated help in such settings differs from doing
so for code-based IDES. Similar tools to AF3 are MATLAB
SIMULINK [7] or LABVIEW [10]. AF3 also partly falls in the
category of Domain-Specific Language (DSL) workbenches
such as MPS [6], METAEDIT+ [9] or ATOM3 [21] – although
building DSLS in AF3 must be done programmatically and
outside the tool itself, by using EMF facilities.

In this paper we report on our first steps in the usage of ML
to aid beginner students in the discovery and understanding of
the AF3 tool. In particular, we have implemented an Intelligent
Recommendation System (IRS) called MAGNET, that suggests
next steps in the context of an AF3 tutorial. The next steps are
shown to the user as short videos illustrating the completion of
a low-level task, e.g. building states, transitions or simulating
the system.

This article is organised as follows: in section II we present
the main functionality of the tool, as seen from the point of
view of an AF3 developer. Section III details how we have
trained and deployed a recommender system in AF3. We then
go on to discuss some preliminary results in section V and
to place our work regarding the state-of-the-art in section IV.
We conclude with future directions in section VI.

https://tinyurl.com/y5skeeks


II. HIGHLIGHTS

The MAGNET tool is at its core an Intelligent Recommen-
dation System. Core to MAGNET are:

• a multiclass classification model trained by using a ma-
chine learning algorithm using anonymized sessions of
previous students of AF3, and

• recommendation videos that illustrate accomplishing cer-
tain tasks in AF3.

The Multiclass classification model in the IRS predicts,
with a very short delay, the state of advancement of the
student in the tutorial. The prediction is based on the previous
interactions of the student with AF3, as well as well as on
the previously learned multiclass classification model. Based
on the predicted state, the user is then presented with relevant
hints that suggest ways of continuing the tutorial – in the
form recommendation videos that demonstrate common low-
level of AF3. The videos themselves independent from the
tutorial and were built by the Human-Centered Engineering
department at fortiss [5] having in mind further reuse for an
enlarged IRS. The recommendation videos illustrate common
modelling tasks such as how to create a component or a
state automaton, how to add transitions or action code to the
transitions of an automaton or how to simulate a given soft-
ware model. The aim is that the new users quickly familiarize
themselves with the common visual manipulations of the tool
while going through the tutorial.

The recommendation videos can be accessed by a user of
AF3 in two ways:

• Via a “Help Me” button on the AF3 toolbar (as illustrated
in figure 1). In this case the IRS proposes three recom-
mendation videos that were top-ranked by the multiclass
classification algorithm. After the press of the button, the
top ranked video starts playing. If desired, the user can
switch to the other two videos in the order in which they
were ranked by the IRS. The time taken by the IRS to
display the video after the press of the “Help Me” is
under 2 seconds.

• Through a global help button. In this case the user does
not neccessarily want the IRS to predict next tasks, but
only to provide a full list of possible help videos with
common functionalities of AF3. This global help can be
accessed via the menu item “Show All Hints” in the AF3
3 tool bar, under the “AI assistance” drop down menu.

We have also implemented the means to activate/deactivate
data acquisition directly through the AF3 interface, keeping
in mind data privacy and that some students may not want to
have their interaction data stored.

III. MACHINE LEARNING PIPELINE

The user-assistance functionality we wish to implement in
MAGNET is providing tips to the user based on a predicted
next step in the tutorial. In order to achieve this, it is required
to predict the next step of the user and then to provide an ad-
equate hint for it, from the set of predefined short videos. The
machine learning pipeline we have implemented to achieve

this consist of the following steps: 1) Data collection, 2) & 3)
Data processing including data cleaning, feature selection and
data labelling, 4) ML model selection consisting of model
training, validation and testing and 5) model deployment.
This pipeline is depicted in figure 2 and each of its steps is
discussed in the subsequent paragraphs.

1) Data Collection: In order to acquire the user inter-
action data, we instrumented the AF3 framework such that
interactions of a user with the tool’s graphical user interface
are recorded. The instrumentation is achieved using SWT-
BOT [13] and does not interfere with AF3’s functionality.
Specifically, we have added an SWTBOT plugin on top of
AF3. The plugin starts along with the AF3 tool as a server that
listens to events that occur in widgets of AF3’s graphical user
interface (GUI). Additionally, we have implemented a thin
client that communicates via sockets with the SWTBOT server
and records to a file all such interactions. The raw data was
collected from 11 users during one tutorial session. Altogether,
the collected files contain approximately 28000 lines where
each line denotes a specific action at a time instance.

2) Data Cleaning: Each line in the collected data contains
UNIX Epoch time in milliseconds followed by a string for
each of the user’s actions/ interaction. The string consists of
two sub-parts, a) a GUI contextual description of the user
interaction, and b) a general description of the user action
initiated via mouse/ keyboard inputs. During analysis of the
data, several characteristics of the data were discovered. Some
of the actions recorded in the file are correlated with the
preceding actions: for instance, closing of a window is mostly
followed by default relocation to last visited window. The same
trend is observed with respect to few other attributes in the
data. Therefore, the data was filtered to remove such corre-
lations and reduce dimensionality, while ensuring minimum
loss of significant information. The filtered data consists of
approximately 5000 lines.

3) Feature selection and Labelling: After having achieved
a basic understanding of the data, two features were extracted
from the data namely, Action (mouse action/ key board action)
and Property (task dependent description of users state) in a
time ordered sequence. A single line of data in isolation at
a particular time may be of a practical use from the point of
view of task prediction. This is because each line defines a user
action at lower/ micro level e.g., one line may indicate opening
of a GUI window. On the other hand, a task is defined at a
higher level of abstraction which contains lower level actions
and conveys a practical meaning such as for example: opening
of a window, followed by defining parameters therein and
finally moving to a different window perspective. It therefore
became essential to label the data in relation to a set of
specific AF3 tasks – the classes to be used by the ML
classification algorithm. This forms the basis for the machine
learning model to understand the lower level data, recognize
the current task and predict the next task at an adequate
level of abstraction. Nine labels relevant to the tutorial were
defined. The labels consist of user tasks such as navigating to
component architecture, creation and specification (definition)



Fig. 1. Recommendation Video in AF3 using “Help Me”

Fig. 2. Machine Learning Pipeline

of components, specification of transitions, creation of ports,
writing code and simulation. While defining labels, we kept
in mind that these labels should neither be too generic nor
too specific, in order to aim for a reasonable granularity that
a machine learning algorithm can meaningfully build a model
for. The data was labelled manually (approx. 2800 lines) after
correlating features in the data with specific tasks. In some
cases, when the tasks could not be specifically identified from
the features, preceding and succeeding labels were used to
infer the current task.

4) Model Selection: Learning an objective during the tuto-
rial can be understood as a multi-classification problem based
on the features described above. Two levels of abstraction
are necessary for predicting the next state of user. The visual
representation of the two models is shown in figure 3.

Fig. 3. Visual repsentation of the models (Recognition and Prediction)

The first level model referred to herein as Task Recognition
Model takes the input consisting of features: Property (P)



and Action (A) in a time sequence of length u and predicts
the corresponding label (L). Figure 3 shows how the Task
Recognition Model uses a sequence of 5 previous steps i.e.,
u = 5 to predict the current task (label) at a given time t.
These predictions act as an input for the second level model.
The second model referred herein as Task Predictor Model
uses the sequence of output labels of length v from Task
Recognition Model as an input and predicts the next task of
the user at future time step t+1 as an output. As an example,
figure 3 shows Task Predictor Model uses a label sequence
of 2 previous steps i.e., v = 2 to predict the label L at future
timestep t+ 1.

Three different machine learning models were tried for
training the task recognition model. Due to the similarity
of the problem with sequence to sequence prediction, an
LSTM model was the first choice [24], [31]. The labelled data
was split into training and validation sets in a proportion of
80:20. The LSTM model achieved an accuracy of 20% on the
validation data in 100 iterations whereas the training accuracy
was very high. The results of LSTM model are shown in figure
4. We attribute the poor performance of the LSTM model on
validation data to the model overfitting the training data.

Fig. 4. Training and Validation Accuracy for LSTM Model

Given the weak results obtained from the LSTM, we sub-
sequently moved on to a Random Forest model. This model
achieves the best validation and test accuracies of 66% and
58% of all tried models, for u = 5. These results show
that random forest model outperforms the LSTM model in
our setting. To attempt further improvement of the accuracy,
we also experimented with XGBoost [18]. The results from
XGBoost are comparable with those of Random forest model,
with validation accuracy and test accuracy of 65% and 60%
respectively. Random forest was selected as the final task
recognition model on account of its simplicity in terms of
fewer tuning parameters, as compared to XGBoost.

Random Forest is also used for the Task Predictor Model
and it achieves validation and test accuracies of 51% and 56%
respectively for v = 1.

5) Model Deployment: The complete architecture after
deployment is shown in figure 5. Without the MAGNET plugin,
the user interacts with AF3 but there is no active guidance or
feedback from AF3 (1). If SWTBOT is activated, it records
the user interaction continuously in the background (2). The
model is deployed as a task predictor plugin in Autofocus.
The user clicks on the “Help Me” button and actions the
trained machine learning model (3). The data from SWTBoT
(4) is processed & analysed by the model to predict the user
task(s) (5). The video hints according to the predicted task
are displayed on the AF3 interface (6), thus providing active
guidance for the user and completing the feedback loop.

Fig. 5. Architecture of the Recommender System

IV. STATE OF THE ART

The published research that exists focuses on auto-
completion mechanism for code-based IDES, which differ
from MDD tools in many ways, chiefly that IDES for MDD
typically deal with many levels of abstraction, often encoded
as multiple graphical or textual DSLS. In these tools the
process of building software involves mastering a set of
different programming paradigms, as well as the inter-relations
between different views of the system being developed.

The study of how developers use IDEs was initiated more
than a decade ago, at the beginning of the 2000s. The Mylar
framework [25] from Kersten and Murphy (later renamed to
Mylyn) was one of the first of its kind to provide the developers
with the means to define and follow tasks when building
software. The framework, distributed as an Eclipse project,
allows tracking low-level user commands to keep the state of
the task up-to-date while dynamically adapting the IDE such
that the navigation possibilities of the IDE are adapted to the
developer’s needs at each point of the development.

Several authors have concentrated specifically on gathering
interaction information from IDEs. The work of Murphy
on Eclipse for development in Java [30] was seminal, but
more recent efforts exist such as the work from Amannet al.
for Visual Studio. A survey of methods for collecting IDE
interaction data has been proposed by Maalej et al. [29].

The natural step after collecting data is to analyse it for
patterns that reveal developers’ implicit development processes
and habitudes, having as goal improving the usability of
IDEs. Given the advent of advanced mining tools in the



2010s, authors such as Khodabandelou [26], Damevski [19]
and Shepherd [20] have worked on what is now known as
process mining. The authors have placed importance in not
only coming up with models of developer behavior from
low-level IDE logs of user-machine interaction, but also in
automatically building models of those processes (e.g. using
Markov chains) that can be understood by humans.

Since the past 5-10 years researchers have also started
exploring how recommender systems can come to the help
of software developers. Although the infamous “clippy” that
shipped with early versions of the Microsoft office suite was a
put off to having recommender systems as part of production
software, advances in machine learning and human-computer
interaction spawned new attempts at developing such function-
ality. Autodesk has implemented one such system for Auto-
cad to improve the learnability of their tool by contextually
proposing previously unseen commands. The company has
then conducted a large study with more than 1000 users [27].
The authors of the study conclude that recommender systems
are indeed useful and have a rich future in software applica-
tions. Damevski [27] as well as Bullmer [17] have explicitly
explored classification algorithms to predict developer’s behav-
ior, much as we do. They report accuracies between 20-60%,
which are in general lower than the accuracies we achieve.
However, it is relevant to mention that the IDEs these authors
explore are for code-based development, as opposed to our
work on IDEs for model-driven development. In particular,
their predictions are made on a large set of commands (e.g.
61 for the study in [17]) for which it will be naturally harder to
reach high accuracies as for our work presented here (where 9
labels were used). The same study reports that neural networks
have yielded a better accuracy, whereas in the study we present
here they have performed the worst.

Outside academia, AF3 strongly relates to modern low-
code tools, which employ model- and graphical-based software
development principles to enable developers to quickly build,
deploy and update applications. The two market leading tools
at the time of the writing of this article are mendix [8] and the
OutSystems [11] platform. mendix has implemented an AI-
based system similar to MAGNET, where most likely steps
are suggested to finish a logical workflow. Additionally, a
“mentoring” mode is available to teach new developers how
to build applications. OutSystems is currently investing very
strongly in AI-based techniques to aid in software develop-
ment, having created a laboratory [12] just for this purpose.
As with AF3, the AI assistant of the OutSystems framework
also predicts next steps in the development of the application,
which OutSystems claims increases developer productivity by
25%. Note that both mendix and OutSystems are proprietary
systems, while AutoFOCUS is distributed as open source.

JetBrains, the developers of a large range of code-based
tools for software development, have recently started col-
lecting data to improve their auto-completion systems since
2016 [3]. Additionally, a plugin for predictive coding [1] has
been developed for the Intellij tool from JetBrains that uses
machine learning for intelligent auto-completion, as well as

for inserting snippets of code based on comments written in
plain English.

V. PRELIMINARY RESULTS

As mentioned in section I, at fortiss we often offer work-
shops to demonstrate the various functionalities of AF3 to the
new users. We have used on of such workshops to evaluate the
usefulness of our IRS in one of the AF3 tutorial workshops.
The focus group comprised 9 participants and was of mixed
technical skills ranging from non-technical (e.g. managers
and head of technical departments) to technical (e.g. software
engineers). The existing format of the AF3 workshop is such
that a human tutor to demonstrates the different functionalities
of the AF3 at the beginning of the tutorial. The current
workshop setting made a few of our recommendation videos
redundant for the 3 participants having good programming
skills. Nonetheless, the remaining 6 participants having less
knowledge of programming (i.e., 5 managers and 1 professor)
reported our system was helpful during the workshop giving
their lower technical expertise. All feedback from the partici-
pants in the study was collected via a formal questionnaire.

As expected, we observed that providing information on
AF3 to new users (i.e., technical or non-technical) reduces the
use of our IRS. Seen from the reverse perspective, this points
towards reducing human intervention in the tutorial (which is
desired), which should lead to more usage of the IRS and a
better evaluation of our proposal. It is worth mentioning that
two participants (1 professor and one 1 software engineer)
were very enthusiastic about MAGNET during the workshop,
while the others were reticent to using it. This may indicate
a polarized view on the usage of MAGNET, although such a
claim calls for a future study.

In other interesting (and unexpected) feedback given to us
during the workshop, it was suggested having to-the-point
videos targeting the logical programming steps related to
the tutorial exercise in the workshop. This is reminiscent
of our earlier work on building process-aware modelling
environments [28], where we proposed a DSL to express static
development processes in MDD tools, to help for instance
with meeting software certification rules in certain domains
(e.g. avionics). Such feedback suggests fusing our previous
work on process-aware modelling with the IRS we propose
here to allow for both explicit and implicit (machine-learned)
software development processes in AF3.

Another point worth discussing is the utilization of SWT-
Bot [13] for the purpose of gathering the interaction data.
The SWTBot tool has been built for performing the functional
testing of the software interfaces. To the best of our knowledge
has not been, up to now, utilized to gather interaction data for
machine learning tasks.

VI. FUTURE DIRECTIONS

We have discussed an implementing a recommendation
system using ML to ease the learnability of AF3, in particular
in a tutorial setting. The results we present are preliminary
but encourage us to further pursue this avenue of research. In



particular, are currently considering a number of follow-ups
to this work:

• Improving data collection and labelling, as these pro-
cesses have been up until now long and painstaking. We
believe this can be partly achieved by building a “data
acquisition” mode in AF3, where users can labels sets of
their own interactions directly in the tool.

• Focusing specifically on improving user experience by
studying how different hint delivery mechanisms (e.g.
textual hints or highlighting certain parts of the IDE) im-
prove user satisfaction. The Human-Centered Engineering
group at fortiss is currently performing a study on the
desirability these mechanisms in AF3. The results of such
study should percolate into the MAGNET tool.

• Applying and evaluating different ML techniques to
achieve more accurate next-task predictions. The study
in this paper indicates that Random Forest achieves good
performance – nonetheless these results should be taken
with a grain of salt, given the low amount of labels
(classes) that data acquisition has been done in the context
of a tutorial. When broadening the scope of hints to the
whole AF3 tool, it might very well be the case that other
machine learning models will perform better.

• Studying how non user interaction data (e.g., AF3-model
related data) can improve in task predictions for the new
users. For the time being all predictions are based on
user/widget interaction and no information about the state
of the model of the embedded software system under
construction is taken into consideration. Due to its size, it
will is not possible to use the complete state of the model
for either training or classification. But, by identifying
deltas in the state of the model from one moment of time
to the next and taking this information into consideration
for training and prediction, we believe the accuracy of
next task prediction will increase. Note that a system
implementing the measurement of such deltas has already
been implemented in AF3. We have indeed used this
system to evaluate the state of a model in order to locate
a developer in a pre-defined development process [28].

• Recalibrating the AF3 tutorial format to maximize the
usage of the IRS during upcoming tutorial sessions.

• Extending the number of videos to include help for other
parts of the AF3 tool, such as deployment, requirements
engineering or formal verification. This is important not
only to the IRS, but also as a means to improve the
learnability of AF3 in general.
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