

A Systematic Approach for Developing Cyber Physical Systems

Xudong He
Florida International University, Miami, USA

Zhijiang Dong
Middle Tennessee State University, Murfreesboro, USA

Yujian Fu
Alabama A & M University, Huntsville, USA

Abstract— Cyber physical systems (CPSs) are pervasive in our
daily life from mobile phones to auto driving cars. CPSs are
inherently complex due to their sophisticated behaviors and thus
difficult to build. In this paper, we propose a systematic approach
to develop CPSs with quality assurance throughout the
development process. A CPS is abstracted and partitioned into a
set of independent executing agents, where each agent is further
refined into a set of behaviors. Each behavior is modeled with a
high level Petri net, called behavior net. The overall behavior of an
agent is modeled by an agent through composing individual
behavior nets. Finally, the overall system behavior is modeled by a
system net through integrating individual agent nets
incrementally. Simulation and model checking can be performed
on individual behavior nets, agent nets, and the final system net.
The resulting system net is systematically mapped to behavior
programs in Java, which are enhanced and extended with domain
specific functionality. A set of property patterns based on behavior
program is developed, which are used to generate runtime
monitors to check behavior program executions. We demonstrate
our approach using a multi-car parking system.

Keywords - cyber physical systems; behavior programming; high
level Petri nets; simulation; model checking, runtime verification

I. INTRODUCTION
Cyber physical systems (CPSs) are pervasive in our daily

life and need to be extremely reliable since they are often safety
critical. CPSs consisting of computation and physical processes
are inherently complex and demonstrate many sophisticated
behaviors including synchronous, asynchronous, distributed,
real-time, discrete, and continuous [1]. In [2], several major
design challenges of CPSs were discussed, including
concurrency and timing, which are intrinsic and critical in CPSs
but are not adequately addressed in current computing
abstractions. While fundamental new technologies are needed
to develop CPSs, improving and integrating existing
technologies including software engineering processes, design
patterns, formal verification, and simulation provides a
potential solution [2].

In [3], we provided a concrete framework to realize the ideas
in [2], where a model driven approach from high level Petri nets
to Java programs was presented. Essential CPS design issues
including concurrency and timing are modeled using high level
Petri nets and analyzed through model checking and simulation.
Assumed environment constraints from hardware devices are
checked during implementation and runtime verification. The
overall framework is shown in Fig. 1. An agent oriented
modeling approach is used to capture CPSs at a high abstraction
level where meaningful computational components and
physical processes with independent behaviors are viewed as
agents and modeled using individual high level Petri nets. An
aspect oriented approach is used to incrementally integrate

system components represented using individual agent nets into
a complete system net. Agent nets and the system nets are

analyzed through simulation as well as model checking. The
above modeling and analysis techniques are supported by tool
chain PIPE+ [4] and SPIN [5]. A systematic translation
approach has been developed, where a set of translation rules is
used to map the individual agent nets into corresponding Java
threads to form the general program structure. A complete Java
program is obtained by combining the translated general
program structure with domain specific program refinements.
The additional refinements are necessary to realize CPSs,
especially domain dependent physical devices. Bounded
symbolic model checking and runtime-time verification are
performed to ensure model level properties and additional
properties are not violated in the implementation. The model
level analysis and implementation level analysis are
complementary. At model level, both safety and liveness
properties can be checked to detect potential errors in the
requirements with environmental assumptions such as the
hardware devices working properly. At the implementation
level, safety properties can be checked through bounded
symbolic model checking and monitoring the actual behavior of
hardware devices.

In this paper, we enhance the above framework with an
additional behavior-oriented modeling approach that
complements the agent-oriented modeling approach. While the
agent-oriented approach provides a higher level system
decomposition driven by concurrency, in which physical
devices and computational processes are abstracted and
modeled as agents; the behavior-oriented approach offers a
finer system decomposition driven by unique non-deterministic
behaviors within each physical device or computation process.
Behaviors provide a more intuitive, natural, and concrete way
to incrementally understand and develop CPSs. This systematic
and multi-level incremental approach helps us to better
understand and develop CPSs. A new set of runtime monitoring
property patterns based on behavior programming are
developed to ensure the dependability of the implementation.

hex
Typewritten Text
DOI reference number: 10.18293/SEKE2018-004

Our new contributions include: (1) a systematic approach for
modeling and analyzing CPSs, (2) a new behavior-oriented
approach to incrementally model and analyze CPSs, (3) a
pattern based translation method for generating behavior
programs from behavior nets, and (4) a set of behavior based
runtime monitoring property patterns. Our systematic approach
is demonstrated through a multi robotic car parking system.

II. CYBER PHYSICAL SYSTEM MODELING
To effectively model and analyze the complex behaviors of

CPSs, many modeling techniques have been proposed and
adapted in recent years including formal methods such as
hybrid automata [6] and special graphical modeling languages
such as actor-oriented MoC [7]. High level Petri nets [8] are
well suited to model the complex behaviors of CPSs, especially
combined with well-established software engineering
approaches such as agent-oriented approach and aspect-
oriented approach [3]. However most existing techniques only
provide very general guidelines and lack fine grained rules.
Behavior based modeling [9] provides an intuitive, natural, and
concrete way to incrementally understand and develop CPSs. In
the following sections, we describe a systematic approach in
modeling and analyzing CPSs, which consists of three levels –
a behavior-oriented approach for modeling the internal
behaviors of an agent; an agent-oriented approach to model the
components of a system, and an aspect-oriented approach to
synthesize the whole system. We demonstrate our approach
using a multi robotic car parking system.

A. Modeling Individual Behaviors
In behavior-oriented modeling, the unique behaviors of a

physical device (sensors and actuators) or a computation
process are identified and abstracted from the requirement
specifications and are modeled with individual high level Petri
nets called behavior nets that interact with external
environments. Specifically, we provide the following general
and simple design pattern of a behavior net shown in Fig. 2:

Where place Behavior models a behavior based on a

uniquely identified behavior, which can be further refined by
replacing the place with a more detailed net if needed. The type
of place is a power set of a Cartesian product to capture multiple
instances of behaviors of different objects, where each object
has a unique identifier and other fields to capture important
information. Place Environment models the external
environment that can be detected by an object. Transition
ControlB defines a condition to start the behavior and transition
SuppressB models the end of the behavior. An additional
incoming arc to transition ControlB will be created to indicate
the selection of the behavior when the behavior net is integrated
into an agent net and an outgoing arc from transition SuppressB
will be created to integrate the behavior net.

We demonstrate our behavior-oriented approach in
modeling a multi robotic car parking system. Each robotic car
has two motors, two color sensors, and two IR (infrared
obstacle) sensors. The color sensors are amounted on both front
sides of a robotic car and are used to detect driving lane, two
garage entrances, one exit, and four parking lots (all marked
with unique colors). The IR sensors are amounted at the left
front side (for left turning only) and the front of a robotic car to
detect obstacle such as another robotic car or garage wall. Each
robotic car has the following unique scenarios: (1) detecting an
entrance using color sensors, (2) detecting the exit using color
sensors, (3) searching for lane using color sensors, (4) detecting
the lane using color sensors, (5) detecting obstacles for collision
avoidance using IR sensors, (6) detecting a vacant parking lot
using color sensors and IR sensors, (7) entering a parking lot
using IR sensors, (8) leaving a parking lot using IR sensors, and
(9) exiting the garage. Some of the above scenarios can be
combined to form a more complex scenario such as searching
and detecting lane, and some scenario such as detecting an
entrance can be split into two specific scenarios – detecting
entrance one and detecting entrance two. A screenshot of the
behavior net search for lane (3) created in PIPE+ is shown in
Fig.3. Since there is only one lane, place Lane holds only one
token modeling the lane. Place SearchLane is a power set of
tokens that model individual cars (4 cars in this system). Each
car has a structured type of 3 string fields, the 1st field denotes
car identifier, the 2nd field models a communication socket (not
used in the model), and the 3rd field records a car status that is
used to keep track behavior history and to select follower up
behaviors.

B. Modeling Individual Components

A high level Petri net can be used to capture the structure
and the behavior of a physical or computation process. Petri nets
naturally support synchronous, asynchronous, and distributed
control and data flows. High level Petri nets are capable to
model virtual time through time stamps associated with tokens
and transition constraints representing delays and durations.
Continuous behaviors of physical devices can be abstracted and
discretized using real typed places and the associated
transitions, and can be further refined during implementation.

Each type of physical devices (sensors and actuators) or
computation processes is modeled with an agent net that has its
own independent reactive and/or proactive behavior interacting
with the external environment. Based on the behavior-oriented
modeling, an agent net is obtained by integrating a set of

remarkably simple behavior nets through a place Arbitrator,
which is used to control the selection of individual behaviors
within an agent. The complete agent net of a single car after
integrating all 12 behavior nets (the four parking lot behaviors
are separately modeled) is shown in Fig. 4, which contains 22
places, 26 transitions, and over 60 arcs (many are bidirectional).

C. Modeling the Whole System

The overall system net is obtained by integrating individual
agent nets that shows the interaction, communication, and
cooperation among different agents. Synchronized activities are
modeled through new joint transitions with modified
constraints, and asynchronous activities are modeled through
connecting a place in one agent net to a transition in another
agent net. An aspect oriented approach [8] is used to build a
complex model incrementally through weaving individual Petri
nets representing agents capturing physical devices and
computation processes. This aspect oriented approach further
supports system adaptation and evolution, and facilitates
compositional analysis. In this multi robotic car system, all the
cars have the same behaviors and they do not communicate with
each other. Thus the overall system net has the same structure
as that of a single car. However multiple tokens with unique
identifiers representing different cars are added to the place
Arbitrator as part of initial marking.

III. CYBER PHYSICAL SYSTEM ANALYSIS

A CPS system is often a hybrid system consisting of both
continuous hardware devices and discrete computation
processes. In most cases, the only available technique for
continuous components is simulation. High level Petri nets are
executable and thus support simulation of hybrid system
models. Formal verification techniques based on symbolic
reachability analysis is available for sub classes of hybrid
systems such as those can be modeled using linear hybrid
automata [1] where the state transition rates are constants with
restricted checking and updating actions. Our tool PIPE+
supports simple reachability analysis and model checking using

SPIN in addition to simulation.

Model checking performs exhaustive search on finite state
systems and thus is not directly applicable to continuous
systems. However we may be able to model check the bounds
(called barrier certificates) of some continuous state variables.
PIPE+ has a translator that automatically converts a high level
Petri net model to a Promela program in SPIN. During the
translation, each place is translated into a channel with the
place’s type. This kind of conversion may not always work due
to the loss of precision since Promela only supports integer.
There are currently two translation schemes:
(1) Translating each transition as an inline function consisting a
part realizing the precondition – checking the enabling
condition, and another part capturing the post-condition –
transition firing. Each transition is non-deterministically
selected in a loop within a single Promela process;
(2) Translating each transition as a Promela process. Each
translation schema has its own advantages and disadvantages.
The first one seems more efficient in checking safety properties,
while the second one can be used to check liveness property
using strong fairness assumption.

The translated Promela model after adding linear time
temporal logic specifying properties is model checked using
SPIN. Safety and liveness properties are expressed in the
general form []placename(x) and <> placename(x) respectively,
where [] and <> are the temporal operators always and
sometimes in SPIN and x can be a variable or a constant (a
specific token). More complex formulas are defined using
logical connectives.

With regard to behavioral programming, we can define
many generic safety and liveness property patterns using linear
time temporal logic, and then instantiate the patterns using
concrete behaviors and check them using SPIN model checker.
Some generic property patterns include (where B, B1, B2
denote place names representing different behaviors, x and y
denote symbolic tokens):
(1) <>B(x) (G1)
This liveness property states that a behavior B will eventually
active;
(2) [](B(x) → <>!B(x)) (G2)
This liveness property states that an active behavior B will
eventually terminate;
(3) []!(B1(x) ∧ B2(y)) (G3)
This safety property states that two behaviors B1 and B2 cannot
be active at the same time due to the sequential nature of
behavioral programming;
(4) [](B1(x) → <> B2(y)) (G4)
This liveness property states that a behavior B1 leads to
behavior B2.
More sophisticated properties can be defined such as there is
one particular behavior in between two other behaviors.

Here we provide our model checking results of the concrete
properties for in the car parking system.
<>SearchingLane(v1,v2,found) (C1)
 [](SearchingLane(v1,v2,found) →

<>!SearchingLane(v1,v2,found)) (C2)
 []!(DetectingEntO(v1,v2,ent1)∧SearchingLane(v1,v2,found))

 (C3)
 [](DetectingEntO(v1,v2,ent1) →

<> SearchingLane(v1,v2,found)) (C4)
Since the concrete values of symbolic variables v1 and v2

are not used in checking the above properties, we use bit type
to abstract their types to reduce the number of states and
instantiate their values according to the initial marking.
Furthermore, these properties are about the same car, we can
restrict our initial marking to one car in place Arbitrator. Also
checking liveness property (C1) can be done more effectively
in SPIN by finding a counter example of its negation:
[] !SearchingLane(v1,v2,found) (C1*)

With the above abstraction and reduction to the resulting
Promela model and using the –DBITSTATE storage option in
SPIN, we have checked all of the above properties as shown in
Table II.

Property Satisfied Depth Stored States Time
C1* No 128 201 5(ms)
C2 Yes 763 554077 895(ms)
C3 Yes 611 550966 923(ms)
C4 Yes 140 540451 897(ms)

IV. MODEL REALIZATION
Design models help us to better understand system features

including functionality, structure, and behavior as well as to
detect and prevent early system development errors. To
leverage the design models to increase productivity and
improve code quality, model driven development based on
UML emerged in the last decade [10], in which UML based
models are translated into programs of object oriented
programming languages. However since there are multiple
UML notations such as class diagram, state machine diagram,
and sequence diagram for representing different aspects of a
system, it is not easy to obtain a coherent set of code. In [3], we
presented a model driven approach to realize our high level
Petri net models, which provided a systematic way of writing
Java programs and establishes the traceability between the
models and resulting programs. Our model driven approach
consists of the general code structure and domain specific
refinement. The general code structure is systematically
generated from the agent models and the overall system model.
However the domain specific refinement requires manual
process in identifying and defining additional features of the
system, especially with regard to the physical devices. Different
from [3] where each agent net was mapped to a thread in Java,
this paper maps each behavior net into a behavior program [11]
that includes 3 template methods: boolean takeControl(),void
action(), and void suppress().

The following translation rules are used to generate the
general code structure from high level Petri net models:

(1) A behavior program is generated for each behavior net, in
which 3 methods are created corresponding to transitions
controlB and suppressB, and place Behavior shown in Fig.3.
The body of each method is empty and requires manual
refinements. The constraint of the transition is attached as
comments for ensuring the correct implementation;

(2) A behavior object class is created, which is to be manually

refined according to the application domain;

(3) The main program is created based on the initial system net
with a single place Arbitrator, and includes the definition of an
arbitrator object and the instantiations of all the behaviors. In a
behavior model, the control flows between behaviors are
enforced through a data field in a behavior object. In behavior
programming, the control flows are based on the priorities of
the behaviors according to their appearances in the behavior
array from low to high. As a result, manual reordering is needed
to ensure correct control flows. Additional manual refinements
are necessary to make the program complete;

(4) A Java project is created to include the above code files.

The above code generation rules are implemented in PIPE+.
A Java project is automatically generated from net by selecting
BehaviorProgram under Export button in File pulldown menu.

The following code segments are automatically generated
by PIPE+ from the multi robotic car parking system model:

package parkingsystem.behavior;
public class DetectEntryOne implements Behavior {

private boolean suppressed = false;
public boolean takeControl() {
//TODO:: to be implemented
//Pre: v.field3=waiting
//Post: c.field1 == v.field1 && c.field2 ==
v.field2 && c.field3 == ent1
}

public void action() {
//TODO:: to be implemented
 suppressed = false;
}

public void suppress() {
//TODO:: to be implemented
//Pre:
//Post:
 suppressed = true;
}

}
...
package parkingsystem.object;
public class Robot {

//TODO:: to be implemented
}
package parkingsystem.main;
public class Main {
//TODO:: to be implemented

 public static void main(String[] args) throws
Exception {
 //TODO:: to be refined
 Robot robot = new Robot();
 ...
 Behavior detectEntryOne = new DetectEntryOne();
 ...
 Behavior[] behavior_array =
 { ...
 detectEntryOne,
 ...
 };
 Arbitrator arbitrator = new
Arbitrator(behavior_array);
 ...

}
}

The actual LEGO car parking system implementation
refines the above code templates with domain specific functions
imported from lejos.robotics and lejos.hardware packages.

V. RUNTIME VERIFICATION

Runtime verification is a lightweight formal approach to
detect violation of properties during the execution of a system.
It complements the formal methods applied to system models
such as model checking and theorem proving by detecting
errors either introduced in the process of model implementation
or undetected at model level due to the abstraction of models
and limitations of formal methods.

Runtime verification was adopted in the multi-car parking
system to ensure dependability at implementation level. In our
work, properties are specified using linear temporal logic (LTL)
formula built from the atomic propositions defined using events
written in JavaMop [12]. Monitors are generated from LTL
formulas and woven into system implementation as aspects
using AspectJ [13]. This ensures the independence of system
implementation from monitor – the runtime verification code.

To monitor systems developed with the behavior-oriented
approach, several major events are defined for each behavior:
takecontrolT, takecontrolF, actionR, actionE, and suppress.
Event takecontrolT occurs whenever the method takeControl()
in the behavior-generated code is executed and returns true.
Event takecontrolF is similar to takecontrolT except the value
false is returned. Event actionR occurs whenever the method
action() of the behavior becomes active, while event actionE
occurs whenever the method action() is executed. Event
suppress occurs whenever the method suppress() of the
behavior is executed. To distinguish these events defined for
different behaviors, behavior name is added in the front of these
events. To make the formula more concise, we use the behavior
name only to represent the event actionE. The following
JavaMop code shows an event definition for the behavior
DetectingEntranceOne. Event definitions for other behaviors
are similar.

event DetectingEntranceOne_takecontrolT

after(DetectingEntranceOne bhv) returning(boolean b):

execution(public boolean

DetectingEntranceOne.takecontrol()) && this(bhv) &&

condition(b)

{ //code to be executed when the event occurs;

}
In JavaMOP, the properties to be monitored are specified as

LTL formulae using defined events, and are evaluated against
an execution trace abstracted as a sequence of events. As event
definition implies, an event represents the occurrence of a
concrete action, typically the entry or exit of an action, which
can be calling a method, executing a method, or updating a
primitive variable. Events are atoms when used in a LTL
formula. In a sequence of events, an event atom is true only
when it matches the corresponding event occurrence.

Due to the competition and sequential nature of behaviors
in the multi-car parking system, we divided the properties to be
monitored into two groups: properties of the arbitrator, and

properties on the temporal relations among different behaviors.
The former properties ensure the correctness of the arbitrator.
The latter properties ensure the correct behavior order from the
system specification.

Property patterns of the arbitrator include:

(A1) A behavior b becomes active only if it is selected by the
arbitrator: [] (b_actionR → <*>b_takecontrolT), where <*> is
the past temporal operator previously;

(A2) A behavior b will become active: <> (b_actionR);

(A3) Current behavior b will eventually terminate if the
arbitrator calls its suppress() method: [] (b_suppress → <>
b_action);

(A4) Two behaviors b1 and b2 cannot be active at the same
time: [] ((b1_actionR → !b2_actionR U b1) ˄ (b2_actionR
→ !b1_actionR U b2), where U is the until operator;

(A5) If both behaviors b1 and b2 are ready to become active,
the arbitrator always picks b1 assuming b1 has a higher priority
over b2: [] ((b2_takecontrolT → <*>b1_takecontrolF).

Properties (A2) and (A4) correspond to the generic properties
(G1) and (G3) at the model level. Property (A1) involves some
past concept that cannot be represented in SPIN model checker.
Property (A5) with regard to behavior priorities is dealt with
using an attribute of a token at the model level. Properties (A2)
and (A3) are liveness properties, therefore cannot be verified at
runtime since the monitor doesn’t know when “the good thing”
will happen. To effective monitor these liveness properties, a
timeout event is introduced to make these properties bounded
(thus turning them into safety properties). For example (A2)
becomes (A2’): <> (!timeout U b_actionR).

Property patterns relating different behaviors include:

(B1) An event e1 occurs at most once before another event e2:
[](e1 →○(!e1 U e2)), where ○ is next operator;

(B2) Whenever an event e1 occurs, another event e2 should
occur later: [](e1 → !timeout U e2), which corresponds to
generic property (G4) at the model level;

(B3) Whenever an event e1 occurs, another event e2 must occur
before it: [](e1 → <*> e2);

(B4) An event e1 should never occur before the first occurrence
of another event e2: !e1 U e2;

(B5) An event e1 should never occur after another event e2:
[](e2 → []!e1);

(B6) An event e1 should never occur between event e2 and
event3: [](e2 →!e1 U e3).

An experiment was conducted to verify the effectiveness of
monitoring behavior of the arbitrator and temporal orders of
multiple behaviors. In the experiment, we have two LEGO cars
running the same piece of code in a parking garage with two
different entrances and one exit. The LEGO cars can enter the
parking garage through the same or different entrances. When
entering the garage through entrance one 1, a car can park at lot
1, 2, 3, or 4; otherwise, the car can only park at lot 3 or 4. To
simplify the situation, there is only a one-way lane without

circle. Both cars monitor the same set of properties including 5
concrete A type and 6 concrete B type properties. During the
experiments, some properties failed due to the unreliable nature
of color sensors. We also noticed the priorities of the behaviors
have a major impact on the overall system performance:
frequent checking of the readiness of a high priority behavior
has a huge negative impact on the performance of the robotic
cars. Thus it is important to design the monitors carefully to
reduce the performance penalty.

VI. RELATED WORK
Our CPS development approach covers many research

topics including system modeling, system analysis using
simulation and model checking, model driven development,
and runtime verification. Our main contribution is a systematic
CPS development approach by integrating successful existing
technologies. Thus we only discuss several most relevant CPS
development methodologies.

In [14], a general model-based design methodology for
CPSs was proposed. A cook book process was defined, which
contains ten general steps in developing a CPS. The process was
demonstrated through a bouncing ball example. This
methodology is generic and independent of a particular formal
model, and thus is not supported by a tool chain.

In [7], an actor-oriented design approach was described for
modeling CPSs. Actors are used to model components that
communicate through ports. This design approach adopts a
multiple model view and is supported by the modeling and
simulation environment Ptolemy for heterogeneous systems.
Several experimental component modeling modules have been
developed, including discrete events (DEs), continuous time
(CT), finite state machines (FSMs), synchronous reactive (SR),
process networks (PNs), and data flow models. Hybrid system
models are obtained by hierarchically composing CT models
with discrete models such as FSM or DE. Although this
approach provides powerful system modeling and analysis
capabilities, it does not cover code generation and code level
analysis.

In [15], a foundational framework, called VeriDrone, for
reasoning about CPSs at all levels from high-level models to C
code was presented. VeriDrone becomes a built-in library of the
theorem prover CoQ and enables CoQ users define and verify
CPS related properties. This work focuses on formal analysis of
CPS, but does not address how to model and design CPSs.

In [3], we developed an overall framework for developing
CPSs. This framework is model driven and based on a single
formalism – high level Petri nets. This paper extends our
framework in [3] with the following new results: (1) a new
behavior-oriented approach for modeling internal behaviors of
within agents, (2) a net pattern for modeling individual
behaviors, (3) a set of property patterns for specifying
behaviors, (4) a new translation scheme for generating behavior
programs from high level Petri nets, and (5) a set of runtime
property patterns for monitoring behavior program execution.

VII. CONCLUSION
This paper presented a systematic approach for developing

CPSs supported by a tool chain. High level Petri nets are used
for modeling CPSs due to their capability in addressing the
critical features including concurrency and timing of CPSs.
This approach supports a multi-level incremental modeling
consisting of behavior-oriented approach for capturing the
internal behaviors within agents, agent-oriented approach for
system decomposition, and aspect-oriented approach for system
composition. The resulting models are analyzed using
simulation and model checking to detect early design problems.
A translation method for generating general behavior program
structure from high level Petri net models is provided. The
resulting general behavior program is manually refined with
domain specific code to obtain a complete program. This partial
manual process of domain specific refinement requires
creativity in adding details and thus is unavoidable; however is
minimized in our framework. We are currently working on
genetic algorithms to further automate the code refinement
process. Implementation level quality assurance is carried out
using runtime verification. We have developed a set of property
patterns based on behavior programming. We demonstrated our
approach thorough a multi robotic car parking system. We are
currently working on a drone system to gain more experience
with regard to the applicability and scalability of our approach.

ACKNOWLEDGMENT
This work was partially supported by AFRL under FA8750-

15-2-0106. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

REFERENCES
[1] R. Alur: “Principles of Cyber-Physical Systems”, MIT Press, 2015.
[2] E. Lee: “Cyber Physical Systems: Design Challenges”, Proc. of

International Symposium on Object/Component/Service-oriented Real-
Time Distributed Computing, Orlando, FL, 2008, 363-369.

[3] X. He, Z. Dong, H. Yin, Y. Fu: “A Framework for Developing Cyber
Physical Systems”, Proc. of the 29th International Conference on
Software Engineering and Knowledge Engineering, Pittsburgh, July 5-7 ,
2017.

[4] D. Alam and X. He: “A Method to Analyze High Level Petri Nets using
SPIN Model Checker”, Proc. of the 29th Int’l Conf. on Software
Engineering and Knowledge Engineering, Pittsburgh, 2017.

[5] Gerard Holzmann: The SPIN Model Checker, Addison Wesley, 2004.
[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine: “The algorithmic analysis of hybrid
systems”, Theoretical Computer Science, vol. 138, 1995, 3 – 34.

[7] P. Derler, E. Lee, and A. Vincentelli: “Modeling Cyber-Physical
Systems”, Proceedings of the IEE, vol. 100, no.1, 2012, 13 – 28.

[8] X. He: “A Comprehensive Survey of Petri Net Modeling in Software
Engineering”, International Journal of Software Engineering and
Knowledge Engineering, vol. 23, no. 5, 2013, 589-626.

[9] D. Harel, G. Katz, R. Marelly, and A. Marron: “First Steps towards a Wise
Development Environment for Behavioral Models”, International Journal
of Information System Modeling and Design, vol. 7, no. 3, July-
September, 2016.

[10] B. Selic: “The Pragmatics of Model-Driven Development”, IEEE
Software, 2003, 10 – 25.

[11] http://www.lejos.org/nxt/nxj/tutorial/Behaviors/BehaviorProgramming.h
tm.

[12] D. Jin, P. Meredith, C. Lee, and G. Rosu: “JavaMop: Efficient Parametric
Runtime Monitoring Framework”, International Conference on Software
Engineering, Zurich, Switzerland, June 2 – 9, 2012.

[13] The AspectJ Project homepage: https://eclipse.org/aspectj/.
[14] J. Jensen, D. Chang, and E. Lee: “A Model-Based Design Methodology

for Cyber-Physical Systems”, Proc. of the First IEEE Workshop on
Design, Modeling, and Evaluation of Cyber-Physical Systems (CyPhy),
Istanbul, Turkey, 2011.

[15] G. Malecha, D. Ricketts, M. Alvarez, and S. Lerner: “Towards
Foundational Verification of Cyber-physical Systems”, 2016 Science of
Security for Cyber-Physical Systems Workshop (SOSCYPS), 2016.

	I. Introduction
	II. Cyber Physical System Modeling
	A. Modeling Individual Behaviors
	B. Modeling Individual Components
	C. Modeling the Whole System

	IV. Model Realization
	V. Runtime Verification
	VI. Related work
	VII. Conclusion
	Acknowledgment
	References

