
Documenting and Exploiting Software Feature Knowledge through Tags

Marcus Seiler Barbara Paech

Institute for Computer Science, Heidelberg University, Germany
E-mail: {seiler|paech}@informatik.uni-heidelberg.de

Abstract

Knowledge about features and their relations to detailed
requirements or code is important and useful for many soft-
ware engineering activities such as for performing change
impact analysis and tracking feature progress. Document-
ing feature knowledge is challenging, as companies docu-
ment features and requirements in issue tracking systems
(ITS) and work on code in integrated development envi-
ronments (IDE). Managing feature knowledge over time is
challenging, as features, requirements, and code continu-
ously change. Also, managing the relationships through
trace links is challenging, as creating links manually is too
time-consuming, and recovering links retrospectively is too
error-prone. We developed an approach and tool TAFT to
document feature knowledge in ITS and IDE continuously.
TAFT uses feature tags to indicate relations between feature
descriptions, requirements, work items, and source code.
Currently, TAFT comprises a dashboard to track the fea-
ture progress, a recommendation system to suggest feature
tags for specifications, an inheritor to apply feature tags au-
tomatically, and capabilities to navigate in feature knowl-
edge. The tool is integrated into the developers’ work envi-
ronments Jira and Eclipse. In this paper, we present details
on the tool support for TAFT, and we report on the results
of a case study, which indicates its acceptance.

1. Introduction

Nowadays, many software-developing companies use an
issue tracking system (ITS) to support software engineer-
ing work [2]. ITS contain several software engineering arti-
facts like requirements, development tasks (work items), or
bug reports. An integrated development environment (IDE)
is typically used to work on code that implement artifacts
from ITS. Within ITS, requirements are often formulated as
requests to modify or to add a specific feature. Since infor-
mation regarding features is spread across the two sources
ITS and IDE, it is hard to document and maintain features

DOI reference number: 10.18293/SEKE2019-109

and their relations to code. Explicit knowledge about fea-
tures and their relations to other artifacts, such as detailed
requirements or code is not only useful for software evolu-
tion [14], but is also important for many software engineer-
ing activities including management tasks such as tracking
the feature progress for release planning [9], and includ-
ing development tasks, such as identifying affected artifacts
when performing change impact analysis [11]. While the
artifacts of feature knowledge are available in ITS and IDE,
in practice their relationship is often managed implicitly or
incompletely. This makes it difficult to exploit the feature
knowledge for development and management tasks.

In previous work [19], we presented an interview study
with practitioners on the use of tagging for feature knowl-
edge and first ideas on a lightweight tagging approach to
document feature knowledge. In this approach all artifacts
relating to a feature are tagged with the feature. The ex-
perts from practice found our ideas beneficial. Document-
ing feature knowledge using tags seems easy at first glance.
However, the experts indicated that providing suitable tags
is not that easy and managing feature knowledge across dif-
ferent tools, and over time is a challenging task. The tag
consistency over time is challenging, as the development
of software systems is characterized by continuous change
to features, requirements, and code [7]. In this paper, we
present tool support to document, maintain, and exploit fea-
ture knowledge with tags in ITS and IDE consistently and
efficiently. Currently, our tool support focuses on consis-
tency across different tools and on efficiency to apply tags.
The tool support comprises a dashboard to track the feature
progress, a recommendation system to suggest feature tags
for specifications, an inheritor to apply feature tags auto-
matically, and capabilities to navigate in feature knowledge.

We conducted a case study with students in order to
evaluate the acceptance of our approach and tool support
according to the technology acceptance model (TAM) [6].
The results show that the students found our approach very
useful for navigating to code parts during bug fixing. They
rated our approach and tool support as easy to use and em-
phasized that the approach is intuitive to use. Also, they
are motivated to use the approach and tool in future. The



students mentioned the following concerns: cumbersome
initial set-up of the dashboard, missing support for viewing
metrics from past sprints, and inaccurate recommendations.

The remaining paper is organized as follows: Section 2
introduces the terminology used throughout the paper and
our TAFT approach. Section 3 describes the details on the
tool support. Section 4 describes the case study with its
research questions, hypotheses, and results. Section 5 dis-
cusses related work. Section 6 finally concludes this paper.

2. Background

This section briefly introduces the terms software fea-
tures and feature knowledge. Then it describes our ap-
proach in more detail.

2.1. Software Features and Feature Knowledge

Various definitions of the term software feature exist in
the literature [12, 4, 3]. We adopted the definition by Bosch
[4] and define a feature in the context of this paper as a
functional or non-functional property of a software system.

Different software engineering artifacts that are docu-
mented during specification and implementation relate to
a feature. A feature description provides a general spec-
ification of the feature. Requirements refine the feature.
Work items describe development tasks related to realizing
the feature. Code implements (parts of) the feature. We
therefore define feature knowledge as knowledge compris-
ing feature descriptions and all related software engineer-
ing artifacts such as requirements, work items, and code, as
well as their relations.

Figure 1 shows an example of feature knowledge from
the studied project (cf. Section 4). As shown on the left
hand side of Figure 1, a feature description was documented
during specification and was refined by a requirement after-
wards. The work item describes the implementation task
for the requirement. Finally, the right hand side of Figure 1
shows the code implementing the functionality of the re-
quirement.

2.2. The Feature Tagging Approach (TAFT)

The process of assigning keywords to artifacts is an ef-
fective approach to attach additional information to artifacts
[20]. We developed a lightweight approach to manage fea-
ture knowledge across ITS and IDE [19]. Instead of creat-
ing traces between feature knowledge, feature knowledge is
tagged with the same keyword. In particular, we use tags for
feature descriptions, requirements, work items, and code.
The TAFT approach works as follows: One tag for each
feature of a software is used. The tag summarizes the fea-
ture in a short and concise manner. This tagging adheres
to the following rules: First, a feature description is tagged
with a feature tag if and only if it contains the description

of the feature. Second, a requirement is tagged with a fea-
ture tag if and only if the requirement refines the feature.
Third, a work item is tagged with a feature tag if and only
if the described task addresses specification, quality assur-
ance, or implementation of the feature. Finally, source code
is tagged with a feature tag if and only if the source code
implements (parts of) the feature.

In the example given in Figure 1, the tag
Transportation is used to summarize the described
feature. The feature tag is applied to the feature description,
the requirement, and the work item in Figure 1 as they
relate to the feature Transportation. The second statement
of the code listing in Figure 1 shows the feature tag, as the
code implements parts of the feature Transportation.

Our approach is independent of the development method
used. Thus, TAFT is applicable for projects using traditional
methods such as waterfall, and for projects using a modern
development method such as agile. Moreover, we do not
make any assumptions about the cardinality of the relations
between features and requirements or between features and
code. Thus, it is possible to have requirements, work items,
and code tagged with multiple features unlike in the exam-
ple.

3. Tool Support for TAFT

We developed tool support for TAFT in Jira1 and
Eclipse2, which are common tools for managing software
development projects and for working on code, respectively.

Our tool supports the two stakeholders developer and
project manager in capturing feature knowledge through la-
bels in Jira and annotations in code. It also supports them in
exploiting feature knowledge for development tasks and for
management tasks, respectively. We annotate the code with
tags instead of tagging commits, as commit messages often
contain noise in terms of tangled changes. Tangled changes
could result in wrong feature knowledge when tagging a
commit [8, 13]. Moreover, code annotations help to under-
stand the code [21] and the cost for creating and maintain-
ing annotations in code is negligible [10]. We rely on Java
annotations instead of comment annotations. Unlike com-
ment annotations, Java annotation are language specific, but
they retain in the compiled byte code. This is useful for ex-
ploiting feature knowledge in (legacy) software even if the
source code is not available (anymore).

In the following, we describe the details of the main
tool functionality: the feature navigator, the feature dash-
board, the feature recommendation and the feature inheri-
tance. The Eclipse plug-in Feature Navigator analyzes the
source code of a project and scans the code for annotations
to support developers. Figure 2b shows a screenshot of the

1https://www.atlassian.com/software/jira
2https://www.eclipse.org/



Feature: Integration of an API to retrieve
data from public transportation such as
stations and their departure schedules.

Requirement: As a user, I want to click
on a station in order to view the departure
schedule.

Work item: Implement service function
to retrieve the departure schedule of a
station.

// Package, imports and further code omitted
@Feature("Transportation")
public class OpnvManager implements IOpnvManager {

public void queryStation(String stationID) {
Request request = new Request.Builder().url(new HttpUrl.Builder()

.scheme("http").host("rnv.the-agent-factory.de")

.addQueryParameter("stationID", stationID).build();
new OkHttpClient().newCall(request);
}

}

Figure 1: Example of feature knowledge documented in specifications and in code

Feature Navigator. The Feature Navigator lists code files
implementing a certain feature. The developer can search
for features and code files and can directly navigate to a
code file once s/he clicked the code in the Feature Naviga-
tor.

The Jira dashboard Feature Dashboard supports project
managers in tracking the progress of features in a project.
Figure 2a shows the Feature Dashboard. The Feature Dash-
board scans the project for feature tags and displays various
metrics, e.g., the number of features, the number of require-
ments (in this case user stories), and the number of code
lines implementing a feature. The metrics are calculated
based on the labels applied to issues and the annotations ap-
plied to code. The dashboard can be configured for a project
and the shown metrics can be selected. Multiple instances
of the dashboard are possible to have metrics for multiple
projects.

Developers and project managers might not document or
update feature knowledge regularly, if the effort is too high.
As suggested by Robillard et al. [15], we use recommen-
dation systems to reduce the effort for the tool users. The
completion of labels when typing parts of a feature tag is a
built-in function of Jira. We extended Eclipse’s code com-
pletion capabilities to complete annotations in code when
typing parts of an annotation. Both, the label completion in
Jira and the annotation completion in Eclipse represent sim-
ple recommendation systems. In addition, we developed a
Jira plug-in to recommend feature tags for issues. Currently,
we recommend existing feature tags based on the issue de-
scription using a multi-class Naive Bayes classifier. The
feature tags are presented to the user together with the con-
fidence score of the classifier. The user is then able to click
on the feature tag to apply it to the actual issue. Figure 2c
shows the recommended feature tags (Transportation,
RouteFinding, Filter, Tweets) with their corre-
sponding confidence scores on the right hand side of the
Figure for a user story Departure Schedule. In this ex-
ample, the best matching feature tag is Transportation
with a confidence score of 74.71% and is shown at the first
position of the list. It is up to the user whether to apply one
of the recommended feature tags. The classifier is trained it-
eratively whenever a user applies one of the recommended
feature tags. In addition, we provide a feature tag inheri-

tance plug-in for Jira to further reduce the effort to apply
feature tags manually. The inheritance plug-in uses existing
relations from Jira to automatically apply feature tags for is-
sues in parent-child relations such as a user story consisting
of several work items.

4. Evaluation of TAFT

We conducted a study with students in order to assess the
acceptance of the TAFT. In the following, we describe the
design of the case study and the applied research method in
Section 4.1. Section 4.2 presents and discusses the results.
Finally, Section 4.3 discusses threats to validity.

4.1. Case Study Design & Research Method

Study Context: The study was performed during a de-
velopment project with six students over a period of six
months. The project lasted from October 2017 to March
2018. The students developed an indoor navigation app for
Android-based devices for a real customer. Primary users
are (other) students who use the app to locate and navigate
rooms where lectures take place. Also the app is able to
retrieve information from public transportation allowing to
display the departure schedule of a nearby station. The cus-
tomer was a mobile development company. The develop-
ment method was Scrum-like. In each sprint, one of the
students acted as Scrum master and thus was responsible
for development planning and communicating with the cus-
tomer. The customer provided a high-level vision descrip-
tion of the app. The students derived features and refined
them during development in agreement with the customer.
They used Jira with epics to describe features and with user
stories to refine features, and with work items to describe
development tasks. The students used Git for Java source
code and Eclipse as development environment. They ap-
plied our TAFT approach and used its tool support during
the project. At the beginning of the project, the approach
and the basic usage of the tool support were introduced.
Also, the students were supported in the initial set-up of
the tool support.

At the end, the project comprised five epics, 17 user sto-
ries, 74 work items, and 40 code files. According to our
approach, the feature tags were applied to the user stories,



(a) Dashboard to track feature progress

(b) Navigator to find feature in code

(c) Recommendation to suggest feature

Figure 2: Tool support for the TAFT approach

the work items, and the code files. We conducted semi-
structured interviews with the students to evaluate the ac-
ceptance. The questionnaire used during the interview con-
tained open and closed questions.

Research Questions, Metrics, and Hypotheses: To
evaluate the acceptance of our tool, we build upon the Tech-
nology Acceptance Model (TAM) by Davis et al. [6], which
models the user acceptance of information technology. In
our case, the information technology is the approach and
the tool support. TAM uses the variables perceived ease of
use, a subjects’ intention to use and perceived usefulness.
We raise the following research questions for acceptance
evaluation:

RQ1 How easy is it to use the approach and tool support?
RQ2 How useful is the approach and tool support?
RQ3 Do the students intend to use the approach and tool

support in future?

Regarding the tool support, we are particularly interested
in the recommendation and the dashboard. For usefulness,
we are particularly interested in progress tracking and fea-
ture knowledge relations. We provided a questionnaire to

the students with questions corresponding to the research
questions.

According to Davis et al. [6] point scales such as Lik-
ert scales can be used to measure the variables of TAM. We
used a Likert scale with five scale points for asking the stu-
dents to assess the approach and tool support. The answers
to the Likert scale were mapped to an integer as follows:
strongly disagree = 1, disagree = 2, neutral (neither agree
nor disagree) = 3, agree = 4, and strongly agree = 5.

We use the students’ assessments together with their ra-
tionale for the ratings as metric for RQ1, RQ2, and RQ3,
respectively. Our hypothesis for acceptance is: We expect
that the values for the TAM-variables are higher or equal to
3.5. Thus, we expect that most of the responses are in the
range between neutral (with a slight tendency to agree) and
strongly agree.

4.2. Results & Discussion

In the following, we use the answers to the open ques-
tions to provide the details for the assessments of the stu-
dents.



The students stated that the approach is easy to use
(RQ1) as it is very intuitive to use. All students found it
easy to apply feature tags to issues. A minority stated that
applying feature tags in code is more complicated. The stu-
dents needed more effort to equip some code files with fea-
ture tags, as these code files implemented multiple features.
This is backed up by the numbers of the project. Each of
the 17 issues had exactly one of the tags applied. Of the 40
code files, 37 had at least one of the tags applied. The ma-
jority (33 code files) contained one tag. One code file each
contained two and three tags. Two code files contained four
tags. Altogether, it seems easier to tag specifications instead
of code files. The recommendation is rated easy to use and
a little less useful compared to the usefulness to relate and
track feature knowledge. Overall, the students stated that
the recommendation works well and that the recommenda-
tion can help to prevent incorrect feature tags. However, the
students did not use it very often (only for 14.04% of all is-
sues). A minority reported that wrong recommendations for
feature tags decrease the usefulness. One reason could be
that the students were presented with all feature tags includ-
ing those with low confidence values. Therefore, we need
to study how recommendation usage can be improved.

Overall, the students found the approach useful (RQ2).
The use of the dashboard to track the progress was rated as
easy and very useful. The students stated that the dashboard
exactly provides the data needed to perform the tracking.
However, they missed the functionality to view metrics for
past sprints in the dashboard. Also, a minority perceived the
initial set-up of the dashboard somewhat cumbersome.

The result for the intention (RQ3) is rather poor com-
pared to the other two variables. The rather low intention
to use the dashboard could be due to the fact that this is
mainly helpful for the project manager and the students do
not see themselves as project managers in the short future.
The students justified the assessment for the intention with
the dependency on the project size. In smaller projects with
a similar scope as this evaluation project, the students would
rather not use the approach and the tools, as the applica-
tion and maintenance of the tags creates overhead for de-
velopers and they can remember the feature knowledge by
themselves. In very large projects, students indicated that
there could be many feature tags that need to be managed.
Therefore, they would apply the approach and tool support
in those projects. Some students used the feature tags in
code to locate code parts that might be affected by bugs.
We plan to investigate whether improved support for locat-
ing code affected by bugs would raise the motivation for
future usage.

Overall, our hypotheses hold and we conclude that our
approach is feasible and accepted. We applied our approach
in a new project, but it could be also applied to an exist-
ing project. The requirements and the code files of an ex-

isting project must be equipped with feature tags in retro-
spect to make our approach work. The effort for this re-
documentation is considerable as the relations between all
requirements and all code files have to be mapped to the fea-
tures. However, it can be incrementally done during refac-
toring or other changes to features.

4.3. Threats to Validity

We discuss threats according to Runeson et al. [16].
Construct Validity: The construct validity was ensured

through data source triangulation by using direct methods
(semi-structured interviews with open and closed question-
naires) as well as indirect methods (review of data produced
by tool logging). A possible threat is that researcher and
interviewee might interpret the questions differently. The
threat is mitigated by the format of face-to-face interviews,
which enabled the interviewees to ask questions. Also, an-
other researcher checked the questionnaire for applicability
and understandability.

Internal Validity: The students knew that the researcher
had developed the approach and its tool support. The threat
was mitigated as the researcher appreciated both positive
and negative feedback from the students. The motivation of
the students to use the approach and its tool support might
be influenced by worries about grades. However, the re-
searcher was not involved in the final grading and the usage
had no influence on the grades.

External Validity: The documented feature knowledge
is specific to this development project and the size of the
development project is limited. Moreover, we applied our
approach for a new project only. Thus, the results for other
projects can be different from the results reported in this
study, and the findings cannot be generalized for developers
working in industry. However, the project contained situ-
ations common to projects in industry, e.g., the elicitation
of requirements by the participants, changing requirements
due to changed customer needs, as well as communication
problems across developers regarding their tasks.

Reliability: One researcher did the interviews and as-
sessments to ensure consistency. Other researchers might
interpret the results in another direction. The researcher
documented the steps during design, data collection, and
analysis. In addition, another researcher reviewed the de-
sign of the case study and the steps for analysis to increase
reliability. This also ensures the reproducibility of the study.

5. Related Work
Our approach relates to traceability. TAFT provides a

coarser-grained traceability as commonly used trace links,
as the relations between requirements and code files are es-
tablished on feature level. In [18], we compared the trace
links resulting from tags with other approaches to create
traceability links.



There are few approaches which also use tags to docu-
ment and exploit feature knowledge. Mainly they are from
the area of product lines where features are used to man-
age variability. Thus, they are more heavyweight than our
approach. Savage et al. [17] present an Eclipse based tool
for locating and tracing feature in code. The underlying ap-
proach is different from ours, as they do not directly tag
code with its implementing features. Instead, a user man-
ually relates code to feature using an annotation after fea-
ture location was performed. Similar to the metrics in our
dashboard, they provide a view showing the distribution of
features across the code. Ji et al. [10] present an approach
to equip code with feature annotations. They simulated the
development of a product line of cloned projects using the
annotation approach. They found that maintaining such an-
notations in code is not costly, but useful for maintenance
tasks. Andam et al. [1] and Burger et al. [5] both present
a standalone tool for locating features in code. Both use
comment annotations to document features in code and they
use feature location techniques to annotate the code (semi-
)automatically. Andam et al. [1] also provide a dashboard
for viewing feature metrics. In contrast to ours, their dash-
board targets at developers by providing more specialized
metrics, e.g. nesting depths of annotations. As the tools fo-
cus on feature location, all of them provide capabilities to
navigate in feature knowledge documented in code. None
of the tools tag specifications nor do they provide recom-
mendations or inheritance of tags.

6. Conclusion & Future Work

In this paper, we reported on the tool support of our
TAFT approach and its acceptance in a case study with stu-
dents. Overall, the results show that the approach and tool
support are accepted.

In future work we would like to address the problems
experienced by the students. To further ease the application
of feature tags, we are also working on recommendations to
suggest feature tags in code and on inheriting feature tags
for code. In addition, we want to investigate how practi-
tioners think about our tool, e.g., by performing interviews
with practitioners.

Acknowledgement. We would like to thank all students for
their effort in this study.

References

[1] B. Andam, A. Burger, T. Berger, and M. R. V. Chaudron. Florida:
Feature location dashboard for extracting and visualizing feature
traces. In 11th Int. Work. on Variability Modelling of Software-
intensive Systems, pages 100–107. ACM, 2017.

[2] O. Baysal, R. Holmes, and M. W. Godfrey. Situational Awareness:
Personalizing Issue Tracking Systems. In 35th Int. Conf. on Software
Engineering, pages 1185–1188. IEEE, 2013.

[3] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki. What is a feature?: A qualitative
study of features in industrial software product lines. In 19th Int.
Conf. on Software Product Line, pages 16–25. ACM, 2015.

[4] J. Bosch. Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach. ACM Press Books. Addison-
Wesley, 2000.

[5] A. Burger and S. Grüner. Finalist2: Feature identification, local-
ization, and tracing tool. In 25th Int. Conf. on Software Analysis,
Evolution and Reengineering, pages 532–537. IEEE, 2018.

[6] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. User acceptance
of computer technology: A comparison of two theoretical models.
Manage. Sci., 35(8), Aug. 1989.

[7] M. W. Godfrey and D. M. German. The Past, Present, and Future
of Software Evolution. In Frontiers of Software Maintenance, pages
129–138. IEEE, 2008.

[8] K. Herzig and A. Zeller. The impact of tangled code changes. In
10th Work. Conf. on Mining Software Repositories, pages 121–130.
IEEE, 2013.

[9] S. Jantunen, L. Lehtola, D. C. Gause, U. R. Dumdum, and R. J.
Barnes. The Challenge of Release Planning. In Int. Work. on Soft-
ware Product Management, pages 36–45. IEEE, 2011.

[10] W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki. Maintaining
feature traceability with embedded annotations. In 19th Int. Conf. on
Software Product Line, pages 61–70. ACM, 2015.

[11] N. Kama. Change Impact Analysis for the Software Development
Phase : State-of-the-art. Journal of Software Engineering and Its
Applications, 7:235–244, 2013.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-oriented domain analysis (foda) feasibility study. Tech-
nical report, Carnegie-Mellon University Software Engineering In-
stitute, November 1990.

[13] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto. Hey! are you
committing tangled changes? In 22nd Int. Conf. on Program Com-
prehension, pages 262–265. ACM, 2014.

[14] L. Passos, K. Czarnecki, S. Apel, A. Wa̧sowski, C. Kästner, and
J. Guo. Feature-oriented software evolution. In 7th Int. Work. on
Variability Modelling of Software-intensive Systems. ACM, 2013.

[15] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann. Rec-
ommendation Systems in Software Engineering. Springer, 2014.

[16] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study Research
in Software Engineering: Guidelines and Examples. John Wiley &
Sons, Hoboken, NJ, USA, 1st edition, 2012.

[17] T. Savage, M. Revelle, and D. Poshyvanyk. Flat3: feature location
and textual tracing tool. In 32nd Int. Conf. on Software Engineering,
pages 255–258. IEEE, 2010.

[18] M. Seiler, P. Hübner, and B. Paech. Comparing traceability through
information retrieval, commits, interaction logs, and tags. In 10th Int.
Work. on Software and Systems Traceability. IEEE, 2019. (accepted
to be appear).

[19] M. Seiler and B. Paech. Using tags to support feature management
across issue tracking systems and version control systems. In 23rd
Int. Work. Conf. Requirements Engineering Foundation for Software
Quality, pages 174–180. Springer, 2017.

[20] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and
M. Muller. How Software Developers Use Tagging to Support Re-
minding and Refinding. IEEE Transactions on Software Engineer-
ing, 35:470–483, 2009.

[21] M. Sulír, M. Nosál’, and J. Porubän. Recording concerns in source
code using annotations. Computer Languages, Systems & Structures,
46:44–65, nov 2016.


