
How do Practitioners Manage Decision Knowledge
during Continuous Software Engineering?

Anja Kleebaum1, Jan Ole Johanssen2, Barbara Paech1, and Bernd Bruegge2

1Heidelberg University, Heidelberg, Germany, {kleebaum, paech}@informatik.uni-heidelberg.de
2Technical University of Munich, Munich, Germany, {jan.johanssen, bruegge}@in.tum.de

Abstract—Continuous software engineering (CSE) is an agile
process that supports lightweight, flexible, and rapid software
development. Decision-making is crucial for CSE, and developers
need to know the decisions made and the related rationale to
evolve the software. This knowledge is called decision knowledge.
The management of decision knowledge in CSE environments
remains unexplored. The agile manifesto suggests to value
working software over comprehensive documentation as well as
individuals and interactions over processes and tools. What does
this mean for the documentation, exploitation, and sharing of
decision knowledge? We report on results from an interview study
with 24 practitioners from 17 companies on how decision knowl-
edge is managed during CSE. The practitioners mainly capture
decision knowledge in an informal way, for example, in natural
language discussions. Wiki and issue tracking systems represent
the preferred medium to preserve decision knowledge. Mentioned
benefits are an improved decision-making process, accountability,
knowledge sharing, and reuse. However, the exploitation of the
captured decision knowledge remains partly unclear.

Index Terms—Decision knowledge, rationale, interview study,
continuous software engineering, agile software development.

I. INTRODUCTION

Continuous software engineering (CSE) is an agile process
that supports lightweight, flexible, and rapid software devel-
opment [1]. This process is intertwined with ongoing issue-
solving and decision-making. For example, developers make
decisions regarding the software development process, exis-
tence and non-existence of software artifacts, or the software
quality [2]. Developers need decision knowledge, i. e., knowl-
edge about the decisions and their rationale, to evolve the
software. Rationale covers the justification behind decisions.

CSE offers opportunities and bears challenges for the man-
agement of decision knowledge. The opportunities are that
developers already document decision knowledge in documen-
tation locations such as commit messages, issue comments, or
pull requests during established development practices, e. g.,
when committing code changes. Thus, the documentation of
decision knowledge during CSE is non-intrusive in comparison
to using a separate tool. This might help to overcome the
capture problem that is often mentioned in articles about deci-
sion management [3]. The challenges are that the documented
decision knowledge might be hard to access and exploit for
developers since it is distributed and might be not formalized.
Further, decisions can rapidly be changed which might lead to
an inconsistent and outdated documentation. It is unexplored
how decision knowledge is managed during CSE in practice.

We conducted a semi-structured interview study with practi-
tioners from 17 companies using CSE. We already reported on
the state-of-the-practice of CSE in these companies [4], [5]. In
this paper, we report on how the companies manage decision
knowledge. We contribute insights on which types of decisions
practitioners think are important to capture, how they capture
decision knowledge, what benefits they see in capturing deci-
sion knowledge, how they share decision knowledge, and how
they deal with change. These insights should help us to reach
our overall goal to support software evolution with decision
and usage knowledge in CSE [6], [7].

The remainder of this paper is structured as follows. In
Section II, we present our research questions, the procedure of
the interview study, and descriptive data of the interviewees.
In Section III, we answer the research questions. Section IV
discusses this work and Section V lists threats to validity.
Section VI presents related work on decision knowledge
management in practice. Section VII concludes the paper.

II. RESEARCH METHOD

In the following, we describe our research questions, the
interview study, and data about the study participants.

A. Research Questions

We focus on four research questions, each refined by sub-
questions that we asked the practitioners during the interviews.

RQ1: Which decisions are captured, why, and how? This
research question investigates approaches to explicitly cap-
ture decisions and rationale during CSE within companies.
Sub-questions are: Which types of decisions do practitioners
capture? Where do practitioners capture the decisions, with
which techniques and tools? Do practitioners link decisions
and rationale to other software artifacts and if so, how? How
do practitioners preserve the evolution history of decisions?
When and how often do practitioners capture decisions? Why
do practitioners capture decisions, i. e., what are the benefits
and what do they do with the captured decisions?

RQ2: Which important decisions are not captured by prac-
titioners, why not? This research question aims to find types
of decisions that remain implicit and reasons why they are
not captured. Sub-questions are: Which important decisions
do practitioners not capture during CSE? Why do practitioners
not capture these decisions? What would be the benefits if
practitioners captured these decisions?

DOI reference number: 10.18293/SEKE2019-206

http://dx.doi.org/10.18293/SEKE2019-206


RQ3: How do practitioners share decision knowledge? We
want to investigate how practitioners share decision knowledge
during CSE, with these sub-questions: What are the knowledge
sources from which practitioners retrieve necessary informa-
tion for decisions that are not captured? How do practitioners
share knowledge to avoid knowledge vaporization?

RQ4: How do practitioners deal with changing decisions?
We aim to investigate on how practitioners deal with change,
with the sub-question: How do practitioners identify parts of
the system that are affected by new or changed decisions?

B. Interview Study

In the following, we summarize the realization of the
interview study that is described in more detail in [4], [5].

1) Procedure: We performed a semi-structured interview
study [8], which is a survey study and thus a means to perform
a field study [9], [10]. We separated the study into a design
and planning, data collection, and data analysis phase.

During the design and planning phase, we prepared a ques-
tionnaire. Its first part addresses the practitioners’ background
and working context. Furthermore, it contained interview
questions as listed below the respective research question in
Section II-A. The interviews also included research questions
that are not addressed in this article (see [4], [5]). We contacted
companies which to our knowledge apply CSE.

During the data collection phase, we conducted 20 inter-
views between April and September of 2017. The interviews
were conducted either in person or via phone. The interviews
took 70 minutes on average and were audio-recorded with
the permission of the interviewees. We transcribed the audio
recordings and sent the transcripts to the interviewees to
correct misunderstandings. We guaranteed the anonymity of
the practitioners by publishing only aggregated results.

In the data analysis phase, we analyzed the transcripts [11].
We utilized a qualitative data analysis software to apply two
stages. During the first stage, we allocated answers to an inter-
view question. Hereafter, we performed a fine-grained coding
stage. To answer the interview questions concerning the types
of decisions captured and not captured, we derived the codes
from Kruchten’s taxonomy [2]. This taxonomy distinguishes
between existence decisions, non-existence decisions (bans),
property decisions, and executive decisions. For the remaining
interview questions, we identified emerging topics and coded
the answers in terms of these topics. We analyzed the results
quantitatively. In the case that two interviewees participated in
an interview, we treated their answers as one subject.

2) Participants: During 20 interviews, we interviewed 24
practitioners from 17 companies. While seven of the com-
panies provide consultancy services, ten companies develop
software products. Based on their role description, we grouped
the 24 practitioners into five categories: CSE specialists (5),
e. g., a continuous deployment manager or a DevOps engineer,
developers (6), project managers (6), technical leaders (6),
and one executive director. On average, the practitioners have
spent two years in the respective role, have an experience in
IT projects of ten years, and participated in 19 IT projects.

III. RESULTS

We present results on the research questions introduced in
Section II-A. Each subsection starts with a summary followed
by a more detailed analysis of the research question.

A. Decisions Captured during CSE

In three interviews, the practitioners state that they do
not capture decisions at all. In these cases, we skipped the
interview questions for RQ1 and started with RQ2.

RQ1: Which decisions are captured, why, and how? Prac-
titioners mainly capture executive and existence decisions
regarding the software architecture and feature implementa-
tion. They mostly capture decisions in wiki and issue track-
ing systems in informal discussions and rely on techniques
for establishing trace links and version control that come
with these systems. Practitioners capture decisions as part of
regular practices, such as code reviews and meetings. They
mention improved decision-making, accountability, knowl-
edge sharing, as well as reuse support as benefits. However,
the exploitation of the decision knowledge is partly unclear.

1) Types of Captured Decisions: Twelve practitioners re-
port that they capture executive decisions, i. e., decisions
concerning the software development process, technologies, or
applied tools. Such decisions impact the entire project or sev-
eral projects. Similar to non-CSE environments, the executive
decisions can be made by a steering committee. However, one
practitioner highlights that CSE supports strongly that devel-
opers themselves are enabled to make high-level decisions. As
examples, the practitioners mention to capture the decision to
use a certain branching strategy or to do continuous delivery.
One practitioner mentions to capture decisions on when they
can consider a task as done, i. e., the definition of done, and on
when a build can be deployed to the users. Existence decisions
state that some elements will appear in the software [2].
Thirteen practitioners capture existence decisions concerning
requirements, architecture, implementation, test cases, and bug
reports. Six practitioners report that they capture decisions
related to the elicitation, prioritization, and effort estimation
of requirements for features. Eight practitioners mention that
they capture architecture decisions and another nine mention
that they capture decisions regarding the implementation of
features, e. g., on why a class was created. Non-existence
decisions or bans state that some elements will not appear in
the software [2]. Five practitioners report to capture possible
alternatives to solve a decision problem during their decision-
making process. After evaluating the alternatives against cri-
teria, they pick one alternative as the decision. The alterna-
tives they discard are documented non-existence decisions.
One practitioner reports to capture decisions regarding the
prioritization of test cases and bug fixing activities based on
risk assessment. Property decisions concern the quality of the
system and can be guidelines, design rules, or constraints [2].
One practitioner provides the example that they captured the
decision on how to deal with data inconsistency after they have
replaced their relational database with a NoSQL database.



2) Documentation Locations, Techniques, and Tools: Prac-
titioners use various documentation locations, techniques, and
tools to capture decisions during CSE. Eight practitioners
mention that they capture decisions in external documents
and tools such as Word files, architecture design documents,
or final project reports. Only one practitioner mention to use
an architecture management tool, which in their case is the
Enterprise Architect. Thirteen practitioners report on using a
wiki system such as Confluence. One practitioner mentions
that they rely on template pages to capture decisions. Ten
practitioners mention that they capture decisions in an issue
tracking and project management system, such as JIRA or
Redmine, as part of the issue description and its comments.
One practitioner describes that they use a distinct discovery
issue type to indicate that a decision needs to be made. Simi-
larly, another practitioner mentions that they use a tag to mark
those issues that contain an open decision. One practitioner
highlights that in their opinion pull requests are the best place
to capture decisions to implement features. They create feature
branches for a requirement and create a pull request directly
afterwards to discuss the feature implementation within the
pull request. Another practitioner reports that they document
decisions as part of the code in comments and in code reviews.
Code reviews can be done in pull requests, issue comments,
or using dedicated code review systems, such as gerrit. Three
practitioners mention commit messages as a documentation
location for decisions and another three mention informal
communication systems, e. g., chat tools like Slack, and emails.

3) Linked Artifacts: None of the practitioners uses a par-
ticular technique to establish links between captured decision
knowledge and software artifacts. However, practitioners men-
tion techniques that come naturally with capturing decision
knowledge in some documentation locations. For example, the
practitioners report that the decisions captured in the issue
tracking system can be traced to the respective issues such as
user stories and also to artifacts that are linked to these issues,
e. g., software components and code. In addition, they also
mention that separate documents or wiki pages can be tagged;
for instance, version numbers can enable traceability between
decisions and software builds. Practitioners find it hard to
keep the documentation of decisions and software artifacts
in a consistent state. The practitioner using the architecture
knowledge management tool criticizes that there are no links
between the design models and the wiki system where they
also capture decisions. They insert snapshots of the models
into the wiki page, which they rate as highly unusable,
especially when the models get changed. Another practitioner
suggests to capture decisions as close to the code as possible.

4) Evolution History of Decisions: Similar to the linking of
decision knowledge and artifacts, a preservation of the evolu-
tion history comes naturally in those documentation locations
that offer version control, e. g., the issue tracking system. One
practitioner describes that they have a technique to mark a
revised decision; they link the revised decision with the new
one rather than overwriting the revised decision. However, the
practitioner admits that they never used the technique.

5) Capturing Practices and Frequencies: Six practitioners
report that they mainly capture decisions on demand, e. g.,
when planning bigger updates. One practitioner states that
they only capture a decision in case they need to discuss on
it, i. e., for controversial issues. Seven practitioners mention
that they capture decisions as part of regular practices such
as code reviews, meeting, and retrospectives. The practitioner
reporting about the tag to mark an open decision states that
the product owner regularly filters for such tagged issues.

6) Benefits and Exploitation: Five practitioners mention
that they document decisions since the documentation im-
proves decision-making, i. e., leads to better decisions since
the criteria become clearer. Eight practitioners state that they
capture decisions and rationale for accountability reasons,
e. g., as a proof on why a certain feature has been developed
and to avoid misunderstandings in the future. One of them
states to exploit captured decisions when recovering a former
state of the software. Three practitioners state that they capture
decisions for knowledge sharing purposes. Among them, one
practitioner highlights that it is necessary to share the knowl-
edge about where a new decision needs to be made, i. e., also
to share issues. Two practitioners capture decisions in order
to support reuse in the future to avoid duplicated work.

We asked the practitioners to rate the statement The ex-
plicit capturing of decisions benefits our software development
process with one answer from a five point Likert scale. In
thirteen interviews the practitioners rated this statement: one
disagreed, three were neutral, and nine agreed (Figure 1). The
practitioners who disagreed and were neutral emphasized that
if the utilization of the captured knowledge was more clear,
they would give a higher rating.

B. Decisions not Captured during CSE

Although some practitioners capture executive, existence,
non-existence, and property decisions during CSE, others ei-
ther a) do not capture the same type of decisions or b) provide
other concrete examples for decisions that they do not capture.

RQ2: Which important decisions are not captured by practi-
tioners, why not? Decisions regarding the CSE process, pri-
oritization, alternatives that are not selected (non-existence
decisions), and the underlying rationale stay implicit. Prac-
titioners do not capture decision knowledge because they
fear intrusiveness and inconsistency, miss clear use cases
for exploitation as well as techniques and tools. They see
a potential benefit in supporting software evolution through
captured non-existence decisions and decisions for code.

1) Types of Decisions not Captured: Seven practitioners
provide examples for executive decisions regarding the CSE
process that they do not capture but that they think would
be important to capture. They state that the decisions on
the continuous integration and deployment pipeline and the
respective stages, e. g., the develop, test, and production stages,
stay implicit in the head of developers. In total, eleven
practitioners mention that they do not capture certain exis-
tence decisions. Such decisions relate to features, software



The explicit capturing of decisions . . .

The explicit capturing of decisions...

Number of answers

… would benefit our software development process.

… benefits our software development process.

0 5 10

strongly disagree disagree neutral agree strongly agree

Figure 1. The practitioners’ attitude towards capturing decisions (above) and towards capturing decisions that they currently do not capture (below).

architecture, implementation, and tests. For example, a practi-
tioner reports to document application programming interfaces
between microservices using Swagger but does not capture
decisions for the design of such interfaces and the underlying
rationale. The practitioners report to capture the outcome value
regarding the prioritization of requirements based on cost
estimation, test cases based on risk estimation, and bug fixing
activities. However, the rationale is not captured, especially if
it comes to reprioritization. Two practitioners report that they
do not capture configuration decisions, e. g., which compiler
or framework versions they use. Three practitioners criticize
that they do not capture the rationale behind decisions and
that they do not capture decisions on why they did not pick a
certain alternative for an issue, i. e., non-existence decisions
or bans stay implicit. Two practitioners mention that they
have a common understanding of certain property decisions,
e. g., about the coding style, but that such decisions are
not documented. One practitioner provides the example that
they did not capture the decision whether to use either a
synchronous or an asynchronous inter-service communication
between microservices. The practitioner states that these kind
of decisions are made very quickly and then get reused by
others, but are neither discussed nor captured.

2) Reasons why Decisions are not Captured: Two practi-
tioners report that the decisions on how to deploy the software
used to be captured in external documents but are no longer
captured since the deployment is now automated. However,
they still keep the former documents to externalize this knowl-
edge. Four practitioners see a problem in rapid changing
decisions that lead to outdated decisions, i. e., to inconsistency
between the captured decisions and their implementation. One
practitioner associates the waterfall process with capturing
decision knowledge. Five practitioners report that they lack
appropriate techniques or tools to capture decisions and
rationale. Three of them state that their process is not mature
enough to involve decision management. Six practitioners
do not capture decisions because they lack techniques for
an easy retrieval and exploitation of the captured decisions.
Eight practitioners fear the overhead and the intrusiveness of
capturing decisions and rationale. They could not spend the
effort and do not have enough time. One practitioner mentions
that the cost-benefit-ratio would be too high if they captured
more decisions than they currently do according to the 80/20
rule. However, the practitioners admit that the extra effort
could be reduced by applying better capturing techniques.

3) Potential Benefits if Captured: As for the captured de-
cisions, practitioners see potential benefits in establishing ac-
countability, improving decision-making and knowledge shar-
ing, as well as a support of reuse and maintenance activities.
They also stress that capturing decisions and rationale would
support continuous learning as part of the CSE process. Two
practitioners see a potential benefit in retrieving decisions and
rationale for code when evolving code. In their opinion, this
could ease the understanding of code. Three practitioners state
that it would be useful for them to know about alternatives
for a decision and the rationale why they were not selected
during software evolution. One practitioner mentions disaster
recovery as an example why knowledge sharing and capturing
decisions was important.

We asked the practitioners to rate the statement The explicit
capturing of decisions would benefit our software development
process regarding the decisions that they currently do not
capture. Practitioners of eleven interviews rated this statement:
three disagreed, one was neutral, and seven agreed (Figure 1).

C. Sharing of Decision Knowledge during CSE

We dedicated two interview questions to address this re-
search question.

RQ3: How do practitioners share decision knowledge?
Practitioners strongly rely on face-to-face communication,
i. e., colleagues’ knowledge, to recover implicit decisions. To
share knowledge equally they apply techniques such as pair
programming and inviting all team members as reviewers
to pull requests. However, they also try to recover implicit
decisions using reverse engineering.

1) Alternative Knowledge Sources: Six practitioners state
that they try to do reverse engineering to recover knowledge
from code and issue tracking systems. Ten practitioners men-
tion that they ask colleagues, which has the disadvantage that
both the inquiring person and the respondent need to interrupt
their current activity. One practitioner reports that they have an
emergency mobile phone that is carried by one knowledgeable
project member for a period of time; afterwards, it is passed to
the next project member. Two practitioners report that it can be
hard to scan through many emails and pull requests to recover
a decision. Thus, this decision was somehow documented but
hard to retrieve. Another practitioner enforces that decisions
are hard to retrieve in communication channels using the
slogan “if it happens in [chat tool], it did not happen”.



2) Avoidance of Knowledge Vaporization: The practitioners
try to avoid knowledge vaporization by sharing knowledge
between project members. One practitioner states that in larger
teams it is both necessary to share the knowledge within
and across team boundaries. Knowledge management should
address both the intra- and inter-team scope. Within teams, the
practitioners try to share knowledge between all members as
homogeneously as possible. They strongly rely on face-to-face
communication. Further, one practitioner mentions that they
always invite all team members as reviewers for pull requests
and also do pair programming to distribute knowledge. One
practitioner states that they encourage team members to always
share their notes with others, e. g., by using a wiki system,
instead of “writing diaries”. Two practitioners mention to
have a dedicated process to onboard new project members.
Generally, practitioners state that if a project member is about
to leave the company, they would have a period of time during
which this person tries to share and capture their knowledge.

D. Managing Changing Decisions during CSE

Overall, we received only few responses from practitioners
regarding the management of changing decisions during CSE.

RQ4: How do practitioners deal with changing decisions?
Practitioners use cost and risk estimation as well as priori-
tization before integrating changing decisions. They depend
on implicit knowledge and team communication to identify
parts of the system affected by new or changed decisions.
They rely on automated tests to detect side and ripple effects.

None of the practitioners report about a technique or tool
to identify parts of the system that are affected by new or
changed decisions. One practitioner reports about their change
management process. For a change request, the project leader
needs to decide whether the change will be integrated and—
if so—the developers estimate the cost for the change, define
a priority, and break it down into tasks. Other practitioners
emphasize the importance of automated tests to detect side and
ripple effects as well as risk management. One practitioner of
a consulting company criticizes that workflows often do not
scale when the project and the respective team sizes increase.
Change impact analysis would be especially important for
larger projects, however, it is not integrated since it had not
been necessary at the beginning when the project was small.

IV. DISCUSSION

In the following, we discuss the results in terms of findings,
problems, and our improvement ideas.

From the results of our interview study, we cannot make
a clear statement of which decisions are captured and which
decisions stay implicit, since some practitioners mentioned to
capture decisions that others do not capture and vice versa. Yet,
the answers towards RQ1 and RQ2 provide examples of deci-
sions practitioners consider important to be captured and for
which purposes. It is interesting that many practitioners find
executive decisions regarding the CSE process important to be
captured. Reasons might be that CSE involves a continuous

process improvement that comes with a continuous decision-
making. The CSE process contains many defined workflows
that developers need to decide on and for which they need to
have a common understanding [1], [4].

Our findings confirm the challenges of CSE listed in Sec-
tion I: In 19 interviews, the practitioners mention that their
decision capturing method needs to be improved and that it is
far from being perfect. Only in one interview, a practitioner
in the role of a quality manager states that they are very
focused to capture decisions. The degree of formalization
of decision-making and documentation in practice seems to
be rather low. During the interviews, only five practitioners
mention to capture alternatives for a decision, i. e., non-
existence decisions. However, Kruchten states that it is very
important to capture non-existence decisions as they are not
visible in the software artifacts and cannot be recovered using
reverse engineering [2]. Also, the underlying rationale is not
captured systematically. The practitioners argue to not capture
decisions since the rapid change would make them outdated
soon. Further, the practitioners state that the usage of too many
tools for capturing decisions can be frustrating. As reasons
they list a) redundancy, i. e., they need to document knowledge
in more than one tool, which means twice the effort and might
result in an inconsistent documentation, and b) a workflow
interruption, i. e., they have to change their working context
for documentation purposes, which means intrusiveness.

Although the practitioners confirm to document decision
knowledge in typical documentation locations, e. g., the issue
tracking system, the opportunities of CSE for an improved
decision knowledge management are not yet exhausted. The
practitioners stress that the utilization of the captured decision
knowledge is not clear to them and that it is not exploited in
a proper way. They also highlight that they have difficulties
to find and retrieve the decisions—especially if captured in
informal communication channels such as Slack. In summary,
the capturing and exploitation of decision knowledge needs to
be better integrated into the daily practices of developers.

We aim to provide solution proposals for these findings
applicable for practitioners [12]. In [7] and [13], we de-
scribe ideas for a continuous decision knowledge management
(ConDec) as part of CSE and in [14] we present a dashboard
for knowledge visualization. The ConDec tool support1 inte-
grates with existing tools to minimize the intrusiveness of the
decision knowledge management, e. g., with the issue tracking
system. It provides many features for capturing and exploiting
decision knowledge during CSE and supports knowledge shar-
ing and changes. For example, ConDec enables the explicit,
formal capture of decision knowledge in the description and
comments of JIRA issues, commit messages, and code com-
ments. It does not restrict the type of decisions, i. e., developers
can capture executive, existence, non-existence, and property
decisions. It enables developers to view decision knowledge
in relation to software artifacts such as features and code. We
evaluate the ConDec tool support in agile student courses [15].

1https://github.com/cures-hub

https://github.com/cures-hub


V. THREATS TO VALIDITY

We conducted the interview study from a positivist philo-
sophical stance, i. e., we try to draw conclusions on how
practitioners manage decision knowledge during CSE from the
interviews. We discuss the four criteria for validity as usually
done for empirical research with a positivist stance [9], [8]. A
more detailed discussion can be found in [4], [5].

Construct validity focuses on whether the theoretical con-
structs are measured and interpreted correctly. The practition-
ers might have interpreted the interview questions different to
what we intended. To reveal misinterpretations, we allowed
them to ask questions at any time and conducted two inter-
views with colleagues that we discussed afterwards. We used
open-ended questions to elicit as much information as possible.

Internal validity concerns whether the results we draw really
follow from the data, e. g., whether there are confounding
factors that influence the results. The practitioners might have
provided answers that do not fully reflect their daily work,
since they knew that the results would be published. We
guaranteed the full anonymity of interviewees and companies
to address this. The interpretation of answers might be biased
by the authors’ a priori expectations, which we addressed by
coding the transcriptions and discussing the codes.

External validity addresses the generalizability of the study
results. We contacted companies that we already knew, which
might result in a selection bias. It is mitigated by the fact that
the authors are from two universities with different industrial
contacts. Interviews are subjective, since they rely on the
practitioners’ statements. To reduce subjectivity, we conducted
20 interviews, to acquire a wider set of opinions.

Reliability validity concerns the study’s dependency on
specific researchers. After we carried out coding training and
checked intercoder reliability, two authors individually coded
different transcripts. We addressed this threat by discussing
questions during coding. In addition, a third author of this
paper supervised the interview analysis.

VI. RELATED WORK

Miesbauer and Weinreich collected 120 examples of deci-
sions made in practice using an interview study [16]. Similar
to our study, they classified these decisions according to
Kruchten’s taxonomy [2] and list documentation locations.
They also found that the majority of the decisions were
existence decisions and that property decisions were rarely
mentioned. In contrast to our study, they found that practition-
ers did not mention non-existence decisions. They did not ask
for practitioners’ knowledge sharing and change management
practices, but list influence factors for decision-making.

Similar to our work, Furtado et al. explore tools, processes,
and benefits of knowledge management [17]. They found
Google Drive and email lists applied most prevalent to capture
knowledge and point out the value of the informal messaging
service Slack to improve knowledge sharing. In contrast to
our study, they did not focus on decision knowledge and their
results are limited to one institution only.

VII. CONCLUSION

We reported on findings from an interview study on how
practitioners manage decision knowledge in CSE environ-
ments. The practitioners mainly capture decision knowledge in
an informal way, in wiki and issue tracking systems. The ex-
ploitation of the captured decision knowledge is partly unclear
and needs to be improved. We develop techniques and tool
support for a continuous decision knowledge management.

ACKNOWLEDGEMENTS

This work was supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design
For Future – Managed Software Evolution (CURES project).
We thank the practitioners for sharing their insights.

REFERENCES

[1] S. Krusche and B. Bruegge, “CSEPM - A continuous software engi-
neering process metamodel,” in 3rd International Workshop on Rapid
Continuous Software Engineering, 2017, pp. 2–8.

[2] P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in 2nd Groningen Workshop on Software Variability
Management, 2004, pp. 54–61.

[3] A. H. Dutoit, R. McCall, I. Mistrík, and B. Paech, Rationale Manage-
ment in Software Engineering. Springer, 2006.

[4] J. O. Johanssen, A. Kleebaum, B. Paech, and B. Bruegge, “Practitioners’
eye on continuous software engineering: An interview study,” in Int.
Conf. on Softw. and System Process (ICSSP). ACM, 2018, pp. 41–50.

[5] ——, “Continuous software engineering and its support by usage and
decision knowledge: An interview study with practitioners,” Journal of
Software: Evolution and Process, 2019.

[6] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards
a systematic approach to integrate usage and decision knowledge in
continuous software engineering,” in 2nd Workshop on Continuous
Software Engineering, 2017, pp. 7–11.

[7] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Tool support
for decision and usage knowledge in continuous software engineering,”
in 3rd Workshop on Cont. Softw. Eng., 2018, pp. 74–77.

[8] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Softw. Eng.: Guidelines and Examples. John Wiley & Sons, 2012.

[9] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting em-
pirical methods for softw. engineering research,” in Guide to Advanced
Empirical Softw. Eng. London: Springer, 2008, ch. 11, pp. 285–311.

[10] K.-J. Stol and B. Fitzgerald, “The ABC of Software Engineering Re-
search,” ACM Transactions on Software Engineering and Methodology,
vol. 27, no. 3, pp. 1–51, 2018.

[11] J. Saldaña, The Coding Manual for Qualitative Researchers, 2nd ed.
SAGE Publications, 2009.

[12] A. S. Freire, A. Meireles, G. Guimarães, M. Perkusich, R. M. da Silva,
K. C. Gorgônio, A. Perkusich, and H. O. Almeida, “Investigating gaps
on agile improvement solutions and their successful adoption in industry
projects - A systematic literature review,” in 30th Int. Conf. on Software
Engineering and Knowledge Engineering, 2018, pp. 40–45.

[13] A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, and B. Bruegge,
“Decision knowledge triggers in continuous software engineering,” in
4th Int. Workshop on Rapid Cont. Softw. Eng., 2018, pp. 23–26.

[14] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards
the Visualization of Usage and Decision Knowledge in Continuous
Software Engineering,” in 2017 IEEE Working Conference on Software
Visualization, vol. 1806. IEEE, sep 2017, pp. 104–108.

[15] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Teaching
rationale management in agile project courses,” in 16. Workshop Softw.
Eng. im Unterricht der Hochschulen (SEUH), 2019, pp. 125–132.

[16] C. Miesbauer and R. Weinreich, “Classification of design decisions -
an expert survey in practice,” in 7th European Conference on Software
Architecture (ECSA’13), K. Drira, Ed. Springer, 2013, pp. 130–145.

[17] F. S. Furtado, G. Alexandre, N. G. de Sá Leitão Júnior, I. H. de Farias Ju-
nior, and H. P. Moura, “Knowledge management in a software devel-
opment organization: Identifying tools, processes and benefits,” in 29th
Int. Conf. on Softw. Eng. and Knowl. Eng., 2017, p. 627.


	Introduction
	Research Method
	Research Questions
	Interview Study
	Procedure
	Participants


	Results
	Decisions Captured during CSE
	Types of Captured Decisions
	Documentation Locations, Techniques, and Tools
	Linked Artifacts
	Evolution History of Decisions
	Capturing Practices and Frequencies
	Benefits and Exploitation

	Decisions not Captured during CSE
	Types of Decisions not Captured
	Reasons why Decisions are not Captured
	Potential Benefits if Captured

	Sharing of Decision Knowledge during CSE
	Alternative Knowledge Sources
	Avoidance of Knowledge Vaporization

	Managing Changing Decisions during CSE

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References

