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Abstract— Business models, organizational activities and 

corporate strategies are now being reshaped to meet the new needs 

of a challenging and evolving environment in which more up-to-

date, secure, safer, cost-efficient and personalized software 

products and services must be timely delivered.  This new digital 

context also represents an opportunity for the improvement and 

extension of existing software engineering methods. One of the 

current trends in Software Engineering development lies in 

boosting interoperability and collaboration between tools and 

people through the sharing of existing artifacts under common 

data models, formats and protocols to improve the practice and 

reuse of existing software artifacts. In this context, formal 

ontologies and data shapes play a key role to model and exchange 

data and to provide services for data validation (consistency 

checking) or type inference as part of a knowledge management 

strategy. In this document, an initial review of the different 

approaches to model and exchange data of software artifacts is 

done to finally evaluate and discuss the proper mechanisms to 

technically support the upcoming needs in the Software 

Engineering development lifecycle. 

Keywords: software development lifecycle; ontologies; data 
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I.  INTRODUCTION  

The Digital Age, the “Society 5.0” in Japan or the “4th  
Industrial Revolution” [1] has come to say that any industry, 
business or even our daily life will suffer a deep transformation 
being driven by software systems.  

This new digital context also represents a challenge and an 
opportunity for the improvement and extension of existing 
software engineering methods. After 50 years [2], the Software 
Engineering (SE) discipline has focused on ensuring the 
efficiency, correctness, robustness and reliability of software 
systems. The development of some SE knowledge areas [3] have 
set the foundations of the discipline. Furthermore, the definition 
of methodologies, methods and models, software development 
lifecycles and their technological support have also represented 
a major step to improve the SE practice from both organizational 
and scientific/technological points of view[4] [5]. 

On the other hand, knowledge management techniques have 
gained enough momentum in the SE discipline to elevate the 
meaning of the implicit knowledge coded into software pieces. 
Software as a knowledge asset is becoming a commodity that is 
embedded in products, business or manufacturing processes. It 

is a new kind of intellectual asset that can help us to reduce costs 
and time to market, and to generate competitive advantage. In 
this light, knowledge management techniques [6] can be applied 
to capture, structure, store and disseminate software artifacts to 
directly support methods such as software reuse. 

However, one of the cornerstones in knowledge management 
lies in the selection of an adequate representation paradigm. 
After a long time [7], this problem still persists since a suitable 
representation format (and syntax) can be reached in several 
ways. 

Obviously, different types of knowledge, such as those in the 
SE discipline (requirements, source code, test cases, etc.), 
require different types of representation [8] [9]. But, on the other 
hand, knowledge management also implies the standardization 
of data and information within the development lifecycle. Any 
bit of information must be structured and stored for supporting 
other application services such as business analytics or 
knowledge discovery.  

One of the current trends in SE development lies in boosting 
interoperability and collaboration between tools and people 
through the sharing of existing artifacts under common data 
models, formats and protocols to improve the practice and reuse 
of existing software artifacts. In this context, OSLC (“Open 
Services for Lifecycle Collaboration”), model-driven 
approaches, etc. are defining a collaborative software 
development ecosystem [10] through the definition of data 
shapes that serve us as a contract to get access to information 
resources through standardized.  

In particular, the Representational State Transfer (REST) 

software architecture style is commonly used to manage 

information and software resources such as requirements, test 

cases or even source code that are publicly represented and 

exchanged in standard formats such as RDF or just XML. 

Obviously, these approaches represent a big step towards the 

integration and interoperability between the agents involved in 

the software development lifecycle.  

However, a knowledge management strategy to take 

advantage of software artifacts is beyond of the mere exchange 

of data. Consistency checking, type inference, data integrity, 

etc. are common operations expected in a knowledge-centric 

framework that can help us to improve the practice in the SE 

discipline.  
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In this paper, authors review and discuss the role of 

ontologies and data shapes as a mean to represent, exchange and 

consume software-related artifacts with the aim of improving 

and enriching software development methods providing 

capabilities for consistency checking, type inference or data 

integrity. 

II. BACKGROUND 

The Software Engineering discipline [11] [12] [13] initially 
focused on the definition of methodologies and methods to 
tackle the problem of reliability in software systems and to ease 
the reuse of working software products.  

The notion of software engineering process was then 
defined, and different software development lifecycles (SDLC) 
such as the Structured Systems Analysis and Design Method 
(SSADM), the Waterfall model, the Rational Unified Process 
(RUP), the Rapid application development (RAD) or the Vee 
model were established as a method to manage the complexity 
of software development. Afterwards, new programming 
paradigms, standard notations (e.g. UML or OCL), languages 
and tools emerged as way of improving the abstract thinking in 
combination with a technological support providing better 
development environments.  

Once, the methods and the supporting tools were available, 
the focus was the reuse of software assets, the quality 
management, the definition of maturity models and the 
automation of tasks generated during the software development 
process. More specifically, the software reuse area gained 
momentum through the definition of methods to reuse existing 
software components through the abstract description of 
different elements, e.g. architectural and design patterns, 
libraries, component models or services. Furthermore, coding 
practices [14] were also improved adding new foundations such 
as the SOLID1 principles or new practices such as refactoring.  

Initiatives such as Model-Driven Engineering [15] [16] 
(MDE) and Model-Driven Architecture (MDA) later posed the 
foundations to automate the production of software for specific 
domains. In the last decade, software product lines [17] have also 
been subject of study and application as a method for automating 
the creation of families of software products.  

At the development level, the emerging use of Agile methods 
[18], inspired by the Spiral model, such as XP, Scrum or Kanban 
and, processes such as BDD (Behavior-Driven Development) or 
TDD (Test Driven-Development) have also led us to improve 
the software development practice in combination with 
approaches such as DevOps [19] (Development and 
Operations). The latter are often applying to ease the continuous 
transition of software systems from a development to a 
production environment as a mean for the early detection of 
“bugs” and the improvement of the maintenance and change 
management processes. 

In summary, the Software Engineering discipline has 
reached a great maturity level. There is a huge body of 
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http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod  (last visited: 20th 

of February, 2019) 

knowledge and practice that allow us to acknowledge which are, 
and which are not, the software engineering practices that really 
represent timeless scientific and technological foundations for a 
proper software development process. That is why, knowledge 
management techniques are aimed at enhancing existing SE 
methods by providing a knowledge layer on top of the data 
generated during the development lifecycle. 

III. FORMAL ONTOLOGIES VS DATA SHAPES 

In the early days of the Semantic Web, formal ontologies 
[20] designed in RDFS (Resource Description Framework 
Schema) or OWL were the key technologies to model and share 
knowledge.  

From upper ontologies such as DOLCE (Descriptive 
Ontology for Linguistic and Cognitive Engineering) or SUMO 
(The Suggested Upper Merged Ontology) to specific 
vocabularies such FOAF (Friend Of A Friend) or SKOS (Simple 
Knowledge Organization System), the process to share 
knowledge consisted in designing a formal ontology for a 
particular domain and populate data (instances) for that domain. 
Although the complete reuse of existing ontologies was 
expected, the reality demonstrated that every party willing to 
share knowledge and data would create its own ontologies. Thus, 
the main idea behind web ontologies was partially broken since 
just a few concepts were really reused.   

Once the Linked Data initiative (RDF + HTTP) emerged to 
unleash the power of existing databases, a huge part of the 
Semantic Web community realized that a formal ontology was 
not completely necessary to exchange data and knowledge. 

Taking into account that ontologies were still present, the 
efforts were focused on providing methods for data consistency 
[21] through the execution of procedures such as: 1) reasoning 
processes to check consistency,  and 2) rules, mainly in SWRL 
(Semantic Web Rule Language) or SPARQL [22] [23]. These 
procedures are not fully recommended, due to performance 
issues, when a huge number of instances are available. As a new 
evolution, then, the community realized that ontology-based 
reasoning was not the most appropriate method for data 
validation when data is being exchanged.  

That is why in recent times the Semantic Web community 
has seen an emerging interest to manage and validate RDF 
datasets according to different shapes and schemes. A data shape 
can be defined as a resource, i.e. metamodel, that describes 
contents of, and constraints on, other resources. In this way, it is 
possible to not just improve but to overcome some of the well-
known restrictions [24] of RDF encoded data: 1) lack of support 
to represent certain knowledge features N-ary relationships [25], 
2) practical issues dealing with reification [26] and blank nodes 
[27]. New specifications and methods for data validation 
(consistency) are being designed to turn reasoning-based 
validation into a kind of grammar-based validation.  
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Table 1 Comparison of methods for RDF data validation. 

These methods take inspiration from existing approaches in 
other contexts such as DTD (Document Type Definition), XML-
Schema or Relax NG (REgular LAnguage for XML Next  
Generation) for XML, or DDL (Data Definition Language) for 
SQL (Structured Query Language). 

The W3C launched in 2014 the RDF Data Shapes Working 

group having as main outcome the SHACL (Shapes Constraint 

Language), W3C Recommendation, and the ShEX (Shape 

Expressions) language [31] [32]. Both are formal languages for 

expressing constraints on RDF graphs including cardinality 

constraints as well as logical connectives for disjunction and 

polymorphism. OSLC Resource Shapes [28], Dublin Core 

Description Set Profiles [29], and RDF Unit [30] were also 

other constraint languages for data validation in the context of 

Linked Data.  

 Following a more classical approach for RDF data 

validation, the Pellet Integrity Constraints is an extension of the 

existing semantic web reasoner [34] that interprets OWL 

ontologies under the Closed World Assumption with the aim of 

detecting constraint violations in RDF data. These restrictions 

are also automatically translated into SPARQL queries. This 

approach has been implemented on top of the Stardog 2 

database, enabling users to write constraints in SPARQL, 

SWRL or as OWL axioms. This approach has been reported as 

a method for data validation and type inference in some case 

studies (e.g. NASA Knowledge Graph)3 were logical models 

are translated into OWL instances and, then, a reasoning 

process (semantic web based or rule-based) is executed to find 

inconsistencies, infer types, etc. However, the complexity and 

time to make transformations between object models and 

Description Logics seems to be not very effective since the 

same information is being modelled at the same time under two 

different paradigms. Finally, the SPIN language [35] also 

makes use of SPARQL (mainly its syntax) to define constraints 

on RDF-based data that can be executed by systems supporting 

SPIN (SPARQL Inferencing Notation), such as the TopBraid’s 

toolchain. 

In conclusion, the relevance of data validation to exchange 

RDF-encoded data is clear. RDF Data Shapes in its different 

flavors, such as OSLC Resource Shapes, are becoming the 

                                                           
2 http://stardog.com/ 

cornerstone for boosting interoperability among agents, see  

Table 1. It is also clear that ontologies are becoming less 

important although a combined approach (data shapes and a 

formal ontology) can provide important benefits in terms of 

data validation and knowledge inference (if needed). In the 

context of SE and reuse, as it has been previously outlined, 

software artifacts must take advantage of new technologies to 

enable practitioners the automatic processing of exchanged 

data. 

IV. KNOWLEDGE MANAGEMENT WITHIN THE SOFTWARE 

ENGINEERING PROCESS 

Software is becoming a commodity, knowledge that is 

embedded in every product, business and development or 

manufacturing process. Assuming that a software artifact is a 

knowledge asset, the ground truth about knowledge 

characteristics [36] is also valid for software artifacts: 

• Use of knowledge does not consume it.  

• Transfer of knowledge does not imply losing it.  

• Knowledge is abundant; the problem lies on the proper 

use and exploitation. 

• Much of an organization’s valuable knowledge walks 

out the door at the end of the day.  

According to the current SE context, it seems that graph-

approaches based on a semantic network and deployed under a 

set of standards in a service-oriented environment, are the most 

appropriate candidates. Considering this environment, the 

following knowledge representation paradigms (focusing on 

web-oriented technologies) have been selected for comparison: 

1-The Resource Description Framework (RDF) [37] is a 

framework for representing information resources in the Web 

using a directed graph data model. The core structure of the 

RDF abstract syntax is a set of triples, each consisting of a 

subject, a predicate and an object. A set of such triples is called 

an RDF graph. An RDF graph can be visualized as a set of 

nodes and directed-arcs diagram, in which each triple is 

represented as a node-arc-node link. RDF has been used as the 

underlying data model for building RDFS/OWL ontologies, 

gaining momentum in the web-based environment due to the 

explosion of the Semantic Web and Linked Data initiatives that 

3 https://www.stardog.com/blog/nasas-knowledge-graph/ 

Process Type Creation Scope Refs. 

Consistency check Vocabulary-based Semantic Web reasoner RDF datasets [21] 

Data validation 

(integrity) 

Query-based Hand-made RDF templates RDF datasets [22] 

Vocabulary-based Hand-made RDF datasets [23] 

Vocabulary-based Hand-made or automatically 

generated by an OSLC API 

OSLC Resource Shape [28] 

Vocabulary-based Hand-made Dublin Core Description Set Profiles [29] 

Query-based RDF Unit (test creation) RDF datasets [30] 

Query-based 

(generated from ShEX 

expressions) 

Automatic generation of SPARQL 

queries 

RDF datasets [31] [32] 

[33]  

Vocabulary and Query-

based 

Automatic generation of SPARQL 

queries 

OWL and RDF under Closed World 

Assumption 

[34] 

Query-based SPIN language + SPARQL queries RDF datasets [35] 



 

aim to represent and exchange data (and knowledge) between 

agents and services under the web-based protocols. 

2-The RDF Schema (RDFS) [38, p. 1] provides a data-

modeling vocabulary for RDF data. It represents a first try to 

support the creation of formal and simple ontologies with RDF 

syntax. RDFS is a formal and simple ontology language in 

which it is possible to define class and property hierarchies, as 

well as domain and range constraints for properties. One of the 

benefits of this property-centric approach is that it allows 

anyone to extend the description of existing resources.  

3-The OWL (Ontology Web Language) [39] is an ontology 

language for capturing meaningful generalizations about data in 

the Web. It includes additional constructors for building richer 

class and property descriptions (vocabulary) and new axioms 

(constraints), along with a formal semantics.  OWL 1.1 consists 

of three sub-languages with different levels of expressivity: 1) 

OWL Lite, 2) OWL DL (Description Logics) and 3) OWL Full. 

4-The OWL 2.0 [39] family defines three different profiles: 

OWL 2 EL (Expressions Language), OWL 2 QL (Query 

Language) and OWL RL (Rule Language). These profiles 

represents a syntactic restriction of the OWL 2 Structural 

Specification and more restrictive than OWL DL. The use of 

profiles is motivated by the needs of different computational 

processes. OWL EL is designed for enabling reasoning tasks in 

polynomial time. The main aim of OWL 2 QL is to enable 

conjunctive queries to be answered in LogSpace using standard 

relational database technology. Finally, OWL 2 RL is intended 

to provide a polynomial time reasoning algorithm using rule-

extended database technologies operating directly on RDF 

triples. In conclusion, OWL 2.0 adds new functionalities 

regarding OWL 1.x. Most of them are syntactic sugar but others 

offer new expressivity [39]: keys, property chains, richer 

datatypes, data ranges, qualified cardinality restrictions, 

asymmetric, reflexive, and disjoint properties; and enhanced 

annotation capabilities. 

3-The RIF Core (Rule Interchange Format) [40] comprises 

a set of dialects to create a standard for exchanging rules among 

rule systems, in particular among Web rule engines. RIF was 

designed for exchanging rather than developing a single one-

fits-all rule language. RIF dialects fall into three broad 

categories: first-order logic, logic-programming, and action 

rules. The family of dialects comprises: 1) logic-based dialects 

(RIF-BLD) including languages that employ some kind of logic 

such as First Order Logic (usually restricted to Horn Logic) or 

non-first-order logics; 2) rules-with-actions (RIF-PRD) dialects 

comprising rule systems such as Jess, Drools and JRules as well 

as event-condition-action rules such as Reaction RuleML. RIF 

also defines compatibility with OWL and serialization using 

RDF. 

5-The SRL (System Representation Language) [41] [42] is 

based on the ground idea that whatever information can be 

described as a group of relationships between concepts. 

Therefore, the leading element of an information unit is the 

relationship. For example, Entity/Relationship data models are 

certainly represented as relationships between entity types; 

software object models can also be represented as relationships 

among objects or classes; in the process modeling area, 

processes can be represented as causal/sequential relationships 

between sub-processes. Moreover, UML (Unified Modeling 

Language) or SysML (System Modeling Language) 

metamodels can also be modeled as a set of relationships 

between metamodel elements.  

SRL also includes a repository model to store information 

and relationships with the aim of reusing all kind of knowledge 

chunks. Furthermore, text-based information can certainly be 

represented as relationships between terms by means of the 

same structure. Indeed, to represent human language text, a set 

of well-constructed sentences, including the 

subject+verb+predicate (SVP) should be used. The SVP 

structure can be then considered as a relationship typed V 

between the S and the predicated P. In SRL, the simple 

representation model for describing the content of whatever 

artifact type (requirements, models, tests, maps, text docs or 

source code) is as follows:  

SRL representation for artifact α = 𝑖α  = 
{(𝑅𝑆𝐻𝑃1), (𝑅𝑆𝐻𝑃2), … , (𝑅𝑆𝐻𝑃𝑛)}  where every single RSHP 

(relationship) is called RSHP-description and must be described 

using terms.  

One important consequence of this representation model is 

that there is no restriction to represent a particular type of 

knowledge. Furthermore, SRL has been used as the underlying 

information model to build general-purpose indexing and 

retrieval systems, domain representation models [41], 

approaches for quality assessment of requirements  and 

knowledge management tools such as knowledgeMANAGER. 

Obviously, a plethora of other knowledge representation 

mechanisms and paradigms can be found as it is presented 

below. However, we focus here on comparing those that satisfy 

the three basic ideas of this study: 1) a language for representing 

any artifact metadata and contents; 2) a system for indexing and 

retrieval and 3) a standard input/output interface (data 

shape+REST+RDF) to share and exchange artifact metadata 

and contents. 

The SBVR (Semantics of Business Vocabulary and Rules). 

It is an OMG standard to define the basis for formal and 

detailed natural language declarative description of a complex 

entity. The Ontology Definition Metamodel (ODM). It is an 

OMG standard for knowledge representation, conceptual 

modeling, formal taxonomy development and ontology 

definition. It enables the use of a variety of enterprise models as 

starting points for ontology development through mappings to 

UML and MOF.  

ODM-based ontologies can be used to support: 1) 

interchange of knowledge; 2) representation of knowledge in 

ontologies and knowledge bases; and 3) specification of 

expressions that are the input to, or output from, inference 

engines. The Reusable Asset Specification (RAS), an OMG 

standard that addresses the engineering elements of reuse. It 

http://en.wikipedia.org/wiki/Natural_language


 

attempts to reduce the friction associated with reuse 

transactions through consistent, standard packaging. 

V. EVALUATION AND DISCUSSION 

The previous section has reviewed the main approaches for 

knowledge representation in a web-oriented environment for 

exchanging software artifacts. As a result, Table 2 (in the 

Annex) shows the main characteristics and capabilities that can 

be found in RDF, RDFS, OWL and SRL with special focus on 

those regarding knowledge management and, more specifically 

knowledge representation. In order to select the proper 

mechanism for knowledge representation of software artifacts, 

the following points must be considered: 

• RDF is based on a directed graph and it can only 
represent binary relationships (unless reification and 
blank nodes are used). As a representation mechanism, 
RDF presents some restrictions that have been outlined 
in several works [24] . For instance, N-ary relationships 
[25], practical issues dealing with reification [26] and 
blank nodes [27] are well-known RDF characteristics 
that do not match the needs of a complete framework for 
knowledge representation. Furthermore, RDF is built on 
two main concepts: resources and literals. However, a 
literal value cannot be used as the subject of an RDF 
triple. Although this issue can be overcome using a 
blank node (or even reification) and the property 
rdf:value, it adds extra complexity for RDF users. 

Finally, RDF has been designed to represent logical 
statements, constraining also the possibility of 
representing other widely used paradigms such as 
objects or entity-relationships models. Due to these 
facts, it seems clear that RDF can be used for 
exchanging data, but it is not the best candidate for 
knowledge representation. 

• RDFS is a good candidate for modeling lightweight 
formal ontologies including some interesting 
capabilities close to object-oriented models. RDFS 
ontologies can be serialized as RDF, but this feature can 
also be a disadvantage due to expressivity restrictions of 
RDF. Again, RDFS has been designed for expressing 
logical statements that describe web resources, so its use 
for other types of information seems to be not advisable.  

• Building on the previous discussion, OWL presents a 
family of logic dialects for knowledge representation. It 
is based on strong logic formalisms such as Description 
Logic or F-Logic. It was also designed for asserting facts 
about web resources although it can be used as a general 
logic framework for any type of knowledge. One of the 
main advantages of OWL is the possibility of 
performing reasoning processes to check consistency or 
infer types. However, reasoning can be considered 
harmful in terms of performance and most of times it is 
not necessary when data is being exchanged. Besides, 
OWL is not the best candidate for data validation, a key 
process in knowledge exchange.  

• RIF Core and the family of RIF dialects have been 
included in this comparison due to the fact that most of 

domain knowledge is embedded in rules. However, RIF 
was not designed for data validation and its acceptance 
is still low (just a few tools export RIF and less are 
capable of importing RIF files). On the other hand, RIF 
makes use of the web infrastructure to exchange rules, 
what means also that this environment is a very good 
candidate to exchange data, information and knowledge. 

• SRL, based on relationships, allows domain experts to 
create relationships between terms, concepts or even 
artifacts (containers). It provides a framework for 
knowledge representation with capabilities for 
expressing any kind of cardinality and N-ary 
relationships. SRL is based on undirected property 
graphs, enhancing expressivity. Although it has not been 
directly designed for data validation, its metamodel 
allows the possibility of checking cardinality, value 
constraints, domain and range restrictions. One of the 
strong points of SRL is the native support of a tool such 
as knowledgeMANAGER and the possibility of 
automatically providing semantic indexing and retrieval 
mechanisms. Both have generated a relevant acceptance 
in the industry for authoring and quality checking.  

Finally, as a general comment, there is also a lack of tools 

working natively on RDF. Furthermore, RDF was conceived to 

exchange information over the web. Although some RDF 

repositories can provide capabilities for indexing and searching 

RDF resources through an SPARQL interface, the experience 

has demonstrated that most of times RDF is translated into the 

native data model of a tool. 

Based on this evaluation and considering the three basic 

requirements of this review, we conclude that RDF is a good 

alternative to exchange data. Since formal ontologies and 

reasoning processes are not completely necessary and, instead, 

data validation is a key aspect for boosting interoperability and 

reuse of software artifacts, it also seems clear that an approach 

like SRL can perfectly fit to the major objective of knowledge 

representation in the SE discipline. However, we recognize that 

the use of formal RDFS or OWL ontologies is not incompatible 

with data shapes, but possible. RDFS and OWL are languages 

for building domain vocabularies, while SRL is already a 

domain vocabulary for knowledge representation, so it is 

possible to define SRL in a formal RDFS/OWL ontology. 

VI. CONCLUSIONS AND FUTURE WORK 

The application of the Linked Data principles to exchange 

data in the software development lifecycle is gaining 

momentum. Software artifacts reuse via interoperability is a key 

enabler for boosting collaboration in the development of 

complex software systems. The concept of continuous 

engineering is becoming a reality since it is possible to integrate 

data and services under common protocols and data models.  

In this context, the capability of reusing existing software 

artifacts is a key factor that can ease teams to develop systems 

faster and safer. However, software is not anymore, a piece of 

logical instructions but a kind of knowledge and organizational 

asset. That is why a proper environment for knowledge 



 

management of software artifacts should provide the 

appropriate mechanisms for representing, storing, indexing and 

retrieving any kind of software artifact. However, some 

approaches such as OSLC relying on Linked Data principles 

cannot easily deployed due to issues regarding expressivity in 

RDF or the need of tools for easily process RDF (mainly from 

a developer perspective). In this context, the use of well-

documented REST APIs (e.g. based on standards such the 

OpenAPI Specification) are good enough to access and 

exchange data generated during the development lifecycle. 
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Annex I 

 
Feature RDF [37] RDFS [38, p. 1] OWL [39] RIF Core [40] SRL [41] 

Full Name Resource Description Framework Resource Description 

Framework Scheme 

Ontology Web Language Rule Interchange Format System Representation Language 

First Version 1.0 (February 2004) 1.0 (February 2004) 1.0 (February 2004) First edition (December 2012) v1  (January 2004) 

Last version 1.1 (February 2014) 1.1 (February 2014) 2.0 (December 2012) Second edition (February 2013) v14 (January 2015) 

Designed for Representation of logical statements Data modeling vocabulary 

for RDF data 

Formal ontology design Definition of Horn rules Representation of relationships between 

knowledge items 

Target use Data exchange of facts, rules and ontologies Data model Ontology creation Rule interchange Universal knowledge representation and re-use 

Data model Directed graph Directed graph Directed graph Object Model Undirected (property) graph 

Underlying 

semantics 

RDF formal semantics RDFS Semantics OWL 2. Direct Semantics and RDF-

based Semantics 

RIF Core Semantics Explicit metamodel  

Expressivity Simple RDF triples (s, p, o) to represent 

binary relationthips.  

Classes (sub and super 

classes) and Properties 

(domain and ranges) 

OWL 1.1:  

• DL (Description Logic),  

• Lite,  

• Full 

OWL 2.0:  

• EL (Expressions Language) 

• QL (Query Language) 

• RL (Rule Language) 

• RIF-Core (Core Dialect ) 

• RIF-BLD (Basic Logic Dialect) 

• RIF-PRD (Production  Rule 

Dialect) 

• RIF-FLD  (Framework for 

Logic Dialects) 

• RIF-OWL 2 RL and RIF RDF 

• RIF XML 

Any kind of relationship (𝐒𝐕𝐏).  

• N-ary relationships.  

• Non logic formalism. 

• Knowledge containers. (reification) 

Validation RDF Data Shapes:  

• OSLC Resource Shapes, SHACL 

(Shapes Constraint Language)  

• SheX (Shape Expressions) 

•  SPIN (SPARQL Inferencing  

Notation) and SPARQL Rules 

Semantic reasoning + see 

RDF 

Semantic reasoning  + see RDF Metamodel conformity Metamodel conformity 

Inference Not at graph level. Yes, but restricted to type 

inference and super/sub 

classes and properties 

Yes, depending on the underlying 

logic formalism: First Order Logic, 

F-Logic, DL, etc. 

Yes Not at graph level. 

Identifiers URIs (HTTP URIs if Linked Data).  

Unique Name Assumption (UNA). 

See RDF See RDF Internal IDs and UNA. Internal IDs and UNA. 

Access protocol HTTP-based (REST resources) See RDF See RDF See RDF and native APIs Native API 

Query language SPARQL and RDQL See RDF SWRL XPATH (if XML is used as 

serialization format) 

RSHP query language 

Storage RDF repository (native RDF repositories, 

graph-based databases, and wrappers on top 

of existing relational databases) 

See RDF See RDF Native API  SQL or NonSQL database 

Formats (syntax) RDF/XML, JSON, Turtle, N3, Manchester See RDF See RDF XML RDF/XML, ISO 25964-“The international 

standard for thesauri and interoperability with 

other vocabularies”, etc. 

Visualization RDF visualization libraries such as Allegro 

graph or RDFgravity and other general-

purpose graph visualization frameworks 

Graphviz, Touchgraph, Gephi, Cytoscape,  

D3.js. 

See RDF See RDF Native Rule IDEs RSHP visualization language and the 

aforementioned general-purpose graph 

visualization frameworks. 

Application Integration of databases, applications and 

services through a common and shared data 

model.  

See RDF See RDF Interchange of business rules and 

connection with existing ontologies 

Semantics-based information retrieval using a 

natural language interface to support other 

services such as traceability or quality.  

Status W3C recommendation W3C recommendation W3C recommendation W3C recommendation Industry-oriented  

Tools Protégé, SWOOP or Terminae, TopBraid 

Composer (ontology editors) 

See RDF and RDFS 

reasoners such as Pellet, 

Racer or Jess 

See RDFS JRules, Drools or Jess (mainly 

exporters not importers) 

knowledgeMANAGER (a complete suite for 

knowledge management with RDF import/export 

capabilities) 

 

Table 2 A comparison among the main approaches for knowledge representation using an underlying semantic network. 




