
Automatic Detection of Public Development

Projects in Large Open Source Ecosystems: An

Exploratory Study on GitHub

Can Cheng, Bing Li, Zengyang Li*, Peng Liang

School of Computer Science

Wuhan University

Wuhan, China

Abstract— Hosting over 10 million of software projects, GitHub

is one of the most important data sources to study behavior of

developers and software projects. However, with the increase of

the size of open source datasets, the potential threats to mining

these datasets have also grown. As the dataset grows, it becomes

gradually unrealistic for human to confirm quality of all samples.

Some studies have investigated this problem and provided

solutions to avoid threats in sample selection, but some of these

solutions (e.g., finding development projects) require human

intervention. When the amount of data to be processed increases,

these semi-automatic solutions become less useful since the effort

in need for human intervention is far beyond affordable. To solve

this problem, we investigated the GHTorrent dataset and

proposed a method to detect public development projects. The

results show that our method can effectively improve the sample

selection process in two ways: (1) We provide a simple model to

automatically select samples (with 0.827 precision and 0.947

recall); (2) We also offer a complex model to help researchers

carefully screen samples (with 63.2% less effort than manually

confirming all samples, and can achieve 0.926 precision and 0.959

recall).

Keywords- open source ecosystem; project sample selection;

automated method; public development project;

I. INTRODUCTION

In recent years, the GitHub ecosystem has witnessed an
increasing popularity, and it has attracted more than one
hundred studies focused on it [1]. With more than 10 million of
software projects hosted on this ecosystem, it is hard to select
appropriate samples (i.e., projects) when conducting large scale
case studies. Early studies often use manual selection methods
to select samples. But as large datasets appear [2], researchers
often face a dilemma that they want to use a large dataset to
verify the generality of their results and at the same time they
cannot confirm whether these projects meet their research goals.
Thus, it is important to find a way to automate the sample
selection process.

Most research on GitHub needs to satisfy an implicit
hypothesis: their sampled projects under investigation are
public development projects, which means that these projects

*Corresponding author. E-mail: zengyangli@whu.edu.cn.
 DOI reference number: 10.18293/SEKE2018-085

should be open to public and the content of these projects
should be about development. For example, when studying
communities and teams of projects in GitHub, their samples
must be public development projects. Because many projects
hosted on GitHub are not for software development (e.g., blogs,
translation and student homework) and are private [3]. When
the sample size is small, it is doable to read the descriptions
and readme files manually to select appropriate samples.
However, as the dataset becomes larger, this manual method
becomes inefficient. Hence, in this study, our goal is to
automatically detect public development projects.

We developed a model in this work to automatically detect
public development projects based on the J48 decision tree
algorithm [4]. We verified our model on a dataset of 6,715
GitHub projects labeled by master and PhD students on
software engineering. Our model performs well in classifying
public development projects. The main contributions of this
work are:

 We identified a set of words and phrases (e.g., mirror,
personal) that can reflect projects’ properties.

 We fitted a simple decision tree that can classify
public development projects with a precision of 0.839
and a recall of 0.950, and this model can help
researchers effectively select appropriate samples.

 For those studies that have strict requirements on the
dataset, we provide a complex decision tree, with
63.2% less effort than manually confirming all
samples, and it can obtain a classification with a
precision of 0.926 and a recall of 0.959.

In the rest of this paper, related work is discussed in Section
II. Design of this study is described in Section III. The results
are elaborated in Section IV. Threats to validity of the results
are presented in Section V, and this work is concluded in
Section VI.

II. RELATED WORK

A. Problems in Studying Open Source Ecosystem

Nowadays, more and more research studied software
ecosystems [5] (most objects of software ecosystem research
are open source software (OSS) ecosystems), the potential
reasons for this phenomenon is that open source ecosystems

mailto:zengyangli@whu.edu.cn

provide publicly available historical datasets which researchers
can benefit from.

However, there are some problems when studying the
historical data of open source ecosystems. Howison and
Crowston found that projects hosted on SourceForge were
often abandoned and their information was often missing since
some project data are hosted outside SourceForge [6]. Weiss
argued that it is not necessary to consider all SourceForge data
because of the fickleness of some projects [7]. Rainer and Gale
conducted in-depth analysis on the quality of SourceForge data
[8]. They noted that only 1% of SourceForge projects were
actually active, and suggested that researchers should be
careful when using project samples. Kalliamvakou et al.
investigated on the defects of GitHub datasets [3, 9]. They
detected 13 perils and gave strategies to avoid these perils.

Although researchers have already been aware of the
problem, some solutions to the problem still remain in the stage
of manual verification. When facing a rapidly-increasing
amount of data on OSS projects, these methods are not
effective any more.

B. Studies on GitHub Datasets

As our dataset was retrieved from the GitHub ecosystem
[10], we first investigate the datasets which can be potentially
used to study GitHub. Cosentino et al. conducted a systematic
mapping study on GitHub [1] and concluded that currently
there are six ways to get GitHub data: (1) GHTorrent [2], (2)
GitHub Archive, (3) GitHub API, (4) others (e.g., BOA [11]),
(5) manual approach, and (6) a mixture of them. It is pointed
out by Kalliamvakou et al. [3] that GitHub Archive started data
collection in 2011, and is an incomplete mirror to GitHub.
GHTorrent, in comparison, has retrieved the complete history
of GitHub. Moreover, GHTorrent can be extended by GitHub
API which is most frequently used, hence we collected studies
based on GHTorrent.

We selected high quality articles (published in top
journals/conferences or highly cited) that used GHTorrent to
see how researchers chose samples to avoid potential threats.
The results are shown in TABLE I.

TABLE I. SAMPLE SELECTION METHODS IN LITERATURE
Method Literature

Remove projects that have poor perfomance in some
dimensions (e.g., pull request)

[12-18]

Select projects that are top in some dimensions (e.g.,

star number)

[19-21]

Only consider projects in several programming
languages (e.g., ruby)

[13, 14, 18]

Remove projects that are forks [17, 18]

Use a task-related strategy (e.g., select .rb files in ruby
projects)

[12, 13, 17,
18, 21]

Have no clear project selection strategy [22-25]

As shown in TABLE I, sample selection methods are not
unified in literature. Most of the literature aims to select
samples according to specific criteria (e.g., projects that are top
in number of stars), which reduces the diversity of samples. In
addition, these sample selection methods also do not
distinguish between development projects and the projects for
other purposes, like storage. Intuitively, development projects
and projects for other purposes are developed in different ways,

and this will negatively affect the validity of research results. In
this work, we tried to solve this problem.

III. STUDY DESIGN

As our goal is to automatically detect public development
projects, and standard datasets are required to validate our
proposed model. In this section, we discuss how to create a
standard dataset and how to automatically detect public
development projects.

A. Key Concepts

In this study, the key concept is public development project,
thus we first give its definition in two aspects:

Public project: Projects that are not built for private use.
Anyone has the opportunity to participate in these projects.
Development project: Projects that are set up for software
development. This type of tasks include repositories of
libraries, plugins, gems, frameworks, add-ons, and so on [3].

B. Research Questions

We formulate the following research questions (RQs) to
investigate the feasibility of automatic detection of public
development projects.

RQ1: Can public development projects be detected
automatically without collecting additional data?

Rationale: There are many datasets (e.g., GHTorrent) and
tools (e.g., GitHub API and web crawlers) that can be used to
collect OSS data. However, although some methods (e.g., web
crawlers) can get rich information, these methods are
inefficient due to access restrictions of GitHub to fixed IP
addresses. In order to increase the usability of our approach, we
decided to do this work with only readily available data. In this
study, we only use data from GHTorrent.

RQ2: How well can public development projects be
detected?

Rationale: Existing sample selection methods have either a
good recall rate (e.g., removing poor projects) or a good
precision rate (e.g., selecting top projects). These methods have
their own flaws: (1) inaccurate samples lead to inaccurate
conclusions; (2) missing samples result in poor generalizability
of the conclusions. In this study, we aim to automatically select
public development projects with both high precision and recall
rates.

C. Standard Dataset

Creating a standard dataset means that we need to know
which projects are public development projects. Since we
cannot obtain a publicly available dataset that contains such
information, we decided to manually create such a dataset (i.e.,
extending the GHTorrent dataset).

In order to make the dataset more convincing, the size of
our dataset should not be too small. To achieve this goal we
asked several master and PhD students on software engineering
to manually examine which projects are public development
projects. Due to the limited resource, we could not mobilize
many people to confirm all projects hosted on GitHub, which
contains more than 10 million projects. Therefore, with limited

samples that we can manually check, we should create a
strategy to ensure that our samples contain as many types of
projects as possible.

As the number of projects that we can manually check is
limited (around 10,000 projects according to our available
resource), we should select 10,000 samples from over 10
million projects. Then there are two possible strategies: (1)
Select all projects created over a period of time; (2) Randomly
select a specific number of projects. Considering that a random
selection is unstable (i.e., different selection results may
contain different types of projects), we decided to select all
projects created over a period of time in this study.

After selecting samples, we need participants to decide
whether a sample is a public development project. This process
may introduce personal bias. In order to alleviate this problem,
we first defined how to identify public software development
projects (see TABLE II). Then, we randomly selected 100
samples and strictly labeled these samples according to
identification criteria in TABLE II. We showed these labeled
samples to participants to give them a first impression to reduce
their personal bias.

TABLE II. IDENTIFICATION CRITERIA OF PUBLIC PROJECTS AND SOFTWARE

DEVELOPMENT PROJECTS

Category Identification

Public
project

If the project’s description and readme file do not state that
the project is a private project (i.e., this project is

established for the project owner’s own use), we classify

this project as a public project.

Software
development

project

We classify projects as software development projects if
their contents are files used to build tools of any sort. This

type of use includes repositories of libraries, plugins,
gems, frameworks, add-ons, and so on [3].

Lastly, we assign tasks to participants according to the
following procedure (see Fig. 1):

1) Divide the set of samples into several subsets.
2) For each sample subset, assign a participant to decide

whether each sample meets the criteria in TABLE II.
If participants are not sure which category a sample
belongs to, they can put such a sample in a collection
“undecided” first.

3) Collect all undecided samples, and convene all
participants to discuss how to categorize these samples.
For each sample, participants need to give their
classification and reasons. If a consensus cannot be
achieved, we vote to decide which category the
project should be assigned to .

4) Form the final dataset by combining clearly
categorized samples based on the discussion.

In conclusion, we first collected samples created over a
period of time in GitHub. Then we assigned these samples to
participants for manual classification. Finally, by summarizing
these results, we got the final standard dataset.

D. Automatic Detection of Public Development Projects

After getting the standard dataset, the next step is to
automatically classify these samples. In the GHTorrent dataset,
the project-related data include issue data, commit data,
committer data, and basic data of the project (owner,

description, star number, watcher number, language, and
readme file). Hence, we collected 1,000 samples (in the sample
set discussed above) and their project-related data to conduct a
pilot study that investigates the difference between public
development project samples and the remaining samples.

Figure 1. Procedure of classifing projects.

The main findings of this pilot study are twofold (1) most
projects (80% in our samples) clearly stated their purposes in
the project description. (2) We cannot simply exclude a project
that contains some special strings. For example, a project with
the word ‘test’ in its description does not necessarily mean that
this project is a private project, and this project may be a
‘testing tool’.

The inspiration from this pilot study is that the decision tree
model is suitable to address our RQs, because a combination of
keywords can avoid the problem in finding (2). For example, if
a description contains the keyword ‘test’, the project may be a
private project that aims to test how to use GitHub. But if the
description also contains the keyword ‘tool’, then this project
may be a testing tool, and should be classified into public
development projects.

In order to improve the keywords that are used in the
decision tree, we used the following procedure to gradually
improve the quality of matched strings (see Fig. 2):

(1) Generate an initial matching string from the survey
samples (1,000 samples discussed above) in the pilot
study. For example, we can match projects from other
ecosystem by matching string ‘%mirror%’.

(2) Test the results through the J48 decision tree
algorithm on the standard dataset.

(3) Count the number of misclassified samples; if the
number exceeds 15% of the standard dataset,
investigate these samples and update our strings, and
return to (2), else, output the final strings.

As shown in TABLE I, there are several methods to select
research samples. Removing projects that are forks is necessary
for all researchers who want to study base projects. This
method should be used by all studies that aim to investigate
base projects, and consequently it is not necessary to compare
our model with these methods. Some task-related strategies
were used for special research purposes and these methods are
not in the scope of our comparison. For example, selecting only

Java projects means that the purpose is to study the pattern that
exists merely in Java projects. As our objective is to study a
common model to select samples, we should not compare our
model with those task-related methods. Hence, our model
should be compared with the two methods: (1) removing poor
projects and (2) selecting top projects.

Figure 2 The process of updating string.

There are different dimensions to measure success. We
select four dimensions that are widely accepted and easy to
obtain [26]: committer numbers, community member numbers,
star numbers, and watcher numbers. Then we used different
thresholds to segment the dataset to select samples. Methods
are shown in Fig. 3.

Figure 3 Baseline method schematic diagram.

For each dimension, we have ten choices to select samples
(i.e., selecting top 1%,2%,4%,8%,15% projects or deleting
bottom 1%,2%,4%,8%,15% projects). Therefore, we should
compare 40 different strategies on selecting samples.

IV. STUDY RESULTS

A. Standard Dataset

Following the procedure in Section III, we first collected all
projects established in GitHub between 2012-1-1 and 2012-1-
15. We chose this period of time because GHTorrent started
data collection in 2012, and we need to collect about 10,000
projects (considering about the work load). Then, we deleted
projects that are forks (recommended by [17, 18]) and obtained
8,638 samples. In addition, we deleted projects that are not
described in English or have been removed. Some projects in
the GHTorrent dataset have been removed from GitHub by
their owners, therefore, we deleted such projects due to the lack
of sufficient development information to classify such projects.

Finally, we got 6,715 projects acting as the standard dataset in
this study.

Then, we labeled these samples by human judgment. These
samples were sent to four participants and we asked them to
determine whether these projects are public development
projects using our definitions in TABLE II. Doubtful projects
(625 projects) were discussed and classified through a meeting.
Finally, we obtained 6,715 labeled projects.

B. Sample Features

After several rounds of iterative process described in Fig. 2.
For each sample, we collected keywords existed in the
description and URL as features of the sample. Besides, we
also collected basic information of projects to help classify
samples. All features are shown in TABLE III.

TABLE III. SAMPLE FEATURES
Feature

Source

Feature Content Remarks

Description mirror, fork, moved, longer, test,

personal, website, framework, tool,

module, component, app, system,
dotfiles, collection, blog, plugin,

library, server, config, guide, set,

repository, deprecated, file, demo,
my, github, dot, simple, extension,

helper, template, http, https, source,

setting, list of, collection of,
example, vim, sample, university,

school, practice, backup, intro, first,

tutorial, course, copy, null,
localization, storage, theme,

resume, clone, translation,
documentation

If the description of

a project contains a

feature string, this
feature is set to 1.

If not, this feature

is set to 0. For
example, project i's

desscription

contains string
‘mirror’, then we

set feature “mirror”

of project i to 1.

Basic

information

star number, watcher number,

community member number,

committer number. have_language

This information is

available through

the GitHub API.

URL Dot, config, doc If URL of a project
contain this string,
this feature is set to
1. If not, this
feature is set to 0.

C. Models and Effects

We used the J48 algorithm in Weka1 tool to fit the model,
and debug parameter confidencefactor2 to control model size
and results. Then, we got two typical models: a simple model
to automatically classify projects and a complex model (in need
of human judgment) that can meet strict requirements of
studies.

1) Simple model

When confidencefactor is set to 0.05, we can get a simple
model. The decision tree model is shown in Fig. 4. This model
can achieve precision of 0.827 and recall of 0.947 in classifying
public development projects. Furthermore, this model is stable,
in the sense that precision and recall do not change drastically
(precision of 0.820 and recall of 0.941 relatively) when using
the 10-fold cross-validation.

2) Complex model

1 https://www.cs.waikato.ac.nz/ml/weka/
2 A parameter that affects the pruning process of a decision tree. The

smaller the parameter value, the smaller the model.

When confidencefactor is set to 0.5, we can get a complex
model. The decision tree model cannot be shown in this paper
due to the space limit, and this decision tree is provided online3.
The complex model can achieve a precision of 0.837 and a
recall of 0.956. The complex model has a distinct characteristic:
a large proportion of misclassified samples are located on two
leaf nodes. We showed these paths which are the classification
conditions to obtain projects in these leaf nodes in TABLE IV.

TABLE IV. THREE DICISION PATHS THAT CONTAIN THE VAST MAJORITY OF

MISCLASSIFIED SAMPLES

Decision Path (common part) Decision Path

(sub-part)

Correct/I

ncorrect

Simple = 0; tutorial = 0; dot = 1;
have_language = 1; mirror = 0; my = 0;

collectionof = 0; fork = 0; personal = 0;

url_dot = 0; demo = 0; example = 0; test
= 0; url_config = 0; config = 0; blog = 0;

plugin = 0; library = 0; framework = 0;

star <= 2; sample = 0; source = 0; set =
0; committer <= 2; app = 0

Committer <= 1;
Star > 0 ;

Classify_Result=

TRUE

1,467/355

Committer > 1;
community <= 2;

Classify_Result=

TRUE

538/113

If we can manually confirm the samples (2,473 out of 6,715,
36.8%) on these nodes, this model achieves a precision of
0.926 and a recall of 0.959. The result can satisfy most of strict
requirements of studies.

D. Comparison with Baseline Method

We compared our model with two base-line methods:
selecting top projects and deleting bottom projects. The results
are shown in TABLE V and TABLE VI, respectively.

3 https://github.com/sekematerial/S-E-K-E-supplementary-material

TABLE V. RESULTS OF SELECTING TOP PROJECTS
 top precision recall top precision recall

C
o
m

m
it

te
r

1% 0.761 0.011

S
ta

r

1% 0.865 0.013

2% 0.768 0.233 2% 0.880 0.026

4% 0.791 0.048 4% 0.865 0.052

8% 0.783 0.095 8% 0.834 0.101

15% 0.771 0.176 15% 0.824 0.188

C
o
m

m
u
n
it

y
 1% 0.805 0.012

W
at

ch
er

1% 0.895 0.013

2% 0.835 0.025 2% 0.895 0.027

4% 0.835 0.050 4% 0.869 0.052

8% 0.811 0.098 8% 0.843 0.102

15% 0.772 0.176 15% 0.810 0.184

TABLE VI. RESULTS OF DELETING BOTTOM PROJECTS
 bottom precision recall bottom precision recall

C
o
m

m
it

te
r

1% 0.656 0.988

S
ta

r

1% 0.655 0.986

2% 0.655 0.976 2% 0.652 0.973

4% 0.652 0.952 4% 0.648 0.947

8% 0.646 0.904 8% 0.642 0.898

15% 0.637 0.824 15% 0.627 0.811

C
o

m
m

u
n
it

y
 1% 0.655 0.987

W
at

ch
er

1% 0.654 0.986

2% 0.653 0.974 2% 0.652 0.972

4% 0.649 0.949 4% 0.648 0.947

8% 0.644 0.901 8% 0.640 0.897

15% 0.635 0.821 15% 0.629 0.814

We can see from the results that compared with our model
(0.827 precision and 0.943 recall), these two baseline methods
have obvious weaknesses. Selecting top method has a low
recall rate, and the precision of deleting bottom method is not
very high. Besides, the two methods do not have room for
debugging, which means that there are no direct methods to
improve the results of the two methods, while by using 63.2%
less human effort than manually confirming all samples, our
complex model can get a classification result with precision of
0.926 and recall of 0.959. This is an advantage of our approach.

E. Answers to Research Questions

We formulated two research questions and perform
experiments on the standard dataset with 6,715 labeled samples.
Our results can answer these research questions:

Answer to RQ1: Yes, we can automatically detect public
development projects with only descriptions and basic
properties of projects (e.g., committer number), and achieve
acceptable accuracy (0.827 precision and 0.943 recall).

Answer to RQ2: (1) Our model performs better than existing
methods. The precision and recall rates are acceptable to be
applied to the experiments on GitHub. (2) For studies that have
strict requirements on the dataset, our work can reduce 63.2%
human resources in selecting samples.

V. THREATS TO VALIDITY

In this section, we identified several threats to the validity
of the study results.

A. Construct Validity

In this study, we only measured whether a project is a
public development project. Thus, the construct validity is
whether projects classified as “TRUE” are real public
development projects. As the concept development project
and public project are clearly defined and we asked
participants if they had any doubt to classify a sample.
Doubtful projects were put into the “undecided” set to be

Figure 4. Simple decision tree model. Nodes with TRUE or FALSE is leaf

nodes and TRUE or FALSE is the corresponding judgment on these nodes.

further discussed by a group. Then, in the discussion session,
all undecided projects are discussed and decided. Hence, the
construct validity is limited.

B. External Validity

External validity in this study depends on whether the
obtained results can be generalized to the GitHub ecosystem, or
further other OSS ecosystems. The information used in this
study to classify a public development project only contains
description, URL, and basic properties of the project, and such
information also exists in other OSS ecosystems. We believe
that our model can be applied to other OSS ecosystems.

C. Reliability

 The GHTorrent dataset used in this study is provided by
[10], and it is a public and popular dataset for studing OSS
development behaviors. Hence, this study can be repliciated
using the dataset. At the same time, to mitigate personal bias,
we asked participants to avoid classifying samples that may
cause disagreements, and then classified these samples through
discussion in the data collection procedure. Hence, we believe
that our work is relatively reliable.

VI. CONCLUSIONS

The study aims to develop a model to automatically detect
public development projects. The main points of this study are
summarized as follows. First, we can automatically detect
public development projects with a precision of 0.827 and a
recall of 0.943, which is better than existing sample selection
methods. Second, by using 63.2% less human effort than
manually confirming all samples, we can get better results with
a precision of 0.926 and a recall of 0.959, which can meet strict
sample requirements.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China (Nos. 2017YFB1400602 and
2016YFB0800401), the National Natural Science Foundation
of China (Nos. 61572371, 61702377, and 61773175), the
Wuhan Yellow Crane Special Talents Program, the CPSF (No.
2015M582272), the Natural Science Foundation of Hubei
Province (No. 2016CFB158), and the Fundamental Research
Funds for the Central Universities (No. 2042016kf0033).

REFERENCES

[1] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, "A Systematic Mapping
Study of Software Development With GitHub," IEEE Access, vol. 5, pp.
7173-7192, 2017.

[2] G. Gousios and D. Spinellis, "GHTorrent: Github's data from a
firehose," in International Working Conference on Mining Software
Repositories, 2012, pp. 12-21.

[3] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, "An in-depth study of the promises and perils of mining
GitHub," Empirical Software Engineering, vol. 21, pp. 2035-2071, 2016.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, "The WEKA data mining software: an update," Acm Sigkdd
Explorations Newsletter, vol. 11, pp. 10-18, 2009.

[5] K. Manikas and K. M. Hansen, "Software ecosystems–a systematic
literature review," Journal of Systems and Software, vol. 86, pp. 1294-
1306, 2013.

[6] J. Howison and K. Crowston, "The perils and pitfalls of mining
SourceForge," in International Working Conference on Mining Software
Repositories, 2004, pp. 7-11.

[7] D. Weiss, "Quantitative analysis of open source projects on
sourceforge," in Conference on Open Source Software, 2005, pp. 100-
104.

[8] A. Rainer and S. Gale, "Evaluating the Quality and Quantity of Data on
Open Source Software Projects," in Conference on Open Source
Software, 2005, pp. 11-15.

[9] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, "The promises and perils of mining github," in International
Working Conference on Mining Software Repositories, 2014, pp. 92-
101.

[10] G. Gousios, "The GHTorent dataset and tool suite," in International
Working Conference on Mining Software Repositories, 2013, pp. 233-
236.

[11] T. N. Nguyen, "Boa: A language and infrastructure for analyzing ultra-
large-scale software repositories," In International Conference on
Software Engineering 2013.

[12] G. Gousios, M. Pinzger, and A. V. Deursen, "An exploratory study of
the pull-based software development model," in International
Conference on Software Engineering, 2014, pp. 345-355.

[13] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, "Quality and
productivity outcomes relating to continuous integration in GitHub," in
Joint Meeting on FSE/ESEC, 2015, pp. 805-816.

[14] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, "Wait for It:
Determinants of Pull Request Evaluation Latency on GitHub," in
International Working Conference on Mining Software Repositories,
2015, pp. 367-371.

[15] Y. Yu, H. Wang, G. Yin, and T. Wang, "Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?," Information and Software Technology, vol. 74, pp. 204-
218, 2016.

[16] G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey, "Do developers
discuss design?," in International Working Conference on Mining
Software Repositories, 2014, pp. 340-343.

[17] R. Kikas, M. Dumas, and D. Pfahl, "Using dynamic and contextual
features to predict issue lifetime in GitHub projects," in International
Working Conference on Mining Software Repositories, 2016.

[18] E. Constantinou and T. Mens, "Socio-technical evolution of the Ruby
ecosystem in GitHub," in IEEE International Conference on Software
Analysis, Evolution and Reengineering, 2017, pp. 34-44.

[19] R. Padhye, S. Mani, and V. S. Sinha, "A study of external community
contribution to open-source projects on GitHub," in Working
Conference on Mining Software Repositories, 2014, pp. 332-335.

[20] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, "Usage, costs,
and benefits of continuous integration in open-source projects," in
IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 426-437.

[21] J. Xavier, A. Macedo, and M. D. A. Maia, "Understanding the popularity
of reporters and assignees in the Github," in International Conference on
Software Engineering & Knowledge Engineering, 2014.

[22] K. Aggarwal, A. Hindle, and E. Stroulia, "Co-evolution of project
documentation and popularity within github," in Working Conference on
Mining Software Repositories, 2014, pp. 360-363.

[23] M. M. Rahman and C. K. Roy, "An Insight into the Pull Request of
GitHub," in Working Conference on Mining Software Repositories,
2014, pp. 364-367.

[24] K. Yamashita, S. Mcintosh, Y. Kamei, and N. Ubayashi, "Magnet or
sticky? an OSS project-by-project typology," 2014, pp. 344-347.

[25] J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi, "Exploring
the use of labels to categorize issues in Open-Source Software projects,"
in IEEE International Conference on Software Analysis, Evolution and
Reengineering, 2015, pp. 550-554.

[26] K. Crowston, J. Howison, and H. Annabi, "Information systems success
in free and open source software development: Theory and measures,"
Software Process: Improvement and Practice, vol. 11, pp. 123-148,
2006.

