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Abstract— Hosting over 10 million of software projects, GitHub 

is one of the most important data sources to study behavior of 

developers and software projects. However, with the increase of 

the size of open source datasets, the potential threats to mining 

these datasets have also grown. As the dataset grows, it becomes 

gradually unrealistic for human to confirm quality of all samples. 

Some studies have investigated this problem and provided 

solutions to avoid threats in sample selection, but some of these 

solutions (e.g., finding development projects) require human 

intervention. When the amount of data to be processed increases, 

these semi-automatic solutions become less useful since the effort 

in need for human intervention is far beyond affordable. To solve 

this problem, we investigated the GHTorrent dataset and 

proposed a method to detect public development projects. The 

results show that our method can effectively improve the sample 

selection process in two ways: (1) We provide a simple model to 

automatically select samples (with 0.827 precision and 0.947 

recall); (2) We also offer a complex model to help researchers 

carefully screen samples (with 63.2% less effort than manually 

confirming all samples, and can achieve 0.926 precision and 0.959 

recall). 

Keywords- open source ecosystem; project sample selection; 

automated method; public development project;  

I.  INTRODUCTION  

In recent years, the GitHub ecosystem has witnessed an 
increasing popularity, and it has attracted more than one 
hundred studies focused on it [1]. With more than 10 million of 
software projects hosted on this ecosystem, it is hard to select 
appropriate samples (i.e., projects) when conducting large scale 
case studies. Early studies often use manual selection methods 
to select samples. But as large datasets appear [2], researchers 
often face a dilemma that they want to use a large dataset to 
verify the generality of their results and at the same time they 
cannot confirm whether these projects meet their research goals. 
Thus, it is important to find a way to automate the sample 
selection process. 

Most research on GitHub needs to satisfy an implicit 
hypothesis: their sampled projects under investigation are 
public development projects, which means that these projects 
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should be open to public and the content of these projects 
should be about development. For example, when studying 
communities and teams of projects in GitHub, their samples 
must be public development projects. Because many projects 
hosted on GitHub are not for software development (e.g., blogs, 
translation and student homework) and are private [3]. When 
the sample size is small, it is doable to read the descriptions 
and readme files manually to select appropriate samples. 
However, as the dataset becomes larger, this manual method 
becomes inefficient. Hence, in this study, our goal is to 
automatically detect public development projects. 

We developed a model in this work to automatically detect 
public development projects based on the J48 decision tree 
algorithm [4]. We verified our model on a dataset of 6,715 
GitHub projects labeled by master and PhD students on 
software engineering. Our model performs well in classifying 
public development projects. The main contributions of this 
work are: 

 We identified a set of words and phrases (e.g., mirror, 
personal) that can reflect  projects’ properties. 

 We fitted a simple decision tree that can classify 
public development projects with a precision of 0.839 
and a recall of 0.950, and this model can help 
researchers effectively select appropriate samples. 

 For those studies that have strict requirements on the 
dataset, we provide a complex decision tree, with  
63.2% less effort than manually confirming all 
samples, and it can obtain a classification with a 
precision of  0.926 and a recall of 0.959. 

In the rest of this paper, related work is discussed in Section 
II. Design of this study is described in Section III. The results 
are elaborated in Section IV. Threats to validity of the results 
are presented in Section V, and this work is concluded in 
Section VI. 

II. RELATED WORK 

A. Problems in Studying Open Source Ecosystem 

Nowadays, more and more research studied software 
ecosystems [5] (most objects of software ecosystem research 
are open source software (OSS) ecosystems), the potential 
reasons for this phenomenon is that open source ecosystems 
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provide publicly available historical datasets which researchers 
can benefit from. 

However, there are some problems when studying the 
historical data of open source ecosystems. Howison and 
Crowston found that projects hosted on SourceForge were 
often abandoned and their information was often missing since 
some project data are hosted outside SourceForge [6]. Weiss 
argued that it is not necessary to consider all SourceForge data 
because of the fickleness of some projects [7]. Rainer and Gale 
conducted in-depth analysis on the quality of SourceForge data 
[8]. They noted that only 1% of SourceForge projects were 
actually active, and suggested that researchers should be 
careful when using project samples. Kalliamvakou et al. 
investigated on the defects of GitHub datasets [3, 9]. They 
detected 13 perils and gave strategies to avoid these perils. 

Although researchers have already been aware of the 
problem, some solutions to the problem still remain in the stage 
of manual verification. When facing a rapidly-increasing 
amount of data on OSS projects, these methods are not 
effective any more. 

B. Studies on GitHub Datasets 

As our dataset was retrieved from the GitHub ecosystem 
[10], we first investigate the datasets which can be potentially 
used to study GitHub. Cosentino et al. conducted a systematic 
mapping study on GitHub [1] and concluded that currently 
there are six ways to get GitHub data: (1) GHTorrent [2], (2) 
GitHub Archive, (3) GitHub API, (4) others (e.g., BOA [11]), 
(5) manual approach, and (6) a mixture of them. It is pointed 
out by Kalliamvakou et al. [3] that GitHub Archive started data 
collection in 2011, and is an incomplete mirror to GitHub. 
GHTorrent, in comparison, has retrieved the complete history 
of GitHub. Moreover, GHTorrent can be extended by GitHub 
API which is most frequently used, hence we collected studies 
based on GHTorrent. 

We selected high quality articles (published in top 
journals/conferences or highly cited) that used GHTorrent to 
see how researchers chose samples to avoid potential threats. 
The results are shown in TABLE I. 

TABLE I. SAMPLE SELECTION METHODS IN LITERATURE 
Method Literature 

Remove projects that have poor perfomance in some 
dimensions (e.g., pull request) 

[12-18] 

Select projects that are top in some dimensions (e.g., 

star number) 

[19-21] 

Only consider projects in several programming 
languages (e.g., ruby) 

[13, 14, 18] 

Remove projects that are forks [17, 18] 

Use a task-related strategy (e.g., select .rb files in ruby 
projects) 

[12, 13, 17, 
18, 21] 

Have no clear project selection strategy [22-25] 

As shown in TABLE I, sample selection methods are not 
unified in literature. Most of the literature aims to select 
samples according to specific criteria (e.g., projects that are top 
in number of stars), which reduces the diversity of samples. In 
addition, these sample selection methods also do not 
distinguish between development projects and the projects for 
other purposes, like storage. Intuitively, development projects 
and projects for other purposes are developed in different ways, 

and this will negatively affect the validity of research results. In 
this work, we tried to solve this problem. 

III. STUDY DESIGN 

As our goal is to automatically detect public development 
projects, and standard datasets are required to validate our 
proposed model. In this section, we discuss how to create a 
standard dataset and how to automatically detect public 
development projects. 

A. Key Concepts 

In this study, the key concept is public development project, 
thus we first give its definition in two aspects: 

Public project: Projects that are not built for private use. 
Anyone has the opportunity to participate in these projects. 
Development project: Projects that are set up for software 
development. This type of tasks include repositories of 
libraries, plugins, gems, frameworks, add-ons, and so on [3]. 

B. Research Questions 

We formulate the following research questions (RQs) to 
investigate the feasibility of automatic detection of public 
development projects. 

RQ1: Can public development projects be detected 
automatically without collecting additional data? 

Rationale: There are many datasets (e.g., GHTorrent) and 
tools (e.g., GitHub API and web crawlers) that can be used to 
collect OSS data. However, although some methods (e.g., web 
crawlers) can get rich information, these methods are 
inefficient due to access restrictions of GitHub to fixed IP 
addresses. In order to increase the usability of our approach, we 
decided to do this work with only readily available data. In this 
study, we only use data from GHTorrent. 

RQ2: How well can public development projects be 
detected? 

Rationale: Existing sample selection methods have either a 
good recall rate (e.g., removing poor projects) or a good 
precision rate (e.g., selecting top projects). These methods have 
their own flaws: (1) inaccurate samples lead to inaccurate 
conclusions; (2) missing samples result in poor generalizability 
of the conclusions. In this study, we aim to automatically select 
public development projects with both high precision and recall 
rates. 

C. Standard Dataset 

Creating a standard dataset means that we need to know 
which projects are public development projects. Since we 
cannot obtain a publicly available dataset that contains such 
information, we decided to manually create such a dataset (i.e., 
extending the GHTorrent dataset). 

In order to make the dataset more convincing, the size of 
our dataset should not be too small.  To achieve this goal we 
asked several master and PhD students on software engineering 
to manually examine which projects are public development 
projects. Due to the limited resource, we could not mobilize 
many people to confirm all projects hosted on GitHub, which 
contains more than 10 million projects. Therefore, with limited 



samples that we can manually check, we should create a 
strategy to ensure that our samples contain as many types of 
projects as possible.  

As the number of projects that we can manually check is 
limited (around 10,000 projects according to our available 
resource), we should select 10,000 samples from over 10 
million projects. Then there are two possible strategies: (1) 
Select all projects created over a period of time; (2) Randomly 
select a specific number of projects. Considering that a random 
selection is unstable (i.e., different selection results may 
contain different types of projects), we decided to select all 
projects created over a period of time in this study. 

After selecting samples, we need participants to decide 
whether a sample is a public development project. This process 
may introduce personal bias. In order to alleviate this problem, 
we first defined how to identify public software development 
projects (see TABLE II).  Then, we randomly selected 100 
samples and strictly labeled these samples according to 
identification criteria in TABLE II. We showed these labeled 
samples to participants to give them a first impression to reduce 
their personal bias. 

TABLE II.  IDENTIFICATION CRITERIA OF PUBLIC PROJECTS AND SOFTWARE 

DEVELOPMENT PROJECTS 

Category Identification 

Public 
project 

If the project’s description and readme file do not state that 
the project is a private project (i.e., this project is 

established for the project owner’s own use), we classify 

this project as a public project. 

Software 
development 

project 

We classify  projects as software development projects if 
their contents are files used to build tools of any sort. This 

type of use includes repositories of libraries, plugins, 
gems, frameworks, add-ons, and so on [3]. 

Lastly, we assign tasks to participants according to the 
following procedure (see Fig. 1): 

1) Divide the set of samples into several subsets. 
2) For each sample subset, assign a participant to decide 

whether each sample meets the criteria in TABLE II. 
If participants are not sure which category a sample 
belongs to, they can put such a sample in a collection 
“undecided” first. 

3) Collect all undecided samples, and convene all 
participants to discuss how to categorize these samples. 
For each sample, participants need to give their 
classification and reasons. If a consensus cannot be 
achieved, we vote to decide which  category the 
project should be assigned to . 

4) Form the final dataset by combining clearly 
categorized samples based on the discussion. 

In conclusion, we first collected samples created over a 
period of time in GitHub. Then we assigned these samples to 
participants for manual classification. Finally,  by summarizing 
these results, we got the final standard dataset. 

D. Automatic Detection of Public Development Projects  

After getting the standard dataset, the next step is to 
automatically classify these samples. In the GHTorrent dataset, 
the project-related data include issue data, commit data, 
committer data, and basic data of the project (owner, 

description, star number, watcher number, language, and 
readme file). Hence, we collected 1,000 samples (in the sample 
set discussed above) and their project-related data to conduct a 
pilot study that investigates the difference between public 
development project samples and the remaining samples. 

 
Figure 1. Procedure of classifing projects. 

The main findings of this pilot study are twofold (1) most 
projects (80% in our samples) clearly stated their purposes in 
the project description. (2) We cannot simply exclude  a project 
that contains some special strings. For example, a project with 
the word ‘test’ in its description does not necessarily mean that 
this project is a private project, and this project may be a 
‘testing tool’. 

The inspiration from this pilot study is that the decision tree 
model is suitable to address our RQs, because a combination of 
keywords can avoid the problem in finding (2). For example, if 
a description contains the keyword ‘test’, the project may be a 
private project that aims to test how to use GitHub. But if the 
description also contains the keyword ‘tool’, then this project 
may be a testing tool, and should be classified into public 
development projects. 

In order to improve the keywords that are used in the 
decision tree, we used the following procedure to gradually 
improve the quality of matched strings (see Fig. 2): 

(1) Generate an initial matching string from the survey 
samples (1,000 samples discussed above) in the pilot 
study. For example, we can match projects from other 
ecosystem by matching string ‘%mirror%’. 

(2) Test the results through the J48 decision tree 
algorithm on the standard dataset. 

(3) Count the number of misclassified samples; if the 
number exceeds 15% of the standard dataset, 
investigate these samples and update our strings, and 
return to (2), else, output the final strings. 

As shown in TABLE I, there are several methods to select 
research samples. Removing projects that are forks is necessary 
for all researchers who want to study base projects. This 
method should be used by all studies that aim to investigate 
base projects, and consequently it is not necessary to compare 
our model with these methods. Some task-related strategies 
were used for special research purposes and these methods are 
not in the scope of our comparison. For example, selecting only 



Java projects means that the purpose is to study the pattern that 
exists merely in Java projects. As our objective is to study a 
common model to select samples, we should not compare our 
model with those task-related methods. Hence, our model 
should be compared with the two methods: (1) removing poor 
projects and (2) selecting top projects. 

 
Figure 2 The process of updating string. 

There are different dimensions to measure success. We 
select four dimensions that are widely accepted and easy to 
obtain [26]: committer numbers, community member numbers, 
star numbers, and watcher numbers. Then we used different 
thresholds to segment the dataset to select samples. Methods 
are shown in Fig. 3. 

 

Figure 3 Baseline method schematic diagram. 

For each dimension, we have ten choices to select samples 
(i.e., selecting top 1%,2%,4%,8%,15% projects or deleting 
bottom 1%,2%,4%,8%,15% projects). Therefore, we should 
compare 40 different strategies on selecting samples.  

IV. STUDY RESULTS 

A. Standard Dataset 

Following the procedure in Section III, we first collected all 
projects established in GitHub between 2012-1-1 and 2012-1-
15. We chose this period of time because GHTorrent started 
data collection in 2012, and we need to collect about 10,000 
projects (considering about the work load). Then, we deleted 
projects that are forks (recommended by [17, 18]) and obtained 
8,638 samples. In addition, we deleted projects that are not 
described in English or have been removed. Some projects in 
the GHTorrent dataset have been removed from GitHub by 
their owners, therefore, we deleted such projects due to the lack 
of sufficient development information to classify such projects. 

Finally, we got 6,715 projects acting as the standard dataset in 
this study. 

Then, we labeled these samples by human judgment. These 
samples were sent to four participants and we asked them to 
determine whether these projects are public development 
projects using our definitions in TABLE II. Doubtful projects 
(625 projects) were discussed and classified through a meeting. 
Finally, we obtained 6,715 labeled projects.  

B. Sample Features 

After several rounds of iterative process described in Fig. 2. 
For each sample, we collected keywords existed in the 
description and URL as features of the sample. Besides, we 
also collected basic information of projects to help classify 
samples. All features are shown in TABLE III. 

TABLE III. SAMPLE FEATURES 
Feature 

Source 

Feature Content Remarks 

Description mirror, fork, moved, longer, test, 

personal, website, framework, tool, 

module, component, app, system, 
dotfiles, collection, blog, plugin, 

library, server, config, guide, set, 

repository, deprecated, file, demo, 
my, github, dot, simple, extension, 

helper, template, http, https, source, 

setting, list of, collection of, 
example, vim, sample, university, 

school, practice, backup, intro, first, 

tutorial, course, copy, null, 
localization, storage, theme, 

resume, clone, translation, 
documentation 

If the description of 

a project contains a 

feature string, this 
feature is set to 1. 

If not, this feature 

is set to 0. For 
example, project i's 

desscription 

contains string 
‘mirror’, then we 

set feature “mirror” 

of project i to 1. 

Basic 

information 

star number, watcher number, 

community member number, 

committer number. have_language 

This information is 

available through 

the GitHub API. 

URL Dot, config, doc If URL of a project 
contain this string, 
this feature is set to 
1. If not, this 
feature is set to 0. 

C. Models and Effects 

We used the J48 algorithm in Weka1 tool to fit the model, 
and debug parameter confidencefactor2 to control model size 
and results. Then, we got two typical models: a simple model 
to automatically classify projects and a complex model (in need 
of human judgment) that can meet strict requirements of 
studies. 

1) Simple model 

When confidencefactor is set to 0.05, we can get a simple 
model. The decision tree model is shown in Fig. 4. This model 
can achieve precision of 0.827 and recall of 0.947 in classifying 
public development projects. Furthermore, this model is stable, 
in the sense that precision and recall do not change drastically 
(precision of 0.820 and recall of 0.941 relatively) when using 
the 10-fold cross-validation. 

2) Complex model 
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When confidencefactor is set to 0.5, we can get a complex 
model. The decision tree model cannot be shown in this paper 
due to the space limit, and this decision tree is provided online3. 
The complex model can achieve a precision of 0.837 and a 
recall of 0.956. The complex model has a distinct characteristic: 
a large proportion of misclassified samples are located on two 
leaf nodes. We showed these paths which are the classification 
conditions to obtain projects in these leaf nodes in TABLE  IV. 

TABLE IV. THREE DICISION PATHS THAT CONTAIN THE VAST MAJORITY OF 

MISCLASSIFIED SAMPLES 

Decision Path (common part) Decision Path 

(sub-part) 

Correct/I

ncorrect 

Simple = 0; tutorial = 0; dot = 1; 
have_language = 1; mirror = 0; my = 0; 

collectionof = 0; fork = 0; personal = 0; 

url_dot = 0; demo = 0; example = 0; test 
= 0; url_config = 0; config = 0; blog = 0; 

plugin = 0; library = 0; framework = 0; 

star <= 2; sample = 0; source = 0; set = 
0; committer <= 2; app = 0 

Committer <= 1; 
Star > 0 ; 

Classify_Result= 

TRUE 

1,467/355 

Committer > 1; 
community <= 2; 

Classify_Result= 

TRUE 

538/113 

If we can manually confirm the samples (2,473 out of 6,715, 
36.8%) on these nodes, this model achieves a precision of 
0.926 and a recall of 0.959. The result can satisfy most of strict 
requirements of studies. 

D. Comparison with Baseline Method 

We compared our model with two base-line methods: 
selecting top projects and deleting bottom projects. The results 
are shown in TABLE V and TABLE VI, respectively. 
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TABLE V. RESULTS OF SELECTING TOP PROJECTS  
 top precision recall  top precision recall 

C
o
m

m
it

te
r 

1% 0.761 0.011 

S
ta

r 

1% 0.865 0.013 

2% 0.768 0.233 2% 0.880 0.026 

4% 0.791 0.048 4% 0.865 0.052 

8% 0.783 0.095 8% 0.834 0.101 

15% 0.771 0.176 15% 0.824 0.188 

C
o
m

m
u
n
it

y
 1% 0.805 0.012 

W
at

ch
er

 

1% 0.895 0.013 

2% 0.835 0.025 2% 0.895 0.027 

4% 0.835 0.050 4% 0.869 0.052 

8% 0.811 0.098 8% 0.843 0.102 

15% 0.772 0.176 15% 0.810 0.184 

 

TABLE VI.  RESULTS OF DELETING BOTTOM PROJECTS 
 bottom precision recall  bottom precision recall 

C
o
m

m
it

te
r 

1% 0.656 0.988 

S
ta

r 

1% 0.655 0.986 

2% 0.655 0.976 2% 0.652 0.973 

4% 0.652 0.952 4% 0.648 0.947 

8% 0.646 0.904 8% 0.642 0.898 

15% 0.637 0.824 15% 0.627 0.811 

C
o

m
m

u
n
it

y
 1% 0.655 0.987 

W
at

ch
er

 

1% 0.654 0.986 

2% 0.653 0.974 2% 0.652 0.972 

4% 0.649 0.949 4% 0.648 0.947 

8% 0.644 0.901 8% 0.640 0.897 

15% 0.635 0.821 15% 0.629 0.814 

We can see from the results that compared with our model 
(0.827 precision and 0.943 recall), these two baseline methods 
have obvious weaknesses. Selecting top method has a low 
recall rate, and the precision of deleting bottom method is not 
very high. Besides, the two methods do not have room for 
debugging, which means that there are no direct methods to 
improve the results of the two methods, while by using 63.2% 
less human effort than manually confirming all samples, our 
complex model can get a classification result with  precision of 
0.926 and  recall of 0.959. This is an advantage of our approach.  

E. Answers to Research Questions 

We formulated two research questions and perform 
experiments on the standard dataset with 6,715 labeled samples. 
Our results can answer these research questions:  

Answer to RQ1: Yes, we can automatically detect public 
development projects with only descriptions and basic 
properties of projects (e.g., committer number), and achieve 
acceptable accuracy (0.827 precision and 0.943 recall). 

Answer to RQ2: (1) Our model performs better than existing 
methods. The precision and recall rates are acceptable to be 
applied to the experiments on GitHub. (2) For studies that have 
strict requirements on the dataset, our work can reduce 63.2% 
human resources in selecting samples. 

V. THREATS TO VALIDITY 

In this section, we identified several threats to the validity 
of the study results. 

A. Construct Validity 

In this study, we only measured whether a project is a 
public development project. Thus, the construct validity is 
whether projects classified as “TRUE” are real public 
development projects. As the concept development project 
and public project are clearly defined and we asked 
participants if they had any doubt to classify a sample. 
Doubtful projects were put into the “undecided” set to be 

 
Figure 4. Simple decision tree model. Nodes with TRUE or FALSE is leaf 

nodes and TRUE or FALSE is the corresponding judgment on these nodes. 



further discussed by a group. Then, in the discussion session, 
all undecided projects are discussed and decided. Hence, the 
construct validity is limited. 

B. External Validity 

External validity in this study depends on whether the 
obtained results can be generalized to the GitHub ecosystem, or 
further other OSS ecosystems. The information used in this 
study to classify a public development project only contains 
description, URL, and basic properties of the project, and such 
information also exists in other OSS ecosystems. We believe 
that our model can be applied to other OSS ecosystems. 

C. Reliability 

 The GHTorrent dataset used in this study is provided by 
[10], and it is a public and popular dataset for studing OSS 
development behaviors. Hence, this study can be repliciated 
using the dataset. At the same time, to mitigate personal bias, 
we asked participants to avoid classifying samples that may 
cause disagreements, and then classified these samples through 
discussion in the data collection procedure. Hence, we believe 
that our work is relatively reliable. 

VI. CONCLUSIONS  

The study aims to develop a model to automatically detect 
public development projects. The main points of this study are 
summarized as follows. First, we can automatically detect 
public development projects with a precision of 0.827 and a 
recall of 0.943, which is better than existing sample selection 
methods. Second, by using 63.2% less human effort than 
manually confirming all samples, we can get better results with  
a precision of 0.926 and a recall of 0.959, which can meet strict 
sample requirements. 
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