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Abstract—Through software analytics, raw data with low value
originates information that is valuable and able to provide
insights, enabling the support of claims that would otherwise
not be possible to verify. The software development ecosystem
has plenty of sources that can help understanding the quality of
processes and products but, to reach that goal, it is necessary to
collect and store the data. This paper describes an infrastructure
to allow the collection, storage and analysis of data from software
repositories. The scope of the research is an industrial case
study, which encompasses several specificities: tools and work
methodology. The current solution is able to collect information
from the continuous delivery & deployment pipeline, which
includes data sources such as the source code repository (SVN),
the static analysis tool (SonarQube), the continuous integration
server (from Jenkins jobs) and the continuous testing tool (an
in-house tool called Cerberus). Future work also includes the
implementation of components that will allow the collection of
unstructured data from the bug-tracking system and incident
management tool. As stated in the literature, correlating the
history of issues and incidents will allow the team to address,
or at least identify, areas of improvement.

Index Terms—CI/CD Pipeline, Mining Software Repositories,
Machine Learning, Software Analytics, Software Quality

I. INTRODUCTION

Software Analytics as a means to predict or gather infor-
mation about software development activities is an engaging
research field that aims to provide insights and solutions, not
only for the technical topics, but also for organizational issues.
In general, one’s aspiration is to guide teams to enhance
the quality of the products being developed and processes
being executed ( [1], [2], [3], [4]). In the scope of software
development, the ability to perform change impact analysis is
especially relevant since team members will be able to receive
direct feedback from their work and at the same time forecast
or identify support for other tasks such as test-case selection
and prioritization [5].

Mining Software Repositories (MSR) is among the new
techniques used to perform change impact analysis [6]; this
technique makes use of historical data available in software
repositories, such as issue tracking systems and source
code repositories. Menzies and Zimmermann write about the
common vision shared in the literature [4]: “data from software
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projects contains useful information that can be found by
data-mining algorithms”. As such, commit messages and
bug-reports are examples of artifacts from which knowledge
related to change impacts can be extracted. For instance,
Ying et al. [7] claim that a developer may benefit from
patterns in the history change of a system while performing
maintenance tasks. Therefore, well-known applications
scope include recommendation systems, and effort and
defects predictors for software development. New fields
of research include: detectors for unexpected or bug-prone
code, indicators for developer’s mood by applying sentiment
analysis to comments, and explorers for complex spaces. As
for data science in the industry, what was seen in the past as
cutting-edge research is now part of daily operations of IT
companies [4], [8].

With the current shift concerning automated delivery and
deployment, and when moving from manual and bureaucratic
processes to almost full automation, all those tools pose as data
sources. Nowadays, delivery and deployment are continuous
practices supported by tools [9], and the capture of events is
more straightforward. In addition to mine source repositories
and bug tracker systems, the spectrum of sources may include:
code review tools [10], Continuous Integration/Continuous De-
livery (CI/CD) tools or automated tools for continuous testing.
Even though there are principles and practices transversal to
companies that implement continuous practices, a company’s
specific characteristics influence how these practices are im-
plemented [11], including the business domain, the type of
product being developed, or the impact on the customers (e.g.,
some companies report that frequent releases may lead to an
increase on customer churn rate).

In order to gain visibility of all the events generated by
continuous practices it is necessary to implement an in-
frastructure to support the data collection and storage. This
paper reports on a real case study, implemented for the IT
department of La Redoute!, which is an e-commerce company.
The infrastructure presented aims to collect data from several
data sources available in the continuous pipeline: source code
repository, static analysis tool, CI/CD server and continuous
testing tool. The paper is the continuation of previous work
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[12]; it described the ongoing research and motivation to
apply machine learning techniques to improve the quality
of processes and products developed in La Redoute’s IT
department. A particularity of the architecture presented in
this paper is that it is emerging during the digital transfor-
mation of the company, i.e., new projects moving to micro-
services cloud-based architecture, in opposition to monolithic
solutions implemented in the past. The infrastructure being
developed is also supported by this new technological stack
which includes components such as Kafka?, Kubernetes>,
ElasticSearch, Logstash and Kibana (from the Elastic stack®*).
Considering some the advantages of software analytics and
MSR, this infrastructure will support the team’s need to
anticipate issues (“Is this commit considered problematic?”)
and to understand the best and worst practices in place, both
technical and social (“Do people on my team need training?”).

The rest of paper is organised as follows: Section II
overviews relevant literature; Section III describes the main
requirements and the architecture being implemented, and
finally, IV concludes this paper while identifying future di-
rections.

II. RELATED WORK

This section overviews literature that takes advantage of
repositories mining in order to find patterns and to extract
knowledge about the aspects influencing the software devel-
opment and evolution.

Ball et al. [13] proposed a framework to delve into the
relationships between several components of the software
development process: requirements, technological stack, soft-
ware development and the development’s team organizational
characteristics. In the scope of C++ case studies, the authors
derived a VCS-related metric: connection strength determined
with basis on how probable it is that two classes are modified
together. Additionally, Ball ez al. highlighted the existence
of valuable contextual information that could be leveraged
to understand how a component evolved from one release to
another; examples include code modified, date and time of
modification, and the author. The assumption is that automated
analysis can also be applied to contextual data.

Hipikat tool [14] was conceived by Cubrani¢ and Murphy
as a means to aid newcomers to an open-source project, which
don’t have the same support net when compared to traditional
in-house teams. The authors use the concept of implicit group
memory that infers links between archived artifacts produced
in the source repository, issue-tracking systems, communica-
tion channels and online documentation. The implicit group
memory is then used to recommend artifacts, from the archives,
possibly relevant to the task assigned to the newcomer.

Zimmermann et al. [15] present the tool ROSE — a plugin
for Eclipse IDE> — that guides the programmer. An association
rule mining algorithm was employed to mine the version
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histories providing the developer means to: i) “suggest and
predict likely changes”; ii) “prevent errors due to incomplete
changes”; and iii) “detect coupling undetectable by program
analysis”. As the tool is based on the files’ version history,
it is possible to observe another type of coupling that is not
code-based: coupling between items that are not applications
or programs.

Canfora and Cerulo [16] proposed a method to infer the
list of impacted source files that will be impacted by a
change request. The method makes use of information from the
source repository and the changes requests (Bugzilla®) and via
information retrieval algorithms, the technique makes the link
between the new change request and the historical revisions
impacted by similar requests. The evaluation of the method
was implemented in four open source projects, and the positive
results range from 30% to 78%. The prediction of the effort
required to test is another possible application pointed by the
authors that will help both developers and project managers.

Ren et al. developed Chianti [17], a tool to support change
impact analysis of Java programs, integrated in the context
of Eclipse IDE. For this tool in particular, regression and
unit tests, and corresponding executions, are the artefacts of
interest, i.e., the tool reports on how tests’ behaviour are
influenced by changes. For each change on a test’s behaviour,
the tool also determines the “affecting changes”.

Ying et al. [7] developed an approach that relies on data
mining techniques to identify patterns on the change history of
the base code; specifically, the approach searches for patterns
among the changes observed on the set of files that commonly
change together. Based on their approach, the authors report
that history change patterns support recommendation systems
that indicate additional code that should be modified when a
developer is doing a modification of the source code. This
work is aligned with work done by Zimmermann et al. [15]
even if applying different algorithms.

Zanjani, Swartzendruber and Kagdi [6] also presented an
approach called InComlA to understand the change impacts
of an incoming request. They aim for connections between
historical data, provided in task management applications
(Mylyn’), and histories and contextual information available
in commits (via source code repositories). A corpus of source
code entities — methods and files — was created by applying
several techniques: information retrieval, machine learning and
source code analysis. For an incoming request, its text is used
to query the corpus and as a result, the tool returns a list of
the most prone to change entities.

TARMAQ is an algorithm developed by Rolfsnes et al. [5]
for mining evolutionary coupling (a driver for change impact
analysis); it was empirically validated on six projects — 2
industrial and 4 open source — and the authors claim better
results when compared with ROSE tool [15], as it worked
better for heterogeneous systems. Evolutionary coupling aims
to understand how systems evolved during their lifecycle,
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the goal is to pick data that changed “together” and mine
the connections between the entities that were modified. The
authors focused at connections between files, although several
granularity levels would be possible (methods or variables).

Chatley et Jones [18] presented a tool called Diggit which is
able to generate code review comments in an automated fash-
ion; the authors used historical changes from a Git repository,
using a mining algorithm to pinpoint directions on eventual
changes. The tool was integrated in a development team inside
an industrial case study, and the authors also reflected on the
impacts of adapting an academic research into the real world
to be used by developers. The authors pinpoint potential both
for commercial and open-source projects (which may include
a higher number of developers and number of commits during
the time). Motivation for their work encompasses not only the
assurance of commits’ quality but also the support to improve
developers’ competences.

Following a different perspective, Mens and Goeminne [19]
studied the social component applied on the open-source com-
munity: work methodologies, cooperation, communication and
information sharing. The main motivation was to understand
how communities impact the evolution of a software product,
some of the events that were analysed by authors are also
true for industrial case studies, examples, departure of a key
developer or the handover of a project to another team.

Murgia et al. [20] also adopted a more social approach by
mining issue reports to gather emotional information about
the software development. The authors focused on the issue
tracking system of Apache Software Foundation® and were
able to observe emotions such as sadness, joy and gratitude,
through a human observation of the reports. The motivation
for analysing this type of information is on the fact that
the lack of happiness or safety may lead developers to fall
behind. Moreover, to support the importance of context in
the quality, Bird et al. [21] report about the impacts of
organizational aspects, which are seen as strong indicators of
quality, refuting that geographically teams are producing worst
products. Menzies and Zimmermann [4] also agree that social
factors are promising quality predictors.

Another level of repositories mining is to mine repositories
of repositories (RoRs). For instance, Sowe et al. [22] studied
the types of projects being developed in the open source com-
munity, for that purpose the authors used metadata available
in the RoRs FLOSSmole’.

Our research addresses a industrial case study, i.e., the scope
include projects developed by an IT department composed by
almost 110 people from Development and Operations. The
underlying motivation for the implementation of the infrastruc-
ture described in this document is to have means to support and
improve products, processes and competences. Even though
there are a few studies reporting about industrial case studies,
the majority of the aforementioned research focuses on open-
source case studies. Nevertheless, those are a representative
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sample of complex projects both in the technical and social
perspectives.

ITI. ARCHITECTURE
A. Continuous Delivery & Deployment Pipeline

Figure 1 depicts a general view of the delivery & deploy-
ment pipeline implemented by the IT team; it is supported
mainly by Jenkins!®, integrated with the other tools so as
to allow the build, static analysis, deploy and testing of the
components being delivered and deployed.

The pipeline is triggered immediately upon a commit on the
version control system, SVN!!. Jenkins listens for modifica-
tions on the code repository and initiates the build of the com-
ponent after each new commit. In the same job instance, after
the build, the component is submitted to SonarQube '?, which,
in turn, executes the static analysis (reports about technical
debt, test coverage, complexity) and enforces quality rules that
should be respected. If the build and quality rules are valid, the
project is deployed in a first non-production environment QA
— Quality Assurance, so that developers can perform their first
tests in a machine other than theirs. A successful deployment
triggers a functional test campaign, ensuring non-regression,
implemented through an in-house tool named Cerberus [23].
The global output of the test campaign — OK or KO - is
used to decide if the component should be installed in the
following environments in the pipeline. After QA, the team
can move their components to the next environments — UAT
and PROD. UAT or User Acceptance Tests is a pre-production
environment allowing to perform more tests in a confined
environment.After the deploy of a component in the UAT
environment, the corresponding automated test campaigns will
be triggered as well. For Production, it is also possible to
execute automated tests.

B. Architecture

Altogether, the proposed architecture (Figure 2) collects
structured data about: the commits, the Jenkins jobs status
for build, deployment and test campaigns; SonarQube mea-
surements and the summary for test campaigns executions.

As mentioned in the Introduction, the architecture described
in this paper is implemented in a Kubernetes cluster, which is
an “open-source system for automating deployment, scaling,
and management of containerized applications”. This type of
infrastructure eliminates most of the manual work required to
set up and modify an infrastructure, in opposition to traditional
Virtual Machines. Thence, if necessary, a new resource for
data collection, treatment or analysis can be easily set up and
integrated in the infrastructure.

The entry or starting point of the data collection process is
the Kafka component — identified as “Data pipeline”. Kafka
is a distributed streaming platform that allows, among other
features, to implement the streaming of data pipelines in real-
time. For this specific architecture, the jobs in the Jenkins
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Fig. 1. Overview of development pipeline supported by Jenkins, SVN, SonarQube and Cerberus.

pipeline send data to a specific Kafka topic called “jenkins”.
A topic defines a stream that holds specific types of events
or messages. An advantage is that any consumer can pick
a message or event in a topic and treat it according to
their specific use case. The potential of streaming the events
triggered in the continuous pipeline is huge, for instance, the
“jenkins” topic is also supporting some release engineering
tasks, since the team is able to extract statistics about the
team’s velocity and the time necessary to reach production
environments.

In this architecture, the consumer of the “jenkins” topic
is referred as “Data filter”, which is a Logstash service that
reads the messages and extract the meaningful data for this
research. Logstash is an Extract, Transform, and Load (ETL)
component. The “Data filter” will parse and load the useful
data into a component implemented in Java, which in turn is
responsible for correlating the data received with metrics from:
i) the code quality analysis and ii) the result of the functional
test campaign. This step will promote the construction of a
complete data set that will serve the purpose of the system. The
data will then be stored inside a special component, the “Data
Repository”, which is an ElasticSearch engine that stores data
as JSON documents. ElasticSearch allows quick searches and
integrates very well with other technologies simplifying both
data analysis and visualization tasks.

The second half of the architecture (“Decision Making
Process”), represents the components that can consume data
from the “Data repository”. It is expected to use Machine
Learning techniques to predict the severity level of the events
happening in the continuous pipeline. For that purpose, a
first TensorFlow!? component is being implemented in the
Kubernetes cluster. Additionally, it is important to provide
means to visualize the data, and for that purpose we expect
to implement useful dashboards. To begin, Kibana is also
available in the cluster, facilitating the access and visualization
of the data available in “Data Repository”.

With basis on this architecture, the next step is to implement
all the processes and components that will analyse the data
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and provide valuable insights to users, either developers or
managers. For that purpose, future work will need to ensure
some basic requirements [24] [18]:

e Short execution times: if the analysis takes too long,
developers will feel tempted to abort it and to move on.
o Short number of false positives: a high number of false
positives may lead to the abandonment of the framework.

C. Other data sources

Other data sources included in the “Data repository”, but
that are currently being manually loaded include:

e Developers experience: the different developer categories
are used as input. Developer’s data needs to be managed
carefully to avoid exposing personal details. Future work
may include information about the managers and team
organization in order to understand the organizational
impacts.

o Impact of the project: currently being loaded from an ex-
cel file; however, there is an ongoing project to implement
a database repository which will ease the management
of this type of information. Also, it is necessary to
ensure that the owners of each software component share
accurate information about the impacts and severity for
the business.

A next step for this architecture includes the development
of specific connectors to gather non-structured data from: i)
Mantis — the bug tracking system for non-production issues;
ii) iTop — system used to report issues detected in PROD
environment; and iii) logs — any type of execution logs.

D. Early Observations

Even though is to soon to comment on the data collected
and the insights that are possible to infer, it is interesting to
report a curious observation. Linear regression was applied to
two variables: i) the result of the Jenkins build job, and ii)
the time of the day that a commit was done. An unexpected
high number of build jobs, which are triggered by the commit,
failed in the hour after the lunch break. A possible research
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Fig. 2. Architecture to collect data from the CI/CD pipeline.

direction: What are the impacts of interrupting the “thinking
flow” of a developer?

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Even though software analytics opens several possibilities
for “discovering, verifying, and monitoring the factors that
affect software development”, there are several underlying
issues [4]. The following paragraphs describe how those issues
relate to the work described in this paper.

Even though the described architecture is prepared to collect
data from several sources in the pipeline, there are factors that
are not visible in those components nor collected in an auto-
mated manner. For that purpose, two surveys were conducted
to obtain information that is not available in the tools used,
but that is more related to the social component and team’s
characteristics. This type of activity is time-consuming, but the
surveys results are expected to uncover not only the points of
improvement, but also the good practices implemented by the
company.

The context may be another issue, as it may differ among
projects, even when handled by the same team. Currently, we
are restricting the research scope to new projects that have a
high-level of readiness to integrate a micro-services architec-
ture. Nevertheless, the legacy code, which is distributed across
a panoply of projects using different technological stacks,
represents a big part of the scope, and it may hinder bad
practices that are propagated and need to be addressed by
the team. This is a topic that needs to be monitored closely
in order to understand how can we transfer the knowledge
acquired from a project — that fits the standards of the new
architecture — to a legacy project.

A frequent goal of this type of research, which focuses on
the software development data, is to have actionable insights,
i.e., how can we use the information available to take some
real and concrete actions. This work is expected to provide
information that can help teams reduce the overhead of manual
tasks, raise automatic alerts in case of need, and also identify

potential needs in terms of training. These actionable actions
will impact the continuous practices and drive business value,
as an increase on the quality of processes and products is
foreseen.
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