

Formal ontologies and data shapes within the

Software Engineering development lifecycle (TSE)

Jose María Alvarez Rodríguez

Department of Computer Science and Engineering

Carlos III University of Madrid

Madrid, Spain

josemaria.alvarez@uc3m.es

Valentín Moreno, Juan Llorens

Department of Computer Science and Engineering

Carlos III University of Madrid

Madrid, Spain

{vmpelayo,llorens}@inf.uc3m.es

Abstract— Business models, organizational activities and

corporate strategies are now being reshaped to meet the new needs

of a challenging and evolving environment in which more up-to-

date, secure, safer, cost-efficient and personalized software

products and services must be timely delivered. This new digital

context also represents an opportunity for the improvement and

extension of existing software engineering methods. One of the

current trends in Software Engineering development lies in

boosting interoperability and collaboration between tools and

people through the sharing of existing artifacts under common

data models, formats and protocols to improve the practice and

reuse of existing software artifacts. In this context, formal

ontologies and data shapes play a key role to model and exchange

data and to provide services for data validation (consistency

checking) or type inference as part of a knowledge management

strategy. In this document, an initial review of the different

approaches to model and exchange data of software artifacts is

done to finally evaluate and discuss the proper mechanisms to

technically support the upcoming needs in the Software

Engineering development lifecycle.

Keywords: software development lifecycle; ontologies; data

shapes; interoperability; knowledge representation

I. INTRODUCTION

The Digital Age, the “Society 5.0” in Japan or the “4th
Industrial Revolution” [1] has come to say that any industry,
business or even our daily life will suffer a deep transformation
being driven by software systems.

This new digital context also represents a challenge and an
opportunity for the improvement and extension of existing
software engineering methods. After 50 years [2], the Software
Engineering (SE) discipline has focused on ensuring the
efficiency, correctness, robustness and reliability of software
systems. The development of some SE knowledge areas [3] have
set the foundations of the discipline. Furthermore, the definition
of methodologies, methods and models, software development
lifecycles and their technological support have also represented
a major step to improve the SE practice from both organizational
and scientific/technological points of view[4] [5].

On the other hand, knowledge management techniques have
gained enough momentum in the SE discipline to elevate the
meaning of the implicit knowledge coded into software pieces.
Software as a knowledge asset is becoming a commodity that is
embedded in products, business or manufacturing processes. It

is a new kind of intellectual asset that can help us to reduce costs
and time to market, and to generate competitive advantage. In
this light, knowledge management techniques [6] can be applied
to capture, structure, store and disseminate software artifacts to
directly support methods such as software reuse.

However, one of the cornerstones in knowledge management
lies in the selection of an adequate representation paradigm.
After a long time [7], this problem still persists since a suitable
representation format (and syntax) can be reached in several
ways.

Obviously, different types of knowledge, such as those in the
SE discipline (requirements, source code, test cases, etc.),
require different types of representation [8] [9]. But, on the other
hand, knowledge management also implies the standardization
of data and information within the development lifecycle. Any
bit of information must be structured and stored for supporting
other application services such as business analytics or
knowledge discovery.

One of the current trends in SE development lies in boosting
interoperability and collaboration between tools and people
through the sharing of existing artifacts under common data
models, formats and protocols to improve the practice and reuse
of existing software artifacts. In this context, OSLC (“Open
Services for Lifecycle Collaboration”), model-driven
approaches, etc. are defining a collaborative software
development ecosystem [10] through the definition of data
shapes that serve us as a contract to get access to information
resources through standardized.

In particular, the Representational State Transfer (REST)

software architecture style is commonly used to manage

information and software resources such as requirements, test

cases or even source code that are publicly represented and

exchanged in standard formats such as RDF or just XML.

Obviously, these approaches represent a big step towards the

integration and interoperability between the agents involved in

the software development lifecycle.

However, a knowledge management strategy to take

advantage of software artifacts is beyond of the mere exchange

of data. Consistency checking, type inference, data integrity,

etc. are common operations expected in a knowledge-centric

framework that can help us to improve the practice in the SE

discipline.

chema-dell
Typewriter
DOI reference number: 10.18293/SEKE2019-114

In this paper, authors review and discuss the role of

ontologies and data shapes as a mean to represent, exchange and

consume software-related artifacts with the aim of improving

and enriching software development methods providing

capabilities for consistency checking, type inference or data

integrity.

II. BACKGROUND

The Software Engineering discipline [11] [12] [13] initially
focused on the definition of methodologies and methods to
tackle the problem of reliability in software systems and to ease
the reuse of working software products.

The notion of software engineering process was then
defined, and different software development lifecycles (SDLC)
such as the Structured Systems Analysis and Design Method
(SSADM), the Waterfall model, the Rational Unified Process
(RUP), the Rapid application development (RAD) or the Vee
model were established as a method to manage the complexity
of software development. Afterwards, new programming
paradigms, standard notations (e.g. UML or OCL), languages
and tools emerged as way of improving the abstract thinking in
combination with a technological support providing better
development environments.

Once, the methods and the supporting tools were available,
the focus was the reuse of software assets, the quality
management, the definition of maturity models and the
automation of tasks generated during the software development
process. More specifically, the software reuse area gained
momentum through the definition of methods to reuse existing
software components through the abstract description of
different elements, e.g. architectural and design patterns,
libraries, component models or services. Furthermore, coding
practices [14] were also improved adding new foundations such
as the SOLID1 principles or new practices such as refactoring.

Initiatives such as Model-Driven Engineering [15] [16]
(MDE) and Model-Driven Architecture (MDA) later posed the
foundations to automate the production of software for specific
domains. In the last decade, software product lines [17] have also
been subject of study and application as a method for automating
the creation of families of software products.

At the development level, the emerging use of Agile methods
[18], inspired by the Spiral model, such as XP, Scrum or Kanban
and, processes such as BDD (Behavior-Driven Development) or
TDD (Test Driven-Development) have also led us to improve
the software development practice in combination with
approaches such as DevOps [19] (Development and
Operations). The latter are often applying to ease the continuous
transition of software systems from a development to a
production environment as a mean for the early detection of
“bugs” and the improvement of the maintenance and change
management processes.

In summary, the Software Engineering discipline has
reached a great maturity level. There is a huge body of

1 “The Principles of OOD”. Source:
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod (last visited: 20th

of February, 2019)

knowledge and practice that allow us to acknowledge which are,
and which are not, the software engineering practices that really
represent timeless scientific and technological foundations for a
proper software development process. That is why, knowledge
management techniques are aimed at enhancing existing SE
methods by providing a knowledge layer on top of the data
generated during the development lifecycle.

III. FORMAL ONTOLOGIES VS DATA SHAPES

In the early days of the Semantic Web, formal ontologies
[20] designed in RDFS (Resource Description Framework
Schema) or OWL were the key technologies to model and share
knowledge.

From upper ontologies such as DOLCE (Descriptive
Ontology for Linguistic and Cognitive Engineering) or SUMO
(The Suggested Upper Merged Ontology) to specific
vocabularies such FOAF (Friend Of A Friend) or SKOS (Simple
Knowledge Organization System), the process to share
knowledge consisted in designing a formal ontology for a
particular domain and populate data (instances) for that domain.
Although the complete reuse of existing ontologies was
expected, the reality demonstrated that every party willing to
share knowledge and data would create its own ontologies. Thus,
the main idea behind web ontologies was partially broken since
just a few concepts were really reused.

Once the Linked Data initiative (RDF + HTTP) emerged to
unleash the power of existing databases, a huge part of the
Semantic Web community realized that a formal ontology was
not completely necessary to exchange data and knowledge.

Taking into account that ontologies were still present, the
efforts were focused on providing methods for data consistency
[21] through the execution of procedures such as: 1) reasoning
processes to check consistency, and 2) rules, mainly in SWRL
(Semantic Web Rule Language) or SPARQL [22] [23]. These
procedures are not fully recommended, due to performance
issues, when a huge number of instances are available. As a new
evolution, then, the community realized that ontology-based
reasoning was not the most appropriate method for data
validation when data is being exchanged.

That is why in recent times the Semantic Web community
has seen an emerging interest to manage and validate RDF
datasets according to different shapes and schemes. A data shape
can be defined as a resource, i.e. metamodel, that describes
contents of, and constraints on, other resources. In this way, it is
possible to not just improve but to overcome some of the well-
known restrictions [24] of RDF encoded data: 1) lack of support
to represent certain knowledge features N-ary relationships [25],
2) practical issues dealing with reification [26] and blank nodes
[27]. New specifications and methods for data validation
(consistency) are being designed to turn reasoning-based
validation into a kind of grammar-based validation.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Table 1 Comparison of methods for RDF data validation.

These methods take inspiration from existing approaches in
other contexts such as DTD (Document Type Definition), XML-
Schema or Relax NG (REgular LAnguage for XML Next
Generation) for XML, or DDL (Data Definition Language) for
SQL (Structured Query Language).

The W3C launched in 2014 the RDF Data Shapes Working

group having as main outcome the SHACL (Shapes Constraint

Language), W3C Recommendation, and the ShEX (Shape

Expressions) language [31] [32]. Both are formal languages for

expressing constraints on RDF graphs including cardinality

constraints as well as logical connectives for disjunction and

polymorphism. OSLC Resource Shapes [28], Dublin Core

Description Set Profiles [29], and RDF Unit [30] were also

other constraint languages for data validation in the context of

Linked Data.

 Following a more classical approach for RDF data

validation, the Pellet Integrity Constraints is an extension of the

existing semantic web reasoner [34] that interprets OWL

ontologies under the Closed World Assumption with the aim of

detecting constraint violations in RDF data. These restrictions

are also automatically translated into SPARQL queries. This

approach has been implemented on top of the Stardog 2

database, enabling users to write constraints in SPARQL,

SWRL or as OWL axioms. This approach has been reported as

a method for data validation and type inference in some case

studies (e.g. NASA Knowledge Graph)3 were logical models

are translated into OWL instances and, then, a reasoning

process (semantic web based or rule-based) is executed to find

inconsistencies, infer types, etc. However, the complexity and

time to make transformations between object models and

Description Logics seems to be not very effective since the

same information is being modelled at the same time under two

different paradigms. Finally, the SPIN language [35] also

makes use of SPARQL (mainly its syntax) to define constraints

on RDF-based data that can be executed by systems supporting

SPIN (SPARQL Inferencing Notation), such as the TopBraid’s

toolchain.

In conclusion, the relevance of data validation to exchange

RDF-encoded data is clear. RDF Data Shapes in its different

flavors, such as OSLC Resource Shapes, are becoming the

2 http://stardog.com/

cornerstone for boosting interoperability among agents, see

Table 1. It is also clear that ontologies are becoming less

important although a combined approach (data shapes and a

formal ontology) can provide important benefits in terms of

data validation and knowledge inference (if needed). In the

context of SE and reuse, as it has been previously outlined,

software artifacts must take advantage of new technologies to

enable practitioners the automatic processing of exchanged

data.

IV. KNOWLEDGE MANAGEMENT WITHIN THE SOFTWARE

ENGINEERING PROCESS

Software is becoming a commodity, knowledge that is

embedded in every product, business and development or

manufacturing process. Assuming that a software artifact is a

knowledge asset, the ground truth about knowledge

characteristics [36] is also valid for software artifacts:

• Use of knowledge does not consume it.

• Transfer of knowledge does not imply losing it.

• Knowledge is abundant; the problem lies on the proper

use and exploitation.

• Much of an organization’s valuable knowledge walks

out the door at the end of the day.

According to the current SE context, it seems that graph-

approaches based on a semantic network and deployed under a

set of standards in a service-oriented environment, are the most

appropriate candidates. Considering this environment, the

following knowledge representation paradigms (focusing on

web-oriented technologies) have been selected for comparison:

1-The Resource Description Framework (RDF) [37] is a

framework for representing information resources in the Web

using a directed graph data model. The core structure of the

RDF abstract syntax is a set of triples, each consisting of a

subject, a predicate and an object. A set of such triples is called

an RDF graph. An RDF graph can be visualized as a set of

nodes and directed-arcs diagram, in which each triple is

represented as a node-arc-node link. RDF has been used as the

underlying data model for building RDFS/OWL ontologies,

gaining momentum in the web-based environment due to the

explosion of the Semantic Web and Linked Data initiatives that

3 https://www.stardog.com/blog/nasas-knowledge-graph/

Process Type Creation Scope Refs.

Consistency check Vocabulary-based Semantic Web reasoner RDF datasets [21]

Data validation

(integrity)

Query-based Hand-made RDF templates RDF datasets [22]

Vocabulary-based Hand-made RDF datasets [23]

Vocabulary-based Hand-made or automatically

generated by an OSLC API

OSLC Resource Shape [28]

Vocabulary-based Hand-made Dublin Core Description Set Profiles [29]

Query-based RDF Unit (test creation) RDF datasets [30]

Query-based

(generated from ShEX

expressions)

Automatic generation of SPARQL

queries

RDF datasets [31] [32]

[33]

Vocabulary and Query-

based

Automatic generation of SPARQL

queries

OWL and RDF under Closed World

Assumption

[34]

Query-based SPIN language + SPARQL queries RDF datasets [35]

aim to represent and exchange data (and knowledge) between

agents and services under the web-based protocols.

2-The RDF Schema (RDFS) [38, p. 1] provides a data-

modeling vocabulary for RDF data. It represents a first try to

support the creation of formal and simple ontologies with RDF

syntax. RDFS is a formal and simple ontology language in

which it is possible to define class and property hierarchies, as

well as domain and range constraints for properties. One of the

benefits of this property-centric approach is that it allows

anyone to extend the description of existing resources.

3-The OWL (Ontology Web Language) [39] is an ontology

language for capturing meaningful generalizations about data in

the Web. It includes additional constructors for building richer

class and property descriptions (vocabulary) and new axioms

(constraints), along with a formal semantics. OWL 1.1 consists

of three sub-languages with different levels of expressivity: 1)

OWL Lite, 2) OWL DL (Description Logics) and 3) OWL Full.

4-The OWL 2.0 [39] family defines three different profiles:

OWL 2 EL (Expressions Language), OWL 2 QL (Query

Language) and OWL RL (Rule Language). These profiles

represents a syntactic restriction of the OWL 2 Structural

Specification and more restrictive than OWL DL. The use of

profiles is motivated by the needs of different computational

processes. OWL EL is designed for enabling reasoning tasks in

polynomial time. The main aim of OWL 2 QL is to enable

conjunctive queries to be answered in LogSpace using standard

relational database technology. Finally, OWL 2 RL is intended

to provide a polynomial time reasoning algorithm using rule-

extended database technologies operating directly on RDF

triples. In conclusion, OWL 2.0 adds new functionalities

regarding OWL 1.x. Most of them are syntactic sugar but others

offer new expressivity [39]: keys, property chains, richer

datatypes, data ranges, qualified cardinality restrictions,

asymmetric, reflexive, and disjoint properties; and enhanced

annotation capabilities.

3-The RIF Core (Rule Interchange Format) [40] comprises

a set of dialects to create a standard for exchanging rules among

rule systems, in particular among Web rule engines. RIF was

designed for exchanging rather than developing a single one-

fits-all rule language. RIF dialects fall into three broad

categories: first-order logic, logic-programming, and action

rules. The family of dialects comprises: 1) logic-based dialects

(RIF-BLD) including languages that employ some kind of logic

such as First Order Logic (usually restricted to Horn Logic) or

non-first-order logics; 2) rules-with-actions (RIF-PRD) dialects

comprising rule systems such as Jess, Drools and JRules as well

as event-condition-action rules such as Reaction RuleML. RIF

also defines compatibility with OWL and serialization using

RDF.

5-The SRL (System Representation Language) [41] [42] is

based on the ground idea that whatever information can be

described as a group of relationships between concepts.

Therefore, the leading element of an information unit is the

relationship. For example, Entity/Relationship data models are

certainly represented as relationships between entity types;

software object models can also be represented as relationships

among objects or classes; in the process modeling area,

processes can be represented as causal/sequential relationships

between sub-processes. Moreover, UML (Unified Modeling

Language) or SysML (System Modeling Language)

metamodels can also be modeled as a set of relationships

between metamodel elements.

SRL also includes a repository model to store information

and relationships with the aim of reusing all kind of knowledge

chunks. Furthermore, text-based information can certainly be

represented as relationships between terms by means of the

same structure. Indeed, to represent human language text, a set

of well-constructed sentences, including the

subject+verb+predicate (SVP) should be used. The SVP

structure can be then considered as a relationship typed V

between the S and the predicated P. In SRL, the simple

representation model for describing the content of whatever

artifact type (requirements, models, tests, maps, text docs or

source code) is as follows:

SRL representation for artifact α = 𝑖α =
{(𝑅𝑆𝐻𝑃1), (𝑅𝑆𝐻𝑃2), … , (𝑅𝑆𝐻𝑃𝑛)} where every single RSHP

(relationship) is called RSHP-description and must be described

using terms.

One important consequence of this representation model is

that there is no restriction to represent a particular type of

knowledge. Furthermore, SRL has been used as the underlying

information model to build general-purpose indexing and

retrieval systems, domain representation models [41],

approaches for quality assessment of requirements and

knowledge management tools such as knowledgeMANAGER.

Obviously, a plethora of other knowledge representation

mechanisms and paradigms can be found as it is presented

below. However, we focus here on comparing those that satisfy

the three basic ideas of this study: 1) a language for representing

any artifact metadata and contents; 2) a system for indexing and

retrieval and 3) a standard input/output interface (data

shape+REST+RDF) to share and exchange artifact metadata

and contents.

The SBVR (Semantics of Business Vocabulary and Rules).

It is an OMG standard to define the basis for formal and

detailed natural language declarative description of a complex

entity. The Ontology Definition Metamodel (ODM). It is an

OMG standard for knowledge representation, conceptual

modeling, formal taxonomy development and ontology

definition. It enables the use of a variety of enterprise models as

starting points for ontology development through mappings to

UML and MOF.

ODM-based ontologies can be used to support: 1)

interchange of knowledge; 2) representation of knowledge in

ontologies and knowledge bases; and 3) specification of

expressions that are the input to, or output from, inference

engines. The Reusable Asset Specification (RAS), an OMG

standard that addresses the engineering elements of reuse. It

http://en.wikipedia.org/wiki/Natural_language

attempts to reduce the friction associated with reuse

transactions through consistent, standard packaging.

V. EVALUATION AND DISCUSSION

The previous section has reviewed the main approaches for

knowledge representation in a web-oriented environment for

exchanging software artifacts. As a result, Table 2 (in the

Annex) shows the main characteristics and capabilities that can

be found in RDF, RDFS, OWL and SRL with special focus on

those regarding knowledge management and, more specifically

knowledge representation. In order to select the proper

mechanism for knowledge representation of software artifacts,

the following points must be considered:

• RDF is based on a directed graph and it can only
represent binary relationships (unless reification and
blank nodes are used). As a representation mechanism,
RDF presents some restrictions that have been outlined
in several works [24] . For instance, N-ary relationships
[25], practical issues dealing with reification [26] and
blank nodes [27] are well-known RDF characteristics
that do not match the needs of a complete framework for
knowledge representation. Furthermore, RDF is built on
two main concepts: resources and literals. However, a
literal value cannot be used as the subject of an RDF
triple. Although this issue can be overcome using a
blank node (or even reification) and the property
rdf:value, it adds extra complexity for RDF users.

Finally, RDF has been designed to represent logical
statements, constraining also the possibility of
representing other widely used paradigms such as
objects or entity-relationships models. Due to these
facts, it seems clear that RDF can be used for
exchanging data, but it is not the best candidate for
knowledge representation.

• RDFS is a good candidate for modeling lightweight
formal ontologies including some interesting
capabilities close to object-oriented models. RDFS
ontologies can be serialized as RDF, but this feature can
also be a disadvantage due to expressivity restrictions of
RDF. Again, RDFS has been designed for expressing
logical statements that describe web resources, so its use
for other types of information seems to be not advisable.

• Building on the previous discussion, OWL presents a
family of logic dialects for knowledge representation. It
is based on strong logic formalisms such as Description
Logic or F-Logic. It was also designed for asserting facts
about web resources although it can be used as a general
logic framework for any type of knowledge. One of the
main advantages of OWL is the possibility of
performing reasoning processes to check consistency or
infer types. However, reasoning can be considered
harmful in terms of performance and most of times it is
not necessary when data is being exchanged. Besides,
OWL is not the best candidate for data validation, a key
process in knowledge exchange.

• RIF Core and the family of RIF dialects have been
included in this comparison due to the fact that most of

domain knowledge is embedded in rules. However, RIF
was not designed for data validation and its acceptance
is still low (just a few tools export RIF and less are
capable of importing RIF files). On the other hand, RIF
makes use of the web infrastructure to exchange rules,
what means also that this environment is a very good
candidate to exchange data, information and knowledge.

• SRL, based on relationships, allows domain experts to
create relationships between terms, concepts or even
artifacts (containers). It provides a framework for
knowledge representation with capabilities for
expressing any kind of cardinality and N-ary
relationships. SRL is based on undirected property
graphs, enhancing expressivity. Although it has not been
directly designed for data validation, its metamodel
allows the possibility of checking cardinality, value
constraints, domain and range restrictions. One of the
strong points of SRL is the native support of a tool such
as knowledgeMANAGER and the possibility of
automatically providing semantic indexing and retrieval
mechanisms. Both have generated a relevant acceptance
in the industry for authoring and quality checking.

Finally, as a general comment, there is also a lack of tools

working natively on RDF. Furthermore, RDF was conceived to

exchange information over the web. Although some RDF

repositories can provide capabilities for indexing and searching

RDF resources through an SPARQL interface, the experience

has demonstrated that most of times RDF is translated into the

native data model of a tool.

Based on this evaluation and considering the three basic

requirements of this review, we conclude that RDF is a good

alternative to exchange data. Since formal ontologies and

reasoning processes are not completely necessary and, instead,

data validation is a key aspect for boosting interoperability and

reuse of software artifacts, it also seems clear that an approach

like SRL can perfectly fit to the major objective of knowledge

representation in the SE discipline. However, we recognize that

the use of formal RDFS or OWL ontologies is not incompatible

with data shapes, but possible. RDFS and OWL are languages

for building domain vocabularies, while SRL is already a

domain vocabulary for knowledge representation, so it is

possible to define SRL in a formal RDFS/OWL ontology.

VI. CONCLUSIONS AND FUTURE WORK

The application of the Linked Data principles to exchange

data in the software development lifecycle is gaining

momentum. Software artifacts reuse via interoperability is a key

enabler for boosting collaboration in the development of

complex software systems. The concept of continuous

engineering is becoming a reality since it is possible to integrate

data and services under common protocols and data models.

In this context, the capability of reusing existing software

artifacts is a key factor that can ease teams to develop systems

faster and safer. However, software is not anymore, a piece of

logical instructions but a kind of knowledge and organizational

asset. That is why a proper environment for knowledge

management of software artifacts should provide the

appropriate mechanisms for representing, storing, indexing and

retrieving any kind of software artifact. However, some

approaches such as OSLC relying on Linked Data principles

cannot easily deployed due to issues regarding expressivity in

RDF or the need of tools for easily process RDF (mainly from

a developer perspective). In this context, the use of well-

documented REST APIs (e.g. based on standards such the

OpenAPI Specification) are good enough to access and

exchange data generated during the development lifecycle.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the Celtic Next-EUREKA initiative under code Nº
C2017/3-2-IoD (Internet of DevOps) and from specific national
programs and/or funding authorities.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann,
“Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

[2] M. Kersten, “Five Predictions for the Coming Decades of Software,”

IEEE Softw., vol. 35, no. 5, pp. 7–9, Sep. 2018.
[3] P. Bourque, R. E. Fairley, and others, Guide to the software

engineering body of knowledge (SWEBOK (R)): Version 3.0. IEEE

Computer Society Press, 2014.
[4] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From

metaphor to theory and practice,” Ieee Softw., vol. 29, no. 6, pp. 18–

21, 2012.
[5] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical

debt,” J. Syst. Softw., vol. 86, no. 6, pp. 1498–1516, 2013.

[6] I. Nonaka and H. Takeuchi, The knowledge-creating company: How
japanese companies create the dynamics of innovation. New York:

Oxford University Press, 1995.

[7] R. Hull and R. King, “Semantic database modeling: Survey,
applications, and research issues,” ACM Comput. Surv. CSUR, vol. 19,

no. 3, pp. 201–260, 1987.

[8] R. Davis, H. Shrobe, and P. Szolovits, “What is a knowledge
representation?,” AI Mag., vol. 14, no. 1, p. 17, 1993.

[9] T. Groza, S. Handschuh, T. Clark, S. Buckingham Shum, and A. de

Waard, “A short survey of discourse representation models,” 2009.
[10] K. Manikas and K. M. Hansen, “Software ecosystems – A systematic

literature review,” J. Syst. Softw., vol. 86, no. 5, pp. 1294–1306, May

2013.
[11] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th

ed. New York, NY, USA: McGraw-Hill, Inc., 2010.

[12] I. Sommerville, Software engineering, Tenth edition. Boston: Pearson,
2016.

[13] C. Ebert, “50 Years of Software Engineering: Progress and Perils,”

IEEE Softw., vol. 35, no. 5, pp. 94–101, Sep. 2018.
[14] R. C. Martin, Ed., Clean code: a handbook of agile software

craftsmanship. Upper Saddle River, NJ: Prentice Hall, 2009.
[15] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven

Engineering,” Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.

[16] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software

Engineering in Practice,” Synth. Lect. Softw. Eng., vol. 1, no. 1, pp. 1–

182, Sep. 2012.

[17] P. Clements and L. Northrop, Software product lines: practices and
patterns. Boston: Addison-Wesley, 2002.

[18] R. C. Martin, Agile software development: principles, patterns, and

practices. Prentice Hall, 2002.

[19] L. Bass, I. M. Weber, and L. Zhu, DevOps: a software architect’s
perspective. New York: Addison-Wesley Professional, 2015.

[20] V. R. Benjamins, D. Fensel, and A. Gómez-Pérez, “Knowledge

Management through Ontologies,” in PAKM, 1998.
[21] K. Baclawski, M. M. Kokar, R. J. Waldinger, and P. A. Kogut,

“Consistency Checking of Semantic Web Ontologies,” in

International Semantic Web Conference, 2002, pp. 454–459.
[22] C. Bizer and R. Cyganiak, “Quality-driven information filtering using

the WIQA policy framework,” Web Semant. Sci. Serv. Agents World

Wide Web, vol. 7, no. 1, pp. 1–10, Jan. 2009.
[23] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and S.

Decker, “An empirical survey of Linked Data conformance,” Web

Semant. Sci. Serv. Agents World Wide Web, vol. 14, pp. 14–44, Jul.
2012.

[24] S. Powers, Practical RDF. Beijing ; Sebastopol: O’Reilly, 2003.

[25] N. Noy and A. Rector, “Defining N-ary Relations on the Semantic
Web,” W3C Working Group, 2006.

[26] V. Nguyen, O. Bodenreider, and A. Sheth, “Don’t like RDF

reification?: making statements about statements using singleton
property,” 2014, pp. 759–770.

[27] A. Mallea, M. Arenas, A. Hogan, and A. Polleres, “On blank nodes,”

in The Semantic Web–ISWC 2011, Springer, 2011, pp. 421–437.

[28] A. G. Ryman, A. L. Hors, and S. Speicher, “OSLC Resource Shape: A

language for defining constraints on Linked Data,” in LDOW, 2013.

[29] K. Coyle and T. Baker, “Dublin Core Application Profiles Separating
Validation from Semantics,” W3C, Mar. 2013.

[30] D. Kontokostas et al., “Test-driven evaluation of linked data quality,”
in 23rd International World Wide Web Conference, WWW ’14, Seoul,

Republic of Korea, April 7-11, 2014, 2014, pp. 747–758.

[31] I. Boneva, J. E. L. Gayo, S. Hym, E. G. Prud’hommeau, H. R. Solbrig,
and S. Staworko, “Validating RDF with Shape Expressions,” CoRR,

vol. abs/1404.1270, 2014.

[32] J. E. L. Gayo, E. Prud’hommeaux, I. Boneva, and D. Kontokostas,
“Validating RDF Data,” Synth. Lect. Semantic Web Theory Technol.,

vol. 7, no. 1, pp. 1–328, Sep. 2017.

[33] J. Alvarez-Rodríguez, J. Labra-Gayo, and P. Ordoñez de Pablos,
“Leveraging Semantics to Represent and Compute Quantitative

Indexes: The RDFIndex Approach,” in Metadata and Semantics

Research, vol. 390, E. Garoufallou and J. Greenberg, Eds. Springer
International Publishing, 2013, pp. 175–187.

[34] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A

practical OWL-DL reasoner,” J Web Sem, vol. 5, no. 2, pp. 51–53,
2007.

[35] Holger Knublauch, James A. Hendler, and Kingsley Idehen, “SPIN -

Overview and Motivation,” W3C, Member Submission, Feb. 2011.
[36] D. Morey, M. T. Maybury, and B. M. Thuraisingham, Knowledge

management: classic and contemporary works. Cambridge, Mass.:

MIT Press, 2002.
[37] P. Hayes, “RDF Semantics,” World Wide Web Consortium, Feb.

2004.

[38] D. Brickley and R. V. Guha, Eds., RDF Schema 1.1. W3C
Recommendation, 2014.

[39] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S.

Rudolph, “OWL 2 Web Ontology Language Primer,” World Wide
Web Consortium, W3C Recommendation, Oct. 2009.

[40] H. Boley, G. Hallmark, M. Kifer, A. Paschke, A. Polleres, and D.

Reynolds, Eds., RIF Core Dialect (Second Edition). W3C
Recommendation, 2013.

[41] I. Dı́az, J. Llorens, G. Genova, and J. M. Fuentes, “Generating domain

representations using a relationship model,” Inf. Syst., vol. 30, no. 1,
pp. 1–19, Mar. 2005.

[42] J. M. Alvarez-Rodríguez, J. Llorens, M. Alejandres, and J. M.

Fuentes, “OSLC-KM: A knowledge management specification for
OSLC-based resources,” INCOSE Int. Symp., vol. 25, no. 1, pp. 16–

34, Oct. 2015.

Annex I

Feature RDF [37] RDFS [38, p. 1] OWL [39] RIF Core [40] SRL [41]

Full Name Resource Description Framework Resource Description

Framework Scheme

Ontology Web Language Rule Interchange Format System Representation Language

First Version 1.0 (February 2004) 1.0 (February 2004) 1.0 (February 2004) First edition (December 2012) v1 (January 2004)

Last version 1.1 (February 2014) 1.1 (February 2014) 2.0 (December 2012) Second edition (February 2013) v14 (January 2015)

Designed for Representation of logical statements Data modeling vocabulary

for RDF data

Formal ontology design Definition of Horn rules Representation of relationships between

knowledge items

Target use Data exchange of facts, rules and ontologies Data model Ontology creation Rule interchange Universal knowledge representation and re-use

Data model Directed graph Directed graph Directed graph Object Model Undirected (property) graph

Underlying

semantics

RDF formal semantics RDFS Semantics OWL 2. Direct Semantics and RDF-

based Semantics

RIF Core Semantics Explicit metamodel

Expressivity Simple RDF triples (s, p, o) to represent

binary relationthips.

Classes (sub and super

classes) and Properties

(domain and ranges)

OWL 1.1:

• DL (Description Logic),

• Lite,

• Full

OWL 2.0:

• EL (Expressions Language)

• QL (Query Language)

• RL (Rule Language)

• RIF-Core (Core Dialect)

• RIF-BLD (Basic Logic Dialect)

• RIF-PRD (Production Rule

Dialect)

• RIF-FLD (Framework for

Logic Dialects)

• RIF-OWL 2 RL and RIF RDF

• RIF XML

Any kind of relationship (𝐒𝐕𝐏).

• N-ary relationships.

• Non logic formalism.

• Knowledge containers. (reification)

Validation RDF Data Shapes:

• OSLC Resource Shapes, SHACL

(Shapes Constraint Language)

• SheX (Shape Expressions)

• SPIN (SPARQL Inferencing

Notation) and SPARQL Rules

Semantic reasoning + see

RDF

Semantic reasoning + see RDF Metamodel conformity Metamodel conformity

Inference Not at graph level. Yes, but restricted to type

inference and super/sub

classes and properties

Yes, depending on the underlying

logic formalism: First Order Logic,

F-Logic, DL, etc.

Yes Not at graph level.

Identifiers URIs (HTTP URIs if Linked Data).

Unique Name Assumption (UNA).

See RDF See RDF Internal IDs and UNA. Internal IDs and UNA.

Access protocol HTTP-based (REST resources) See RDF See RDF See RDF and native APIs Native API

Query language SPARQL and RDQL See RDF SWRL XPATH (if XML is used as

serialization format)

RSHP query language

Storage RDF repository (native RDF repositories,

graph-based databases, and wrappers on top

of existing relational databases)

See RDF See RDF Native API SQL or NonSQL database

Formats (syntax) RDF/XML, JSON, Turtle, N3, Manchester See RDF See RDF XML RDF/XML, ISO 25964-“The international

standard for thesauri and interoperability with

other vocabularies”, etc.

Visualization RDF visualization libraries such as Allegro

graph or RDFgravity and other general-

purpose graph visualization frameworks

Graphviz, Touchgraph, Gephi, Cytoscape,

D3.js.

See RDF See RDF Native Rule IDEs RSHP visualization language and the

aforementioned general-purpose graph

visualization frameworks.

Application Integration of databases, applications and

services through a common and shared data

model.

See RDF See RDF Interchange of business rules and

connection with existing ontologies

Semantics-based information retrieval using a

natural language interface to support other

services such as traceability or quality.

Status W3C recommendation W3C recommendation W3C recommendation W3C recommendation Industry-oriented

Tools Protégé, SWOOP or Terminae, TopBraid

Composer (ontology editors)

See RDF and RDFS

reasoners such as Pellet,

Racer or Jess

See RDFS JRules, Drools or Jess (mainly

exporters not importers)

knowledgeMANAGER (a complete suite for

knowledge management with RDF import/export

capabilities)

Table 2 A comparison among the main approaches for knowledge representation using an underlying semantic network.

