
An Agent-based Software Framework for Machine

Learning Tuning

Jefry Sastre1, Marx Viana1, Carlos Lucena1
1Laboratory of Software Engineering (LES) - Pontifical Catholic University - PUC-Rio

Rio de Janeiro, RJ - Brazil

{jperez, mleles, lucena}@inf.puc-rio.br

Abstract— Nowadays, the challenge of knowledge discovery is

to mine massive amounts of data available online. The most

widely used approaches to tackle that challenge are based on

machine learning techniques. In spite of being very powerful,

those techniques require their parameters to be calibrated in

order to generate models with better quality. Such calibration

processes are time-consuming and rely on the skills of machine

learning experts. Within this context, this research presents a

framework based on software agents for automating the

calibration of machine learning models. This approach

integrates concepts from Agent Oriented Software Engineering

(AOSE) and Machine Learning (ML). As a proof of concept, we

first train a model for the IRIS dataset and then we show how

our approach improves the quality of new models generated by

our framework.

Keywords. Agent oriented Software Engineering (AOSE);

Machine Learning; Time-consuming

I. INTRODUCTION

The big data era is coming! According to [1], every minute
on the internet over 4 million queries are made on Google,
more than 200 million emails are sent and users share almost
2.5 million pieces of content on Facebook, among other actions.
The amount of data generated is growing exponentially [2] and
we need to be prepared to face all the challenges upfront. Peter
Norving at Google’s Zeitgeist Conference (2011) refers to this
matter, stating: “We don’t have better algorithms. We just have
more data”.

Indeed, the huge volume of data available is a massive
challenge to be accepted, but at the same time a vast
opportunity to learn from the data to generate more expert
artificial intelligence software and to enhance the knowledge
discovery processes (KDD). One of the most popular and widely
used approaches to generate knowledge is through the machine
learning techniques. In order to be better rewarded from machine
learning algorithms, we need to adjust their parameters. This
calibration process makes the resulting models more accurate
and, certainly, more profitable; but the drawback at stake is time.
The tuning process is generally done by hand, is highly time

consuming and strongly relies on the skills of machine learning
experts, turning it into an extenuated, endless process. We
foresee a chance to incorporate the Agent Oriented Software
Engineering (AOSE) [23] area to automate the process of tuning
the models prone to the generation of more accurate models and,
at the same time, reduce efforts dedicated to produce more
profitable models.

DOI reference number: 10.18293/SEKE2018-074

Agents are software components with autonomy,
reactiveness, proactiveness and social capabilities [3]. Agent
autonomy comes in handy when a system needs to make its own
decisions. The agents can also use their proactiveness to guide the
tuning process. As a result, it is possible to see how multiagent
systems can contribute to the automation of machine learning. To

solve this problem, we propose a framework based on software
agents to handle the tuning of the machine learning models.

The contributions are: (i) the framework will facilitate
building new models that might display good performance
based on the previously trained models. This includes a new set
of possibilities in the selection of the ways and strategies that will
guide the optimizations; (ii) the framework allows the creation of
an ensemble of models to predict and negotiate a consensus
among all the predictors in order to deliver a solution. In addition,
the results of the system do not depend on a single trained model,
but rather on a set of models that might be specialized at detecting
specific characteristics; (iii) the framework reduces the time spent
by the user to train a successful model with a multiagent system
to support the training process. The idea is to configure some of
the training and allow the framework to handle the training
results, the timing and the long wait for the end of the training and
the start of a new one without human interference, and (iv) to
validate a case scenario, IRIS. This test case is an exploratory
study taken as a proof of concept but instantiating the framework

and exploiting the agents to generate new models.

This paper is organized as follows. Section 2 gives an
overview of the main concepts. Section 3 shows the related
work. Section 4 presents the framework. Section 5 describes
an exploratory study. Finally, Section 6 offers the conclusion
and future work.

II. BACKGROUND

First, we will discuss the relation between multiagent systems

and machine learning. After, the KDD process.

A. Multiagent Systems and Machine Learning

A multiagent system can be defined as an environment
shared by autonomous entities that live, interact, receive
information and can act in the environment [5]. These agents are
abstractions with the following properties [6]: (i) autonomy — it
is the capability of taking their own actions within their
environment; (ii) reactivity — it is the capability of response to
the changes in the environment, which involves a notion of
perception of the environment; (iii) social ability — it is the
capability of interaction with other agents and possibly humans,

and (iv) proactive ability — it is the capability to take actions
towards the agent’s goals.

The exploratory study in Section 5 shows how agents’
properties are useful in the simulation of the training process
to optimize the parameters of a model based on the previously
trained models. It also evidences how the software agents are
able to propose new models that might be more accurate. The
idea of joining together these two areas seems very natural. In
artificial intelligence, we consider that software agents are
autonomous entities and are capable of making decisions without
human interference. On the other hand, learning is a crucial part
of the autonomy: the more skilled the agent, the better decisions
it will take [7]. Indeed, in most dynamic domains it is extremely
hard to predefine the agents’ actions, which mostly emerge with
new behaviors in order to adapt themselves to the current
situation.

There are several aspects to take into account when dealing
with machine learning in multiagent systems. First, the
coordination of agents — there must be some coordination
mechanism for agents to engage and interact in some way.
Second, dealing with cooperation can be a problem when agents
need to team up to achieve some goals. Third, the noisy
environment — specifically, how to deal with supervised learning
when the result can be biased by the noise. Finally, together with
the noisy environment comes the partial knowledge; to deal with
it, agents use strategies and metaheuristics to guide the search, as
in [8]. Some approaches use a machine learning model in the
agents’ activities cycle to take actions [5]. Other approaches use
a multiagent system — known as multiagent learning (MAL) —
to learn [9] [10]. In the latter approaches the integration of the
agents’ capabilities and the learning algorithms are combined to
solve a problem from another domain. Nevertheless, our
approach is a multiagent system applied to a machine learning
domain.

B. KDD Methodologies

The KDD process [11] [12] contains five stages: (i) Selection:
This stage is to precisely define a target dataset. It can be done by
directly selecting a dataset or a subset of features; (ii) Pre-
processing: This stage focuses on cleaning the data. It means that
the data most of the times is generated crowded with null values
and inconsistencies and needs to be cleaned in order to became
profitable; (iii) Transformation: This stage aims at applying some
transformation algorithms to generate the final dataset to explore.
It is common to use dimensionality reduction algorithms,
normalize the data, etc; (iv) Data Mining: This stage focuses on
the search of the required patterns in the data according to the

mining objectives, and (v) Interpretation/Evaluation: This stage
consists of the interpretation and evaluation of the extracted
patterns.

III. RELATED WORK

Many authors [13, 14, 15, 16, 17] broach the idea of creating
systems to support the data mining process. A common
discussion among all authors is about the target user and the
environment — some systems are designed to be used by domain
experts and others by data mining experts. Systems dedicated to
non-experts, normally focus on the analysis of the domain’s
specific features while other systems propose educational
environments for novices to learn and interact. On the other hand,
systems designed to be used by data mining experts focus on
performance, optimizations and coding capabilities. Within the
context of non-experts, [18] presents a simulation tool that aims
at creating an initial intuition on neural networks with a very

user-friendly interface and it has proven to be a great choice for
educational purposes. However, the datasets available for
analysis are fixed and focused only on gaining some
understanding of the learning process. There are some
commercial solutions, such as Google Prediction [19] and Azure
Machine Learning [20]. Both are on line services and provide

support to the data mining process by means of an intuitive
interface and a huge collection of ready to use algorithms.
However, Azure is not free and Google Prediction’s dataset
size is limited to 250 megabytes. WEKA [17], [21] is a system
that offers a collection of algorithms to explore real world
datasets. It has three well defined categories of algorithms: (i)
dataset processing, (ii) machine learning schemes, and (iii) output
processing. By combining all these tools together, WEKA has
proved essential to the analysis process and as an introductory
tool for educational environments. However, all these algorithms

are presented as black boxes and do not focus on distributed
ways to improve the data mining processes.

There are some solutions that target data mining experts
and focus on tools to improve the techniques. MLI [15]
presents an API to easily code machine learning algorithms,
using their proposed operations for data loading and linear
algebra to boost the performance; but it relies on the expertise of
the programmers rather than the use of previously tested and well-
established implementations of the algorithms. ML Base [14] is
another solution that provides a Domain Specific Language
(DSL) with high level abstractions to simplify the process. It
creates very elaborated plans — logical and physical — that come
with several optimizations to gain performance and accuracy. The
solution aims at solving a problem with a single model. However,

the composition of models that create ensembles has been proven
to outperform single models, and according to [16] many
algorithms and large datasets can be slow and limited. The
work [13] presents LARA, a DSL to reduce problems created
when the pre-processing and the algebra are done by using
different programming paradigms. It includes optimizations that
are normally loose in the mismatch of the paradigms. In addition,
LARA compiles to an intermediate representation to enable
optimizations and finally compiles with different languages. On
the other hand, it is embedded into Scala and it is focused on
coding. Predict-ML [16] is a software that uses big clinical data
to build predictive models automatically. It presents techniques
to automatically select algorithms, hyper parameters and
temporal aggregations of the clinical data, but the innovations
are focuses on the clinical area and the system is still in the
design phase.

All these solutions focus on reducing usage complexity,
tuning hyper parameters and gaining some understanding of the
data, but none of the previous approaches aims at creating a
shared environment to enhance the interaction between the users
and the system. By using the agent’s capabilities, users and agents

can both solve the data mining process, complementing each
other’s weaknesses.

A. Auto ML

Auto ML is a new area in computer science pursuing the
progressive automation of the machine learning process [22].
This area addresses all the aspects which are related to
machine learning automation, such as search and selection of
model, hyper parameters optimization, feature engineering,
meta learning and transfer learning, among others. Within this

context, a challenge to boost new solutions towards the Auto ML
goals was created. This challenge includes a novel design
element: code submission. The code runs in an open-source
platform ensuring there is no human intervention during testing
phases and that all proposed solutions run on hardware equality.
The challenge contains six phases in which the dataset difficulty
is progressively increased. After each phase, the competitors have
a Tweakathon time to improve their method with access to the
previously tested datasets. This challenge aims at advancing the
theoretical state of the art about model selection, implementing
useful automation solutions, a chance to compare results of the
automatic software and the Tweakathon phase and to
disseminate the top solutions and papers.

IV. PROPOSED SOLUTION

This section describes the main elements required to
understand the solution proposed in this paper. In addition, we
will provide an overview of the architecture and discuss the
different components, including the data model and the software
agents.

A. The Archicteture

The application is implemented using the software agents, as
illustrated in Fig. 1. It contains a module for: (i) data storage
(DB); (ii) data access (ORM); (iii) agents; (iv) optimizations
(OPT), and (iv) API layer — which will bring the functionalities
to the final user.

Figure 1. The proposed architecture.

The API is directly connected to the ORM. The ORM is in
charge of all the operations that require data access. It allows the
system to be independent from the physical data storage and it is
also the only way to interact with the data. The data refers to the
relevant concepts that appear in the domain and their
relationships. All of them are physically saved in the DB module.
Considering the user’s experience, the main flow of the
application only involves the API, the ORM and DB modules.
ORM provides stability and independence for the following
layers to use, allowing: (i) the change of the data provider without
changing the core of the project, and (ii) the design of the logic
without specific read, write operations that might bind the
solution to a particular data access. The software agents interact
in this flow via ORM module and expertly use the main
application flow the same way as normal users do. They retrieve,
run and propose new experiments in a collaborative environment.
By working together, the users (as domain experts) and the agents
(as machine learning experts) increase the number of
experiments, searching for a better model to identify the desired
patterns. The agents in charge of the optimizations trust most of

the algorithmic analyses in the fifth and last module dedicated to
the Optimizations. The Trainer Agent and the Optimizer Agent
are both hot spots [23]. Therefore, it is possible to add new
models into the system by creating subclasses and implementing
the particular details of the new model.

By using the API, the users can evaluate the results, that
is, they can check if the results meet the initial objective. This
phase is crucial, because the models selected to be deployed will
finally be in contact with non-controlled environments and
real-life mining examples. Nevertheless, if the users determine
that the models are not ready to be used, they can define a new
experiment or allow the agents to search for better models. At all
times, the users can monitor the results obtained and then,

analyze, retrieve and compare several of the model’s
parameters.

B. Data Model

Fig. 2 presents the data model of the concepts involved in
the problem. We used the entity-relationship model (ERM) [24].
The entities are: (i) Task: Aims at capturing the training process
of a successful model for a machine learning problem, i.e., it is a
collection of experiments; (ii) Experiment: Defines an
experiment, but this concept just contains the common aspects,
such as running_time, train_accuracy, etc; (iii) Decision Tree:
Defines a specific kind of experiment. In fact, it defines an
experiment to train a decision tree and contains aspects such as
max_depth; (iv) Support Vector Machine: Defines a support
vector machine type of experiment and contains attributes such
as kernel; (v) Neural Network: Defines a neural network type of
experiment and contains attributes such as the model that
specifies the structure of the network; (vi) Host: Defines a
computer in the network, and basically selects the computer in
which the model is going to be trained; (vii) Dataset: Represents
a generic data collection, used as the examples to train a model;
(viii) RData: Represents a particular type of dataset generated
from a script executed in R [25] and contains the environment
variables at the save point, and (ix) CSV: Represents a standard
data exchange format. Most of the time it is a collection of
comma separated fields.

Figure 2. The architecture proposed.

C. Agents Model

Figure 3 shows and details the agent-based model
proposed. In all the cases, the agent’s cyclic behavior was the
best option for these software agents – for instance, in the
exploratory study presented in Section 5 the agents have a
cyclic behavior with 10 seconds between iterations. The
Trainer Agent is responsible for training an experiment. In

order to do so, it has to accomplish several subtasks. First of
all, it needs to understand the type of experiment that the agent
is going to execute. For each type of experiment, there are
different parameters used to set up the training process. Based
on these parameters the agent determines the type of dataset
that is going to be used and it loads the data. At this point, the
strategy pattern [26] was used to define which algorithm
should be chosen to train and validate the results. After the
validation, the agent has to collect all the variables being
measured and write the experiment back. Fig. 4 describes this
process.

Figure 3. Agents Model.

A specific trainer was created to override the specificities of
each model and to set up some initialization variables, such as the
type of experiment. To run an experiment, both the experiment
and the datasets to be used in the training and testing must be
previously defined. This process only runs the experiments and
collects the results. On the other hand, due to the characteristics
of the agent’s cyclic behavior, if there are no experiments
programed to run, the agent waits a few seconds and asks again.
Therefore, once a new experiment is added to the database, it will
be automatically detected and executed at the right time. Another
important detail is that the experiments are executed as if they
were on a queue — one at a time in each host. But it is possible
to program a set of experiments that the agents will automatically
run until all the experiments have been executed.

Figure 4. Trainer Agent Activity Diagram.

The Optimizer Agent is responsible for generating new
models that might have good performance and accuracy based on
the previously executed experiments of the same type.

Figure 5. Optimizer Agent Activity Diagram.

To complete this task, the agent starts by selecting a dataset,
because the performance and the accuracy are directly related
with the dataset used in the training process. Once the dataset is
selected the agent retrieves the best experiments of a given type
and, based on the parameters, it generates and saves a new model.
Notice here that for each type of experiment the Optimizer Agent
was extended in order to create specific agents which selected the
correct algorithm in each case. Fig. 5 describes the workflow of
the Optimizer Agent. Observe that the Optimizer Agent needs a
different strategy to create the new model, depending on the type
of the experiment.

D. Optimizers

Each machine learning strategy comes with a lot of tricks and
techniques to improve the performance of the model. Some of the
techniques can include mathematical operations, such as
transpose, reverse, etc., that can increase the dataset and have a
direct impact on the performance as a result. Other techniques aim
at increasing the number of features in the dataset to facilitate the
training process and obtain a better model. Some examples
include multiplication of numeric fields or the use of
trigonometrical functions. In addition, there is a group of
techniques that filter the outliers to obtain a more general model.
All these approaches work directly on the dataset, but our focus
here is to work with the existing datasets and calibrate the model’s
parameters. Each one of the techniques has its own unique
parameters, so, it was necessary to create an optimizer for each
one. Namely: SVM Optmizer, DT Optimizer and NN Optimizer.
The SVM Optimizer takes advantage of the kernel trick [27] and
creates a new model based only on the best SVM experiment
executed. If the best model memorizes the dataset, it then
decreases the kernel to compact the data. On the other hand, if the
model’s accuracy is low, then the agent increases the kernel to
separate the data by adding new dimensions. The DT Optimizer
uses a similar criterion to increase or decrease the max_depth of
the decision tree while the NN Optimizer creates a new model by
randomly combining the two best experiments executed.

E. Details of the API

Finally, we created an Application Programming Interface
(API) that contains the new objects and functionalities required
to set up an environment: create, train and validate the
experiments; test the results, and use the best models for
prediction.

Figure 6. API Class Diagram.

Fig. 6 shows the API class diagram. The Task class defines a
collection of experiments of the same problem and refers to the
same machine learning problem. Every machine learning
problem requires the analysis of data. The Dataset class
represents a collection of data to be used and contains features
such as the path in which it is stored. The data can be stored in
different file formats. For this reason, each Dataset contains a
DatasetType class to specify its type, such as RData, CSV, etc.
An Experiment class represents the training process of a model
and contains general variables being measured, such as time. It
also contains more specific features, depending on the particular
model being trained. In order to specify the types of experiments
allowed to run within the platform, all the Experiments contain

an ExperimentType class. The Predictor class defines an object to
evaluate a model and the Committee class defines a collection of
Predictors and contains a parameter to set the number of
members. First, to use the API, we need to select a Task to work
with and after that the experiments can be created, linked to the
selected task. Each Experiment has a type defined in
ExperimentType and can have training, validation and testing
datasets associated to it, respectively. Each Dataset has a type
defined in DatasetType. Finally, to predict, based on previously
trained models, there are two possible classes: (i) Predictor, which
selects the best trained model based on accuracy and uses it to
predict, and (ii) Committee, which has a collection of predictors
and returns a consensus among them.

V. USER SCENARIO

This section details an exploratory study taken as a proof of
concept for the framework. The experiment is divided into two
stages. First, we set up the environment and create the proper
conditions to run the experiment — in this case, it was necessary
to launch the agents’ platform, to configure the database access
and to establish the initial experiment. Second, the agents start
their work by training the first model and writing the results. The
variables that were measured were the training and validation
accuracy, as well as the start and end time. At this point, the
Optimizer Agent analyzes the results of the finished experiments
and proposes a new experiment using the same dataset.

A. The Dataset

The data used in this example was the IRIS dataset found in
the UCI Machine Learning Repository [28]. It contains 150
instances of three classes of iris plants. The predictable attribute
is the type of plant, based on four other attributes: sepal length,
sepal width, petal length and petal width — all the measurements
are in centimeters (cm). This dataset has no missing values and
two of the three types of iris are not linearly separable. Table 1

shows a brief summary of the data.

Table 1. Summary of the IRIS Dataset

IRIS
Sepal

Length

Sepal

Width

Petal

Length

Petal

Width

Min 4.3 2 1 0.1

Median 5.8 3 4.35 1.3

Mean 5.843 3.057 3.758 1.199

Max 7.9 4.4 6.9 2.5

B. Results

The framework was instantiated as shown in Figure 7.

The TrainingAgent and the OptimizationAgent were extended

into the SVMTrainingAgent and the SVMOptimizationAgent

respectively in order to implement specificities about how to

train and optimize an SVM model [29]. In this case, for the

optimization agent, we use a grid search approach allowing

the parameter C the values 1.0, 1.5, and 2.0 and for the Degree

the values 1, 2 and 3. The class SVMExperiment inherits for

the SpecificExperiment hotspot and adds the parameters

needed to train an SVM experiment. Finally, the FileData

class and the CSVData are classes created to store a reference

to the dataset. The starting point is an instance of the

SVMExperiment class and we choose the following

parameters, as shown in Table 2 (first line).

Figure 7 Framework instance for the Iris experiment

Table 2. Parameters of the executed experiments

Id Kernel C Degree Coef0 Gamma Probability Shrinking
Max

Iterations

Decision

Function

1 poly 1 1 0 Auto 0 1 ‑1 odr

2 poly 1.5 1 0 Auto 0 1 ‑1 odr

3 poly 1.5 2 0 Auto 0 1 ‑1 odr

Table 3. Measures of the executed experiments

Id Started Ended Time (in seconds) Validation Accuracy

1 2017‑02‑27 19:09:43 2017‑02‑27 19:09:43 0.006163 0.96

2 2017‑02‑27 19:09:53 2017‑02‑27 19:09:53 0.004834 0.96

3 2017‑02‑27 19:10:03 2017‑02‑27 19:10:03 0.005739 0.97

The training agents were essentially training the new models
proposed, while the optimizer agents were trying to tune the
parameters of the previously executed models and proposing new

ones that might have a good accuracy. Table 2 in rows 2 and 3
shows the experiments proposed by the Optimizer Agent and
Table 3 shows the variables measured. The first row in table 2

shows the beginning of the second stage where only the first
model had been proposed. Then, the Trainer Agent trained the
model, resulting in an accuracy of 0.96 (first row in Table 3). The
Optimizer Agent performed a query to retrieve the trained models
and based on the best one, it modified the allowed error
(parameter C in Table 2) from 1.0 to 1.5 and proposed the second
model. The Trainer Agent realized that there was a model to train
and then trained it, resulting in an accuracy of 0.96, as well. Once
again, the Optimizer Agent modified the degree of the function to
propose the third model (parameter degree in Table 2) based on
the first and the second models. As a result, the Trainer Agent
trained the new model and obtained a better accuracy of 0.97.

To obtain new models the Optimizer Agent balanced the
allowed error and the degree of the polynomial function. It is
possible to see in Table 3 that the last trained model performed
better in the validation. Thus, in the next KDD phase the
prediction algorithm will use the best models, based on their
accuracy.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a software framework based on
multiagent systems to automate the process of calibrating
machine learning models and reduce the amount of human time
dedicated to the parameters adjustment. By means of this
framework, the agents will tune the parameters of the models
while the data mining experts are focused on providing the
framework with potential parameter insights. Together, the
agents and the data mining experts can complement each other’s’
capabilities in a shared software environment. We conclude that
it is possible to take advantage of the characteristics of the
software agents to train machine learning models, and also to
make decisions about new models that might have good accuracy.
The multiagent system inside the proposed solution is the core of
the application because it requires autonomy to make decisions,
proactivity to create new experiments, and reactivity to deal with
overfitting and low accuracy. By automating this process, the
users only need to set up the initial battery of experiments, which
reduces the time dedicated to train a successful model.

For future work, we have two goals. First, Selection of the
first model: The framework needs initial models as inputs to
begin the calibration processes, but it would be interesting if the
system was capable of auto-generate starting models. Second,
Features Selection: Another interesting problem is how to
improve the performance of the training by first selecting the
most important attributes. This could significantly impact the
time spent to train a model. Other possible approaches to
improve performance include the use of heuristics such as
Principal Features Analysis (PFA) [30] or methods, such as
Sequential Forward Selection (SFS) [31] and Sequential
Backward Selection (SBS) [31].

REFERENCES

[1] J. James, Data never sleeps 2.0. 2014.

[2] P. Ranganathan, The data explosion. IEEE Computer Society Press,
2011.

[3] C. Lucena and I. Nunes, “Contributions to the emergence and
consolidation of Agent-oriented Software Engineering,” J. Syst.
Softw., vol. 86, no. 4, pp. 890–904, Apr. 2013.

[4] M. E. Markiewicz and C. J. de Lucena, “Object oriented framework
development,” Crossroads, vol. 7, no. 4, pp. 3–9, 2001.

[5] K. M. Khalil, M. Abdel-Aziz, T. T. Nazmy, and A.-B. M. Salem,
“MLIMAS: A Framework for Machine Learning in Interactive Multi-
agent Systems,” Procedia Comput. Sci., vol. 6, Jan. 2015.

[6] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley
& Sons, 2009.

[7] E. Alonso, M. D’inverno, D. Kudenko, M. Luck, and J. Noble,
“Learning in multi-agent systems,” Knowl. Eng. Rev., vol. 16, no. 3,
pp. 277–284, 2001.

[8] H. E. Nouri, O. B. Driss, and K. Ghédira, “Hybrid Metaheuristics
within a Holonic Multiagent Model for the Flexible Job Shop
Problem,” Procedia Comput. Sci., vol. 60, pp. 83–92, Jan. 2015.

[9] Y. Shoham, R. Powers, and T. Grenager, “If multi-agent learning is the
answer, what is the question?,” Artif. Intell., vol. 171, no. 7, pp. 365–
377, May 2007.

[10] P. Stone, “Multiagent learning is not the answer. It is the question,”
Artif. Intell., vol. 171, no. 7, pp. 402–405, May 2007.

[11] A. I. R. L. Azevedo and M. F. Santos, “Kdd, semma crisp-dm: a parallel
overviee,” IADS-DM, 2008.

[12] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to
Knowledge Discovery in Databases,” AI Mag., vol. 17, Mar. 1996.

[13] A. Kunft, A. Alexandrov, A. Katsifodimos, and V. Markl, “Bridging
the gap: towards optimization across linear and relational algebra,”
2016, pp. 1–4.

[14] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “MLbase: A Distributed Machine-learning System.,” in
CIDR, 2013, vol. 1, pp. 2–1.

[15] E. R. Sparks et al., “MLI: An API for distributed machine learning,” in
Data Mining (ICDM), IEEE 13th International Conference on, 2013..

[16] G. Luo, “PredicT-ML: a tool for automating machine learning model
building with big clinical data,” Health Inf. Sci. Syst., Dec. 2016.

[17] S. R. Garner and others, “Weka: The waikato environment for
knowledge analysis,” in Proceedings of the New Zealand computer
science research students conference, 1995, pp. 57–64.

[18] M. Abadi et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” ArXiv Prepr., 2016.

[19] T. Green and others, “Prediction API: Every app a smart app,” Google
Dev. Blog Apr, vol. 21, 2011.

[20] J. Barnes, “Azure machine learning: Microsoft azure essentials,” 2015.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM
SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[22] I. Guyon et al., “Design of the 2015 ChaLearn AutoML challenge,” in
International Joint Conference on Neural Networks (IJCNN), 2015.

[23] M. Wooldridge and N. R. Jennings, “Pitfalls of Agent-oriented
Development,” in Proceedings of the Second International Conference
on Autonomous Agents, New York, NY, USA, 1998, pp. 385–391.

[24] P. P.-S. Chen, “The Entity-relationship Model—Toward a Unified
View of Data,” ACM Trans Database Syst, vol. 1, pp. 9–36, Mar. 1976.

[25] R. Gentleman, R. Ihaka, D. Bates, and others, “The R project for
statistical computing,” R Home Web Site Httpwww R-Proj. Org, 1997.

[26] “Design Patterns by Gamma: Pearson India 9789332555402 Paperback
- A - Z Books.” [Online]. Available:
https://www.abebooks.com/Design-Patterns-Gamma-Pearson-
India/17320714110/bd. [Accessed: 12-Apr-2017].

[27] B. Scholkopf, “The kernel trick for distances,” Adv. Neural Inf.
Process. Syst., pp. 301–307, 2001.

[28] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[29] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[30] Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, “Feature Selection Using
Principal Feature Analysis,” in Proceedings of the 15th ACM
International Conference on Multimedia, New York, 2007.

[31] J. Doak, “CSE-92-18 - An Evaluation of Feature Selection Methods
and Their Application to Computer Security,” UC Davis Dept Comput.
Sci. Tech Rep., Jan. 1992.

	I. Introduction
	II. Background
	A. Multiagent Systems and Machine Learning
	B. KDD Methodologies

	III. Related Work
	A. Auto ML

	IV. Proposed Solution
	A. The Archicteture
	B. Data Model
	C. Agents Model
	D. Optimizers
	E. Details of the API

	V. User Scenario
	A. The Dataset
	B. Results

	VI. Conclusion and Future Work
	References

