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Abstract— Cyber physical systems (CPSs) are pervasive in our 
daily life from mobile phones to auto driving cars. CPSs are 
inherently complex due to their sophisticated behaviors and thus 
difficult to build. In this paper, we propose a systematic approach 
to develop CPSs with quality assurance throughout the 
development process. A CPS is abstracted and partitioned into a 
set of independent executing agents, where each agent is further 
refined into a set of behaviors. Each behavior is modeled with a 
high level Petri net, called behavior net. The overall behavior of an 
agent is modeled by an agent through composing individual 
behavior nets. Finally, the overall system behavior is modeled by a 
system net through integrating individual agent nets 
incrementally. Simulation and model checking can be performed 
on individual behavior nets, agent nets, and the final system net. 
The resulting system net is systematically mapped to behavior 
programs in Java, which are enhanced and extended with domain 
specific functionality. A set of property patterns based on behavior 
program is developed, which are used to generate runtime 
monitors to check behavior program executions. We demonstrate 
our approach using a multi-car parking system. 
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I.  INTRODUCTION 
Cyber physical systems (CPSs) are pervasive in our daily 

life and need to be extremely reliable since they are often safety 
critical. CPSs consisting of computation and physical processes 
are inherently complex and demonstrate many sophisticated 
behaviors including synchronous, asynchronous, distributed, 
real-time, discrete, and continuous [1]. In [2], several major 
design challenges of CPSs were discussed, including 
concurrency and timing, which are intrinsic and critical in CPSs 
but are not adequately addressed in current computing 
abstractions. While fundamental new technologies are needed 
to develop CPSs, improving and integrating existing 
technologies including software engineering processes, design 
patterns, formal verification, and simulation provides a 
potential solution [2].  

In [3], we provided a concrete framework to realize the ideas 
in [2], where a model driven approach from high level Petri nets 
to Java programs was presented. Essential CPS design issues 
including concurrency and timing are modeled using high level 
Petri nets and analyzed through model checking and simulation. 
Assumed environment constraints from hardware devices are 
checked during implementation and runtime verification. The 
overall framework is shown in Fig. 1. An agent oriented 
modeling approach is used to capture CPSs at a high abstraction 
level where meaningful computational components and 
physical processes with independent behaviors are viewed as 
agents and modeled using individual high level Petri nets. An 
aspect oriented approach is used to incrementally integrate 

system components represented using individual agent nets into 
a complete system net. Agent nets and the system nets are 

analyzed through simulation as well as model checking. The 
above modeling and analysis techniques are supported by tool 
chain PIPE+ [4] and SPIN [5]. A systematic translation 
approach has been developed, where a set of translation rules is 
used to map the individual agent nets into corresponding Java 
threads to form the general program structure. A complete Java 
program is obtained by combining the translated general 
program structure with domain specific program refinements. 
The additional refinements are necessary to realize CPSs, 
especially domain dependent physical devices. Bounded 
symbolic model checking and runtime-time verification are 
performed to ensure model level properties and additional 
properties are not violated in the implementation. The model 
level analysis and implementation level analysis are 
complementary. At model level, both safety and liveness 
properties can be checked to detect potential errors in the 
requirements with environmental assumptions such as the 
hardware devices working properly. At the implementation 
level, safety properties can be checked through bounded 
symbolic model checking and monitoring the actual behavior of 
hardware devices.  

In this paper, we enhance the above framework with an 
additional behavior-oriented modeling approach that 
complements the agent-oriented modeling approach. While the 
agent-oriented approach provides a higher level system 
decomposition driven by concurrency, in which physical 
devices and computational processes are abstracted and 
modeled as agents; the behavior-oriented approach offers a 
finer system decomposition driven by unique non-deterministic 
behaviors within each physical device or computation process. 
Behaviors provide a more intuitive, natural, and concrete way 
to incrementally understand and develop CPSs. This systematic 
and multi-level incremental approach helps us to better 
understand and develop CPSs. A new set of runtime monitoring 
property patterns based on behavior programming are 
developed to ensure the dependability of the implementation. 
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Our new contributions include: (1) a systematic approach for 
modeling and analyzing CPSs, (2) a new behavior-oriented 
approach to incrementally model and analyze CPSs, (3) a 
pattern based translation method for generating behavior 
programs from behavior nets, and (4) a set of behavior based 
runtime monitoring property patterns. Our systematic approach 
is demonstrated through a multi robotic car parking system. 

II. CYBER PHYSICAL SYSTEM MODELING 
To effectively model and analyze the complex behaviors of 

CPSs, many modeling techniques have been proposed and 
adapted in recent years including formal methods such as 
hybrid automata [6] and special graphical modeling languages 
such as actor-oriented MoC [7]. High level Petri nets [8] are 
well suited to model the complex behaviors of CPSs, especially 
combined with well-established software engineering 
approaches such as agent-oriented approach and aspect-
oriented approach [3]. However most existing techniques only 
provide very general guidelines and lack fine grained rules. 
Behavior based modeling [9] provides an intuitive, natural, and 
concrete way to incrementally understand and develop CPSs. In 
the following sections, we describe a systematic approach in 
modeling and analyzing CPSs, which consists of three levels – 
a behavior-oriented approach for modeling the internal 
behaviors of an agent; an agent-oriented approach to model the 
components of a system, and an aspect-oriented approach to 
synthesize the whole system. We demonstrate our approach 
using a multi robotic car parking system. 

A. Modeling Individual Behaviors 
In behavior-oriented modeling, the unique behaviors of a 

physical device (sensors and actuators) or a computation 
process are identified and abstracted from the requirement 
specifications and are modeled with individual high level Petri 
nets called behavior nets that interact with external 
environments. Specifically, we provide the following general 
and simple design pattern of a behavior net shown in Fig. 2: 

 
Where place Behavior models a behavior based on a 

uniquely identified behavior, which can be further refined by 
replacing the place with a more detailed net if needed. The type 
of place is a power set of a Cartesian product to capture multiple 
instances of behaviors of different objects, where each object 
has a unique identifier and other fields to capture important 
information. Place Environment models the external 
environment that can be detected by an object. Transition 
ControlB defines a condition to start the behavior and transition 
SuppressB models the end of the behavior. An additional 
incoming arc to transition ControlB will be created to indicate 
the selection of the behavior when the behavior net is integrated 
into an agent net and an outgoing arc from transition SuppressB 
will be created to integrate the behavior net.  

We demonstrate our behavior-oriented approach in 
modeling a multi robotic car parking system. Each robotic car 
has two motors, two color sensors, and two IR (infrared 
obstacle) sensors. The color sensors are amounted on both front 
sides of a robotic car and are used to detect driving lane, two 
garage entrances, one exit, and four parking lots (all marked 
with unique colors). The IR sensors are amounted at the left 
front side (for left turning only) and the front of a robotic car to 
detect obstacle such as another robotic car or garage wall. Each 
robotic car has the following unique scenarios: (1) detecting an 
entrance using color sensors, (2) detecting the exit using color 
sensors, (3) searching for lane using color sensors, (4) detecting 
the lane using color sensors, (5) detecting obstacles for collision 
avoidance using IR sensors, (6) detecting a vacant parking lot 
using color sensors and IR sensors, (7) entering a parking lot 
using IR sensors, (8) leaving a parking lot using IR sensors, and 
(9) exiting the garage. Some of the above scenarios can be 
combined to form a more complex scenario such as searching 
and detecting lane, and some scenario such as detecting an 
entrance can be split into two specific scenarios – detecting 
entrance one and detecting entrance two. A screenshot of the 
behavior net search for lane (3) created in PIPE+ is shown in 
Fig.3. Since there is only one lane, place Lane holds only one 
token modeling the lane. Place SearchLane is a power set of 
tokens that model individual cars (4 cars in this system). Each 
car has a structured type of 3 string fields, the 1st field denotes 
car identifier, the 2nd field models a communication socket (not 
used in the model), and the 3rd field records a car status that is 
used to keep track behavior history and to select follower up 
behaviors. 

 
B. Modeling Individual Components 

A high level Petri net can be used to capture the structure 
and the behavior of a physical or computation process. Petri nets 
naturally support synchronous, asynchronous, and distributed 
control and data flows. High level Petri nets are capable to 
model virtual time through time stamps associated with tokens 
and transition constraints representing delays and durations. 
Continuous behaviors of physical devices can be abstracted and 
discretized using real typed places and the associated 
transitions, and can be further refined during implementation. 

Each type of physical devices (sensors and actuators) or 
computation processes is modeled with an agent net that has its 
own independent reactive and/or proactive behavior interacting 
with the external environment. Based on the behavior-oriented 
modeling, an agent net is obtained by integrating a set of 



 

remarkably simple behavior nets through a place Arbitrator, 
which is used to control the selection of individual behaviors 
within an agent. The complete agent net of a single car after 
integrating all 12 behavior nets (the four parking lot behaviors 
are separately modeled) is shown in Fig. 4, which contains 22 
places, 26 transitions, and over 60 arcs (many are bidirectional). 

 
C. Modeling the Whole System 

The overall system net is obtained by integrating individual 
agent nets that shows the interaction, communication, and 
cooperation among different agents. Synchronized activities are 
modeled through new joint transitions with modified 
constraints, and asynchronous activities are modeled through 
connecting a place in one agent net to a transition in another 
agent net. An aspect oriented approach [8] is used to build a 
complex model incrementally through weaving individual Petri 
nets representing agents capturing physical devices and 
computation processes. This aspect oriented approach further 
supports system adaptation and evolution, and facilitates 
compositional analysis. In this multi robotic car system, all the 
cars have the same behaviors and they do not communicate with 
each other. Thus the overall system net has the same structure 
as that of a single car. However multiple tokens with unique 
identifiers representing different cars are added to the place 
Arbitrator as part of initial marking. 

III. CYBER PHYSICAL SYSTEM ANALYSIS 

A CPS system is often a hybrid system consisting of both 
continuous hardware devices and discrete computation 
processes. In most cases, the only available technique for 
continuous components is simulation. High level Petri nets are 
executable and thus support simulation of hybrid system 
models. Formal verification techniques based on symbolic 
reachability analysis is available for sub classes of hybrid 
systems such as those can be modeled using linear hybrid 
automata [1] where the state transition rates are constants with 
restricted checking and updating actions. Our tool PIPE+ 
supports simple reachability analysis and model checking using 

SPIN in addition to simulation. 

Model checking performs exhaustive search on finite state 
systems and thus is not directly applicable to continuous 
systems. However we may be able to model check the bounds 
(called barrier certificates) of some continuous state variables. 
PIPE+ has a translator that automatically converts a high level 
Petri net model to a Promela program in SPIN. During the 
translation, each place is translated into a channel with the 
place’s type. This kind of conversion may not always work due 
to the loss of precision since Promela only supports integer. 
There are currently two translation schemes:   
(1) Translating each transition as an inline function consisting a 
part realizing the precondition – checking the enabling 
condition, and another part capturing the post-condition – 
transition firing. Each transition is non-deterministically 
selected in a loop within a single Promela process; 
(2) Translating each transition as a Promela process. Each 
translation schema has its own advantages and disadvantages. 
The first one seems more efficient in checking safety properties, 
while the second one can be used to check liveness property 
using strong fairness assumption.  

The translated Promela model after adding linear time 
temporal logic specifying properties is model checked using 
SPIN. Safety and liveness properties are expressed in the 
general form []placename(x) and <> placename(x) respectively, 
where [] and <> are the temporal operators always and 
sometimes in SPIN and x can be a variable or a constant (a 
specific token). More complex formulas are defined using 
logical connectives.  

With regard to behavioral programming, we can define 
many generic safety and liveness property patterns using linear 
time temporal logic, and then instantiate the patterns using 
concrete behaviors and check them using SPIN model checker. 
Some generic property patterns include (where B, B1, B2 
denote place names representing different behaviors, x and y 
denote symbolic tokens): 
(1) <>B(x)      (G1) 
This liveness property states that a behavior B will eventually 
active; 
(2)  [](B(x) → <>!B(x))   (G2) 
This liveness property states that an active behavior B will 
eventually terminate; 
(3) []!(B1(x) ∧ B2(y))   (G3) 
This safety property states that two behaviors B1 and B2 cannot 
be active at the same time due to the sequential nature of 
behavioral programming; 
(4) [](B1(x) → <> B2(y))   (G4) 
This liveness property states that a behavior B1 leads to 
behavior B2. 
More sophisticated properties can be defined such as there is 
one particular behavior in between two other behaviors.  

Here we provide our model checking results of the concrete 
properties for in the car parking system.  
<>SearchingLane(v1,v2,found)     (C1) 
 [](SearchingLane(v1,v2,found) → 

<>!SearchingLane(v1,v2,found))   (C2) 
 []!(DetectingEntO(v1,v2,ent1)∧SearchingLane(v1,v2,found))  



 

      (C3) 
 [](DetectingEntO(v1,v2,ent1)  → 

<> SearchingLane(v1,v2,found))    (C4) 
Since the concrete values of symbolic variables v1 and v2 

are not used in checking the above properties, we use bit type 
to abstract their types to reduce the number of states and 
instantiate their values according to the initial marking. 
Furthermore, these properties are about the same car, we can 
restrict our initial marking to one car in place Arbitrator. Also 
checking liveness property (C1) can be done more effectively 
in SPIN by finding a counter example of its negation: 
[] !SearchingLane(v1,v2,found)     (C1*) 

With the above abstraction and reduction to the resulting 
Promela model and using the –DBITSTATE storage option in 
SPIN, we have checked all of the above properties as shown in 
Table II. 

Property   Satisfied Depth Stored States Time  
C1* No 128 201 5(ms) 
C2 Yes 763 554077 895(ms) 
C3 Yes 611 550966 923(ms) 
C4 Yes  140 540451  897(ms) 

IV. MODEL REALIZATION 
Design models help us to better understand system features 

including functionality, structure, and behavior as well as to 
detect and prevent early system development errors. To 
leverage the design models to increase productivity and 
improve code quality, model driven development based on 
UML emerged in the last decade [10], in which UML based 
models are translated into programs of object oriented 
programming languages. However since there are multiple 
UML notations such as class diagram, state machine diagram, 
and sequence diagram for representing different aspects of a 
system, it is not easy to obtain a coherent set of code. In [3], we 
presented a model driven approach to realize our high level 
Petri net models, which provided a systematic way of writing 
Java programs and establishes the traceability between the 
models and resulting programs. Our model driven approach 
consists of the general code structure and domain specific 
refinement. The general code structure is systematically 
generated from the agent models and the overall system model. 
However the domain specific refinement requires manual 
process in identifying and defining additional features of the 
system, especially with regard to the physical devices. Different 
from [3] where each agent net was mapped to a thread in Java, 
this paper maps each behavior net into a behavior program [11] 
that includes 3 template methods: boolean takeControl(),void 
action(), and void suppress(). 

The following translation rules are used to generate the 
general code structure from high level Petri net models: 

(1) A behavior program is generated for each behavior net, in 
which 3 methods are created corresponding to transitions 
controlB and suppressB, and place Behavior shown in Fig.3. 
The body of each method is empty and requires manual 
refinements. The constraint of the transition is attached as 
comments for ensuring the correct implementation; 

(2) A behavior object class is created, which is to be manually 

refined according to the application domain; 

(3) The main program is created based on the initial system net 
with a single place Arbitrator, and includes the definition of an 
arbitrator object and the instantiations of all the behaviors. In a 
behavior model, the control flows between behaviors are 
enforced through a data field in a behavior object. In behavior 
programming, the control flows are based on the priorities of 
the behaviors according to their appearances in the behavior 
array from low to high. As a result, manual reordering is needed 
to ensure correct control flows. Additional manual refinements 
are necessary to make the program complete; 

(4) A Java project is created to include the above code files.  

The above code generation rules are implemented in PIPE+. 
A Java project is automatically generated from net by selecting 
BehaviorProgram under Export button in File pulldown menu. 

The following code segments are automatically generated 
by PIPE+ from the multi robotic car parking system model: 

package parkingsystem.behavior; 
public class DetectEntryOne implements Behavior { 

private boolean suppressed = false; 
public boolean takeControl() { 
//TODO:: to be implemented 
//Pre: v.field3=waiting 
//Post: c.field1 == v.field1 && c.field2 == 
v.field2 && c.field3 == ent1 
} 
 
public void action() { 
//TODO:: to be implemented 
  suppressed = false; 
} 
 
public void suppress() { 
//TODO:: to be implemented 
//Pre:  
//Post:  
  suppressed = true;  
} 

} 
... 
package parkingsystem.object; 
public class Robot { 

//TODO:: to be implemented 
} 
package parkingsystem.main; 
public class Main { 
//TODO:: to be implemented 

 public static void main(String[] args) throws 
Exception { 
 //TODO:: to be refined 
 Robot robot = new Robot(); 
 ... 
 Behavior detectEntryOne = new DetectEntryOne(); 
 ... 
 Behavior[] behavior_array =  
 { ... 
   detectEntryOne, 
   ... 
 }; 
 Arbitrator arbitrator = new 
Arbitrator(behavior_array); 
 ... 
   

} 
} 



 

The actual LEGO car parking system implementation 
refines the above code templates with domain specific functions 
imported from lejos.robotics and lejos.hardware packages. 

V. RUNTIME VERIFICATION 

Runtime verification is a lightweight formal approach to 
detect violation of properties during the execution of a system. 
It complements the formal methods applied to system models 
such as model checking and theorem proving by detecting 
errors either introduced in the process of model implementation 
or undetected at model level due to the abstraction of models 
and limitations of formal methods. 

Runtime verification was adopted in the multi-car parking 
system to ensure dependability at implementation level. In our 
work, properties are specified using linear temporal logic (LTL) 
formula built from the atomic propositions defined using events 
written in JavaMop [12]. Monitors are generated from LTL 
formulas and woven into system implementation as aspects 
using AspectJ [13]. This ensures the independence of system 
implementation from monitor – the runtime verification code.  

To monitor systems developed with the behavior-oriented 
approach, several major events are defined for each behavior: 
takecontrolT, takecontrolF, actionR, actionE, and suppress. 
Event takecontrolT occurs whenever the method takeControl() 
in the behavior-generated code is executed and returns true. 
Event takecontrolF is similar to takecontrolT except the value 
false is returned. Event actionR occurs whenever the method 
action() of the behavior becomes active, while event actionE 
occurs whenever the method action() is executed. Event 
suppress occurs whenever the method suppress() of the 
behavior is executed. To distinguish these events defined for 
different behaviors, behavior name is added in the front of these 
events. To make the formula more concise, we use the behavior 
name only to represent the event actionE. The following 
JavaMop code shows an event definition for the behavior 
DetectingEntranceOne. Event definitions for other behaviors 
are similar.  

event DetectingEntranceOne_takecontrolT 

after(DetectingEntranceOne bhv) returning(boolean b): 

execution(public boolean 

DetectingEntranceOne.takecontrol()) && this(bhv) && 

condition(b)  

{ //code to be executed when the event occurs; 

} 
In JavaMOP, the properties to be monitored are specified as 

LTL formulae using defined events, and are evaluated against 
an execution trace abstracted as a sequence of events. As event 
definition implies, an event represents the occurrence of a 
concrete action, typically the entry or exit of an action, which 
can be calling a method, executing a method, or updating a 
primitive variable. Events are atoms when used in a LTL 
formula. In a sequence of events, an event atom is true only 
when it matches the corresponding event occurrence.  

Due to the competition and sequential nature of behaviors 
in the multi-car parking system, we divided the properties to be 
monitored into two groups: properties of the arbitrator, and 

properties on the temporal relations among different behaviors. 
The former properties ensure the correctness of the arbitrator. 
The latter properties ensure the correct behavior order from the 
system specification. 

Property patterns of the arbitrator include: 

(A1) A behavior b becomes active only if it is selected by the 
arbitrator: [] (b_actionR →  <*>b_takecontrolT), where <*> is 
the past temporal operator previously;     

(A2) A behavior b will become active: <> (b_actionR);     

(A3) Current behavior b will eventually terminate if the 
arbitrator calls its suppress() method: [] (b_suppress → <> 
b_action); 

(A4) Two behaviors b1 and b2 cannot be active at the same 
time: [] ((b1_actionR → !b2_actionR U b1) ˄ (b2_actionR 
→ !b1_actionR U b2), where U is the until operator; 

(A5) If both behaviors b1 and b2 are ready to become active, 
the arbitrator always picks b1 assuming b1 has a higher priority 
over b2: [] ((b2_takecontrolT → <*>b1_takecontrolF). 

Properties (A2) and (A4) correspond to the generic properties 
(G1) and (G3) at the model level. Property (A1) involves some 
past concept that cannot be represented in SPIN model checker. 
Property (A5) with regard to behavior priorities is dealt with 
using an attribute of a token at the model level. Properties (A2) 
and (A3) are liveness properties, therefore cannot be verified at 
runtime since the monitor doesn’t know when “the good thing” 
will happen. To effective monitor these liveness properties, a 
timeout event is introduced to make these properties bounded 
(thus turning them into safety properties). For example (A2) 
becomes (A2’):  <> (!timeout U b_actionR).    

Property patterns relating different behaviors include: 

(B1) An event e1 occurs at most once before another event e2: 
[](e1 →○(!e1 U e2)),  where ○ is next operator; 

(B2) Whenever an event e1 occurs, another event e2 should 
occur later: [](e1 → !timeout U e2), which corresponds to 
generic property (G4) at the model level;  

(B3) Whenever an event e1 occurs, another event e2 must occur 
before it: [](e1 → <*> e2); 

(B4) An event e1 should never occur before the first occurrence 
of another event e2: !e1 U e2; 

(B5) An event e1 should never occur after another event e2: 
[](e2 → []!e1); 

(B6) An event e1 should never occur between event e2 and 
event3: [](e2 →!e1 U e3). 

An experiment was conducted to verify the effectiveness of 
monitoring behavior of the arbitrator and temporal orders of 
multiple behaviors. In the experiment, we have two LEGO cars 
running the same piece of code in a parking garage with two 
different entrances and one exit. The LEGO cars can enter the 
parking garage through the same or different entrances. When 
entering the garage through entrance one 1, a car can park at lot 
1, 2, 3, or 4; otherwise, the car can only park at lot 3 or 4. To 
simplify the situation, there is only a one-way lane without 



 

circle. Both cars monitor the same set of properties including 5 
concrete A type and 6 concrete B type properties. During the 
experiments, some properties failed due to the unreliable nature 
of color sensors. We also noticed the priorities of the behaviors 
have a major impact on the overall system performance: 
frequent checking of the readiness of a high priority behavior 
has a huge negative impact on the performance of the robotic 
cars. Thus it is important to design the monitors carefully to 
reduce the performance penalty. 

VI. RELATED WORK 
Our CPS development approach covers many research 

topics including system modeling, system analysis using 
simulation and model checking, model driven development, 
and runtime verification.  Our main contribution is a systematic 
CPS development approach by integrating successful existing 
technologies. Thus we only discuss several most relevant CPS 
development methodologies.  

In [14], a general model-based design methodology for 
CPSs was proposed. A cook book process was defined, which 
contains ten general steps in developing a CPS. The process was 
demonstrated through a bouncing ball example. This 
methodology is generic and independent of a particular formal 
model, and thus is not supported by a tool chain. 

In [7], an actor-oriented design approach was described for 
modeling CPSs. Actors are used to model components that 
communicate through ports. This design approach adopts a 
multiple model view and is supported by the modeling and 
simulation environment Ptolemy for heterogeneous systems. 
Several experimental component modeling modules have been 
developed, including discrete events (DEs), continuous time 
(CT), finite state machines (FSMs), synchronous reactive (SR), 
process networks (PNs), and data flow models. Hybrid system 
models are obtained by hierarchically composing CT models 
with discrete models such as FSM or DE. Although this 
approach provides powerful system modeling and analysis 
capabilities, it does not cover code generation and code level 
analysis. 

In [15], a foundational framework, called VeriDrone, for 
reasoning about CPSs at all levels from high-level models to C 
code was presented. VeriDrone becomes a built-in library of the 
theorem prover CoQ and enables CoQ users define and verify 
CPS related properties. This work focuses on formal analysis of 
CPS, but does not address how to model and design CPSs. 

In [3], we developed an overall framework for developing 
CPSs. This framework is model driven and based on a single 
formalism – high level Petri nets. This paper extends our 
framework in [3] with the following new results: (1) a new 
behavior-oriented approach for modeling internal behaviors of 
within agents, (2) a net pattern for modeling individual 
behaviors, (3) a set of property patterns for specifying 
behaviors, (4) a new translation scheme for generating behavior 
programs from high level Petri nets, and (5) a set of runtime 
property patterns for monitoring behavior program execution. 

VII. CONCLUSION 
This paper presented a systematic approach for developing 

CPSs supported by a tool chain. High level Petri nets are used 
for modeling CPSs due to their capability in addressing the 
critical features including concurrency and timing of CPSs. 
This approach supports a multi-level incremental modeling 
consisting of behavior-oriented approach for capturing the 
internal behaviors within agents, agent-oriented approach for 
system decomposition, and aspect-oriented approach for system 
composition. The resulting models are analyzed using 
simulation and model checking to detect early design problems. 
A translation method for generating general behavior program 
structure from high level Petri net models is provided. The 
resulting general behavior program is manually refined with 
domain specific code to obtain a complete program. This partial 
manual process of domain specific refinement requires 
creativity in adding details and thus is unavoidable; however is 
minimized in our framework. We are currently working on 
genetic algorithms to further automate the code refinement 
process. Implementation level quality assurance is carried out 
using runtime verification. We have developed a set of property 
patterns based on behavior programming. We demonstrated our 
approach thorough a multi robotic car parking system. We are 
currently working on a drone system to gain more experience 
with regard to the applicability and scalability of our approach. 
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