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Abstract

Markov chain usage-based statistical testing has proved
sound and effective in providing audit trails of evidence in
certifying software-intensive systems. The system end-to-
end reliability is derived analytically in closed form, fol-
lowing an arc-based Bayesian model. System reliability is
represented by an important statistic called single use relia-
bility, and defined as the probability of a randomly selected
use being successful. This paper continues our earlier work
on a simpler and faster derivation of the single use reliabil-
ity mean, and proposes a new derivation of the single use
reliability variance by applying a well-known theorem and
eliminating the need to compute the second moments of arc
failure probabilities. Our new results complete a new analy-
sis that could be shown to be simpler, faster, and more direct
while also rendering a more intuitive explanation. Our new
theory is illustrated with three simple Markov chain usage
models with manual derivations and experimental results.

1 Introduction

This paper re-examines the underlying reliability anal-
ysis for statistical testing based on a Markov chain usage
model. This form of statistical testing, developed by the
University of Tennessee Software Quality Research Labo-
ratory (UTK SQRL), has been around for more than two
decades [5, 4, 8, 6, 9, 12, 11]. With the software use
being modeled as a finite-state, discrete parameter, time-
homogeneous, and irreducible Markov chain, where the
states represent “states of system use” and the arcs repre-
sent possible transitions between states of use, the method
allows for quantitative certification of software using em-
pirical test data by a statistical protocol. A public domain
tool supporting statistical testing called the JUMBL: J Us-

age Model Builder Library, also developed by UTK SQRL,
is freely available [7, 1].

In this paper we focus on the derivation of a system end-
to-end reliability estimate, called single use reliability (both
mean and variance), driven solely by the test data without
any mathematical growth assumptions, given the Markov
chain usage model, and improve on an earlier analytical so-
lution described in [8]. Our new derivation of the mean was
inspired earlier and published in [2], however, it was not
until recently that we figured out a new derivation of the
variance that is similarly simpler, faster, more direct, and
more intuitive, which arrived through a rather convoluted
path. The derivation in [8] follows from the definitions of
mean and variance and only first principles, which could be
a little counter-intuitive to understand. We demonstrate a
new derivation and complete a new analysis. Through three
examples we show the new derivation agrees with the old
derivation (by implementation and experiments), as well as
a direct application of the definition. The new theory is fully
implemented in the latest version of the JUMBL.

2 Single Use Reliability Mean and Variance:
The Old Derivation

Current reliability analysis underlying statistical testing
follows the arc-based Bayesian model [8, 10]. Here one ap-
plies Miller’s Bayesian model [3] to individual arcs of the
Markov chain, and compute for each arc a transition relia-
bility (both mean and variance) from a posterior beta distri-
bution. System end-to-end reliability is computed through
the single use reliability estimate, defined as “the probabil-
ity of a randomly selected use executing correctly relative
to a specification of correct behavior,” [5, 8] either analyti-
cally [8] or through simulation [10]. The analytical solution
in closed form [8], both faster and more precise than simu-
lation, was implemented in the JUMBL. In this section we
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summarize the major steps and results of this derivation.
Let P = [pij ] be the n×n transition matrix of a Markov

chain usage model. The (i, j)-th entry pij of P is the con-
ditional probability of the next state being state j given the
current state being state i. State 1 is the source. State n is
the sink and the only absorbing state (assuming a reasonable
error recovery scheme). Given Pn×n, Q(n−1)×n denotes
the submatrix of P omitting the last row, and Q̇(n−1)×(n−1)

denotes the submatrix of P omitting the last row and the last
column. Q̇ is the transition matrix of the Markov chain re-
stricted to the transient states.

Let ri,j be a random variable for “transition reliability,”
that is, the fraction of successful transitions from state i to
state j. Let fi,j be another random variable for “transition
failure probability,” that is, the fraction of unsuccessful tran-
sitions from state i to state j. Notice that fi,j = 1− ri,j .

With the arc-based Bayesian model [10], each arc
(transition) reliability ri,j has a standard beta distribution
B(αi,j , βi,j) with two parameters αi,j (for total successes
on transitions from state i to state j) and βi,j (for to-
tal failures on transitions from state i to state j), where
αi,j = ai,j + si,j and βi,j = bi,j + fi,j with ai,j , si,j , bi,j ,
fi,j representing prior successes, observed successes, prior
failures, and observed failures, respectively, on transitions
from state i to state j. In case no prior information is avail-
able, ai,j = bi,j = 1. Each executed test case is mapped to
the usage model and each executed step is marked as suc-
cessful or failing. The observed success and failure counts
are summed for each individual arc in the usage model.

From the posterior (beta) distribution B(αi,j , βi,j) for
ri,j we may compute the mean and variance of ri,j :

E[ri,j ] =
αi,j

αi,j+βi,j
=

ai,j+si,j
ai,j+si,j+bi,j+fi,j

, (1)

V ar[ri,j ] =
αi,jβi,j

(αi,j+βi,j)2(αi,j+βi,j+1)

=
(ai,j+si,j)(bi,j+fi,j)

(ai,j+si,j+bi,j+fi,j)2(ai,j+si,j+bi,j+fi,j+1) .

(2)

Since V ar[ri,j ] = E[r2i,j ]−E2[ri,j ], we have E[r2i,j ] =

E2[ri,j ] + V ar[ri,j ].
Given fi,j = 1 − ri,j , we can compute the mean and

variance of fi,j as E[fi,j ] = E[1− ri,j ] = 1− E[ri,j ] and
V ar[fi,j ] = V ar[1− ri,j ] = V ar[ri,j ]. Similarly we have
E[f2

i,j ] = E2[fi,j ] + V ar[fi,j ].
By our assumption state n (the sink) is the only absorb-

ing state of the Markov chain. A test case ends when the
sink is first encountered, therefore, we are only interested in
transitions from any state other than the sink (any transient
state). In the matrices defined below (A, B, S, F , R1, R2,
F1, and F2), i is any integer from 1 to n − 1 inclusive, and
j is any integer from 1 to n inclusive.

Let A = [ai,j ] and B = [bi,j ] be two matrices of size
(n − 1) × n whose entries are prior arc successes and fail-

ures, respectively, obtained from prior testing experience.
Let S = [si,j ] and F = [fi,j ] be two matrices of size
(n − 1) × n whose entries are observed arc successes and
failures, respectively, obtained through testing.

Let R1 = [E[ri,j ]] be an (n − 1) × n matrix whose (i,
j)-th entry is the expected arc reliability of going from state
i to state j, and R2 = [E[r2i,j ]] be an (n − 1) × n matrix
whose (i, j)-th entry is the expected value of r2i,j . Let Ṙ1

and Ṙ2 denote respectively the submatrices of R1 and R2

omitting the last columns.
Similarly we define F1 = [E[fi,j ]] as an (n − 1) × n

matrix whose (i, j)-th entry is the expected arc failure prob-
ability of going from state i to state j, and F2 = [E[f2

i,j ]] as
an (n− 1)× n matrix whose (i, j)-th entry is the expected
value of f2

i,j .
Given two matrices X and Y of the same size (dimen-

sion), X ⊗ Y denotes the entry-wise (or component-wise)
product of X and Y . X ⊗ Y has the same size as X and Y .

We define four entry-wise products as follows. Two of
them are of size (n − 1) × n: F1 = Q ⊗ F1 and F2 =
Q⊗ F2. The other two are square matrices of order n− 1:
Ṙ1 = Q̇⊗ Ṙ1 and Ṙ2 = Q̇⊗ Ṙ2.

Let I be an (n−1)× (n−1) identity matrix, and U be a
column vector of ones of size n. It is established in [8] that
F ∗ in (3) computes the expected single use failure proba-
bility (or single use unreliability) from any starting state.

F ∗ = (I − Ṙ1)
−1F1U (3)

Observe that F ∗ is a column vector of size n − 1. The
i-th component of F ∗ is the computed probability of failure
(the expected value) for an arbitrary use of the system from
a particular usage state, state i, to the sink (i runs from 1
to n − 1 inclusive; the starting state could be any transient
state).

Therefore, the expected single use reliability of the sys-
tem (starting from the source) is one minus the first compo-
nent of F ∗ computed by (3).

For an intuitive understanding of (3), consider all the
paths in the usage model that originate from state i and
have all but the last step successful; the last step on the
path is the only failure step. The probability of taking one
of such paths gives the failure probability from state i, and
is computed in three steps. First, it is shown in [8] that
(I − Ṙ1)

−1 = Ṙ0
1 + Ṙ1

1 + Ṙ2
1 + . . . , hence the (i, j)-

th entry in the inverse matrix computes the probability of
successfully moving from state i to state j in any finite and
arbitrary number of steps (starting from 0 step). State j
must be transient because only the last failure step could
lead to the sink. Second, the inverse matrix is multiplied by
the single-step failure matrix F1 to give the probability of
moving from any transient state to any state in the model
with all but the last step successful. Here the last transition
is made to either a transient state or the sink. And last, the



product is multiplied by the vector of ones of appropriate
size to sum up the probabilities of taking paths with a fixed
starting state, all successful prior steps before encountering
the last failure step, and an arbitrary ending state. The sum
is the failure probability from the particular starting state.

An equation is also given in [8] for computing the vari-
ance associated with the single use reliability (or equiva-
lently, the variance associated with the single use failure
probability) from any starting state.

V ∗ = (I− Ṙ2)
−1F2U +2(I− Ṙ2)

−1(Ṙ1− Ṙ2)F
∗−

F ∗ ⊗ F ∗ (4)

In (4) I is an (n − 1) × (n − 1) identity matrix, and
U is a column vector of ones of size n. V ∗ as computed
is a column vector of size n − 1. The i-th component of
V ∗ is the computed variance associated with the single use
reliability (or with the single use failure probability) starting
from state i (i runs from 1 to n− 1 inclusive).

Therefore, the single use reliability variance (when start-
ing from the source) is the first component of V ∗ computed
by (4).

3 A Simpler, Faster, and More Intuitive
Derivation

In this section we illustrate a new derivation of single
use reliability mean and variance that is simpler, faster, and
more intuitive than the old derivation. The new derivation
of the mean was published in [2], however, back then it was
unclear if there existed an alternative and new derivation
of the variance that is similarly simple and intuitive. This
is the major contribution of this paper. The solution was
found through a rather convoluted path. What prompted us
to look for an alternative derivation was the observation that
the old derivation of the variance follows its definition and
first principles, and therefore could be counter-intuitive to
understand. The new derivation presented here completes
a new analytical solution to compute the system reliability
(both mean and variance) based on testing experience ob-
served at the arc level taking into account the usage model
structure.

We are able to compute the single use reliability mean
(expected value) directly, and not through the single use
failure probability (or single use unreliability) as follows.

We define another entry-wise product of size (n−1)×n:
R1 = Q ⊗ R1. Let W be R1 restricted to the last column.
W is a column vector of size n− 1.

We define R∗ as follows:

R∗ = (I − Ṙ1)
−1W (5)

(5) has an intuitive explanation. As explained above for
(3), the (i, j)-th entry in the inverse matrix computes the
probability of successfully moving from the transient state

i to the transient state j in any finite and arbitrary num-
ber of steps (starting from 0 step). When multiplied by the
single-step success matrix R1 restricted to the last column
(i.e., W ), the last steps are successful steps leading to the
sink, hence R∗ gives the probability of successfully moving
from any transient state to the sink in any finite and arbitrary
number of steps (starting from 0 step).

Observe that R∗ is a column vector of size n − 1. The
i-th component of R∗ is the expected single use reliability
starting from state i (i runs from 1 to n− 1 inclusive).

Therefore, the expected single use reliability of the sys-
tem (starting from the source) is the first component of R∗

computed by (5).
We propose an alternative way to compute the single use

reliability variance. Let r be a random variable denoting the
single use reliability. Let pi and ri denote the probability
and the reliability of the i-th distinct path starting with the
source ending with the sink (representing a distinct arbitrary
use), respectively. Note that r is a discrete random variable
that takes the value E(ri) with probability pi, hence E(r) =∑

i piE(ri). The variance can be computed by V ar(r) =
E(r2)−E2(r). The problem boils down to how to compute
E(r2).

Note that r2 is also a discrete random variable that
takes the value E(r2i ) with probability pi, hence E(r2) =∑

i piE(r2i ). We have shown how to compute E(r) using
(5). With the same Markov chain we are able to compute
E(r2) similarly. Now the (i, j)-th arc is associated with a
new random variable (i.e., E[r2i,j ]) instead of E[ri,j ]. We
can substitute R1 for R2 and compute E(r2) similarly as
follows, with the reasonable assumption that all r2i,js are in-
dependent random variables.

We define an entry-wise product of size (n − 1) × n:
R′

1 = Q⊗R2. Let W ′ be R′
1 restricted to the last column.

W ′ is a column vector of size n− 1.
We define R′∗ as follows:

R′∗ = (I − Ṙ′
1)

−1W ′ (6)
We define V ∗ as:

V ∗ = R′∗ −R∗ ⊗R∗ (7)
V ∗ computes the single use reliability variance with each

state being the starting state. The i-th component of V ∗ is
the single use reliability variance starting from state i (i runs
from 1 to n− 1 inclusive).

Therefore, the single use reliability variance starting
from the source is the first component of V ∗ computed by
(7).

To sum up, the following steps are needed to compute
single use reliability mean and variance by our new deriva-
tion:

1. Determine Q and Q̇ from the usage model.

2. Determine A and B from prior success and failure
counts for each arc in the usage model.
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p12 = 1

r12 = r

Figure 1. Example 1 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

3. Determine S and F from observed success and failure
counts for each arc in the usage model.

4. Compute R1 and R2 from A, B, S, and F .

5. Compute R1 and Ṙ1, and W .

6. Compute R∗ by (5).

7. Compute R′
1 and Ṙ′

1, and W ′.

8. Compute R′∗ by (6).

9. Compute V ∗ by (7).

10. The expected value of the single use reliability is the
first component of R∗.

11. The variance of the single use reliability is the first
component of V ∗.

Note that (1) the new derivation of the mean is simpler,
faster, and more direct without the need to first compute the
single use failure probability; (2) the new derivation of the
variance is simpler and faster without the need to compute
the second moments of arc failure probabilities; and (3) the
new derivation of the variance is simpler, faster, and more
intuitive by applying a well-known theorem to compute the
variance (i.e., V ar(r) = E(r2) − E2(r)), and by reusing
the existing Markov chain and reusing with adaptation the
formula we have derived for E(r) to compute E(r2). We
have implemented the new formulae in the JUMBL under a
new analysis engine.

4 Examples

In all the three examples (Figures 1 – 3) below the arcs
are annotated with transitional probabilities (i.e., the pijs)
and arc reliabilities (i.e., the rijs). For simplicity we as-
sume all arc reliabilities have a uniform distribution with
the means as rijs and the variances as 0s for the derivations
in Sections 4.1 – 4.3. SUR is for single use reliability.

4.1 Example 1

By the new formula:

To compute the mean:

1 2

3

p12 = 1/3

p23 = 1p13 = 2/3

r12 = r

r23 = r
r13 = r

Figure 2. Example 2 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

1

3

p12 = 1/2

p23 = 1/2p13 = 1/2

r12 = r

r23 = r
r13 = r

2

p22 = 1/2

r22 = r

Figure 3. Example 3 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

P =

[
0 1
0 0

]
Q =

[
0 1

]
R1 =

[
r11 r

]
R1 = Q⊗R1 =

[
0 r

]
Ṙ1 =

[
0
]

I =
[
1
]

I − Ṙ1 =
[
1
]

(I − Ṙ1)−1 =
[
1
]

W =
[
r
]

R∗ = (I − Ṙ1)−1W =
[
r
]

E(SUR) = r

To compute the variance:

P =

[
0 1
0 0

]
Q =

[
0 1

]
R1 =

[
r11 r

]
R′

1 = Q⊗R2 =
[
0 r2

]
Ṙ′

1 =
[
0
]

I =
[
1
]

I − Ṙ′
1 =

[
1
]

(I − Ṙ′
1)

−1 =
[
1
]

W ′ =
[
r2

]
R′∗ = (I − Ṙ′

1)
−1W ′ =

[
r2

]
E(SUR2) = r2

V ar(SUR) = E(SUR2)− (E(SUR))2 = 0

We may also compute the single use reliability mean and
variance directly based on its definition, given the Markov
chain usage model. To compute the probability of a ran-
domly chosen use (path) being successful, we compute the
weighted sum of path reliabilities, with weights being the
path probabilities.

By the definition of single use reliability:

To compute the mean:

E(SUR) = r ∗ 1 = r

To compute the variance:

V ar(SUR) = (r − r)2 ∗ 1 = 0



4.2 Example 2

By the new formula:

To compute the mean:

P =

0
1
3

2
3

0 0 1

0 0 0

 Q =

[
0 1

3
2
3

0 0 1

]
R1 =

[
r11 r r
r21 r22 r

]

R1 = Q⊗R1 =

[
0 r

3
2r
3

0 0 r

]
Ṙ1 =

[
0 r

3

0 0

]
I =

[
1 0
0 1

]

I − Ṙ1 =

[
1 − r

3

0 1

]
(I − Ṙ1)−1 =

[
1 r

3

0 1

]
W =

[
2r
3

r

]

R∗ = (I − Ṙ1)−1W =

[
2r+r2

3

r

]
E(SUR) = 2r+r2

3

To compute the variance:

P =

0
1
3

2
3

0 0 1

0 0 0

 Q =

[
0 1

3
2
3

0 0 1

]
R1 =

[
r11 r r
r21 r22 r

]

R′
1 = Q⊗R2 =

[
0 r2

3
2r2

3

0 0 r2

]
Ṙ′

1 =

[
0 r2

3

0 0

]

I =

[
1 0
0 1

]
I − Ṙ′

1 =

[
1 − r2

3

0 1

]

(I − Ṙ′
1)

−1 =

[
1 r2

3

0 1

]
W ′ =

[
2r2

3

r2

]

R′∗ = (I − Ṙ′
1)

−1W ′ =

[
2r2+r4

3

r2

]
E(SUR2) = 2r2+r4

3

V ar(SUR) = E(SUR2)− (E(SUR))2 = 2r2+r4

3
− ( 2r+r2

3
)2

=
2r2(r−1)2

9

By the definition of single use reliability:

To compute the mean:

E(SUR) = r2 ∗ 1
3
+ r ∗ 2

3
= 2r+r2

3

To compute the variance:

V ar(SUR) = (r − 2r+r2

3
)2 ∗ 2

3
+ (r2 − 2r+r2

3
)2 ∗ 1

3

=
r2(r−1)2

9
∗ 2

3
+

4r2(r−1)2

9
∗ 1

3
=

2r2(r−1)2

9

4.3 Example 3

By the new formula:

To compute the mean:

P =


0 1

2
1
2

0 1
2

1
2

0 0 0

 Q =

[
0 1

2
1
2

0 1
2

1
2

]
R1 =

[
r11 r r
r21 r r

]

R1 = Q⊗R1 =

[
0 r

2
r
2

0 r
2

r
2

]
Ṙ1 =

[
0 r

2

0 r
2

]
I =

[
1 0
0 1

]

I − Ṙ1 =

[
1 − r

2

0 1− r
2

]

(I − Ṙ1)−1 = 1
1− r

2

[
1− r

2
r
2

0 1

]
=

[
1 r

2−r

0 2
2−r

]
W =

[
r
2
r
2

]

R∗ = (I − Ṙ1)−1W =

[
r
2
+ r2

4−2r
r

2−r

]
=

[ r
2−r
r

2−r

]
E(SUR) = r

2−r

To compute the variance:

P =


0 1

2
1
2

0 1
2

1
2

0 0 0

 Q =

[
0 1

2
1
2

0 1
2

1
2

]
R1 =

[
r11 r r
r21 r r

]

R′
1 = Q⊗R2 =

0 r2

2
r2

2

0 r2

2
r2

2

 Ṙ′
1 =

0 r2

2

0 r2

2


I =

[
1 0
0 1

]
I − Ṙ′

1 =

1 − r2

2

0 1− r2

2


(I − Ṙ′

1)
−1 = 1

1− r2

2

[
1− r2

2
r2

2

0 1

]
=

1 r2

2−r2

0 2
2−r2


W ′ =

 r2

2

r2

2


R′∗ = (I − Ṙ′

1)
−1W ′ =

 r2

2
+ r4

4−2r2

r2

2−r2

 =

 r2

2−r2

r2

2−r2


E(SUR2) = r2

2−r2
V ar(SUR) = E(SUR2)− (E(SUR))2

= r2

2−r2
− ( r

2−r
)2 =

2r2(r−1)2

(2−r2)(2−r)2

By the definition of single use reliability:

To compute the mean:

E(SUR) =
∞∑
i=0

( 1
2
)i · ri · r

2
· r
2
+ r

2
= r2

4−2r
+ r

2
= r

2−r

To compute the variance:

V ar(SUR) = (r − r
2−r

)2 · 1
2
+

∞∑
i=0

( 1
2
)i · 1

2
· 1
2
· (ri · r · r − r

2−r
)2

= r2

2
· (1−r)2

(2−r)2
+ r2

4
·

∞∑
i=0

(r2 · ( r
2

2
)i + 1

(2−r)2
· ( 1

2
)i − 2r

2−r
· ( r

2
)i)

= r2

2
· (1−r)2

(2−r)2
+ r2

4
· ( 2r2

2−r2
− 4r

(2−r)2
+ 2

(2−r)2
)

= r2

2
· (r2−4r+2)(2−r2)+r2(2−r)2

(2−r)2(2−r2)
= r2

2
· 4r2−8r+4
(2−r)2(2−r2)

=
2r2(r−1)2

(2−r2)(2−r)2

4.4 Experiments

We input the three examples in the JUMBL, and com-
puted the single use reliability (SUR) means and variances
using the old analysis as well as our new analysis. The re-
sults are summarized in Table 1. For each Markov chain
usage model, we carried out the following steps for the ex-
periments:

1. Generate a test suite that consists of minimum cover-
age test cases that cover every arc and every node of
the model. The generated test suite happened to cover
each arc exactly once (see Table 1).



Table 1. Single use reliabilities (means and
variances) by the old and the new analyses
using the JUMBL for Examples 1 – 3

Example 1 Example 2 Example 3

Test Cases 1, 2
1, 3 1, 3
1, 2, 3 1, 2, 2, 3

SUR Mean
0.666666667 0.592592593 0.5(Old Derivation)

SUR Variance
55.5555556E − 3 65.5006859E − 3 83.3333333E − 3(Old Derivation)

SUR Mean
0.666666667 0.592592593 0.5(New Derivation)

SUR Variance
55.5555556E − 3 65.5006859E − 3 83.3333333E − 3(New Derivation)

2. Record all tests as successful in the test suite, and run a
test case analysis using the old engine to get the single
use reliability mean and variance by the old derivation.

3. With the same recorded test results run a test case anal-
ysis using the new engine to get the single use reliabil-
ity mean and variance by the new derivation.

For each example, since each arc happened to be covered
exactly once in the test suite, we have si,j = 1, fij = 0. As-
suming no prior information ai,j = bi,j = 1. By (1) and (2)
each arc reliability has a mean of 2

3 and a variance of 1
18 .

One can easily verify that if we plug in r = 2
3 in the formu-

lae we derived above for Examples 1 – 3, we get the same
single use reliability means as shown in Table 1 (see the
two rows for SUR mean). One can also verify for Example
1 that the single use reliability variance degenerates to the
arc reliability variance (as there is only one arc in the path),
i.e., 1

18 = 55.5555556E − 3.
We observe that for all the three examples (assuming an

arc reliability mean of 2
3 and an arc reliability variance of 1

18
for every arc), our new derivation produces the same single
use reliability mean and variance as the old derivation.

5 Conclusion

Statistical testing based on a Markov chain usage model
has been well established in theory and proved sound and
effective in practice [5, 4, 8, 6, 9, 12, 11], with tools avail-
able to support all the stages of testing and to automate
the testing process [1, 7]. This paper presents a simpler,
faster, more direct, and more intuitive derivation of the sin-
gle use reliability mean and variance, following the arc-
based Bayesian model [8, 10]. With our new theory single
use reliability mean is obtained more directly without the
need to first compute the single use failure probability. Sin-
gle use reliability variance is obtained in a faster and sim-
pler way applying a well-known theorem, without the need
to compute the second moments of arc failure probabilities.
We illustrate our new theory with three small Markov chain

usage models with manual derivations and experimental re-
sults.
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