
DOI reference number: 10.18293/SEKE2017-098

Security Requirements for Tolerating Security
Failures

Michael Shin

Texas Tech University
Department of Computer Science

Lubbock, Texas, USA
michael.shin@ttu.edu

Don Pathirage
Texas Tech University

Department of Computer Science
Lubbock, Texas, USA
don.pathirage@ttu.edu

Abstract— This paper describes security failure-tolerant
requirements, which tolerate the failures of security services
that protect applications from security attacks. A security
service, such as authentication, confidentiality or integrity
security service, can be always broken down as advanced attack
skills are coined. There is no security service that is forever
secure. This paper describes an approach to developing the
security failure-tolerant use case that specifies the security
requirements for tolerating the breaches of security services. A
security failure-tolerant use case is modeled along with
application use case and security use case, and specified with
application use case description. Threats to applications are
identified and modeled to develop security failure-tolerant
requirements. Online shopping system is used for illustrating
security failure-tolerant requirements.

Keywords - Security Requirements; Security Failure-Tolerant
use case; Security use case; Application use case

I. INTRODUCTION

Secure applications are designed with the security services
that are made to achieve security goals, such as authentication,
authorization, confidentiality, integrity, availability and non-
repudiation. The security services seem to be unbreakable
enough to protect security assets in the applications from
attacks. However, in reality, although applications are designed
with unbreakable security services, the security services are
always broken down as attack skills are getting crafty [2, 15].
To make applications more secure, it is necessary for security
services to be tolerated when they are broken down.

Several approaches [7, 8, 9, 10, 11] were developed to make
applications secure in software development. Most of the
approaches have focused on specifying and designing
applications with security services in order to make applications
secure. Security requirements are specified with Unified
Modeling Language (UML) [1] and its extended notation [7, 8],
separately from application requirements [10]. Secure software
architecture is designed using secure connectors [11] that
encapsulate security services. However, less attention has been
paid to the tolerance of broken security services in terms of
security requirements for secure applications.

This paper describes an approach to developing security
failure-tolerant requirements that tolerate broken security
services. The tolerance of breached security services is
specified on the assumption that any security services can be

broken down. The security failure-tolerant approach aims at
reducing the possibility of security damage to security assets in
the applications from the breaches of security services. The
security failure-tolerant approach is adopted from fault-tolerant
approach to minimizing the system damage from a fault of
systems. The proposed approach can delay attacks until the
security failure-tolerant use cases are compromised. Although
the security failure-tolerant approach might not be the ultimate
solution to security, it can be a solution to make applications
more secure by mitigating the breaches of security services.

II. RELATED WORK

Threat Modeling. Threats in a system have been modeled
by several approaches, which include attack trees [2], data flow
diagrams [3], and UML-based modeling [4, 5, 6]. Attack trees
in [2] provide an approach to modeling and analyzing the
threats of systems, and the threats are analyzed in terms of
attacker’s capabilities. The design models in [3] are specified
with data flow diagram, and the threats to the models are
identified and analyzed using scenarios of each function in a
system. Several threat modeling approaches, such as misuse
cases [4], abuse cases [5], and HAZOP (Hazard and Operability
Analysis) [6], have been developed for object-oriented software
systems. The approaches model threats using the use case
model in UML and capture security requirements for them.

Secure Software Development. Several researches for
developing secure software have been done in terms of secure
requirements and design. The studies in [7, 8] proposed a new
modeling language based on UML for the model-driven
development of secure, distributed systems. The research in
[17] illustrates an ontology-based approach that uses predefined
pattern-based templates to aid requirements engineers in the
formulation of security requirements. Security patterns in [9]
address the broad range of security issues that should be taken
into account in the stages of software development lifecycle.

Mitigation of Security Failures. Security failures can be
mitigated by several approaches, such as layered security
(defense in depth) [12], intrusion tolerance [16], and self-
protection [13]. The layered security [12] addresses multiple
facets of a security on a network. It is made up of multiple layers
of complementary security technologies, so that all the
technologies work together to provide the required level of
protection.

III. SECURITY REQUIREMENTS FOR SECURITY FAILURE-
TOLERANCE

A. Threat Modeling

Threats to a security failure-tolerant application focus on the
security assets in the application that should be protected from
attacks. A security asset can be a security relevant input to
applications, secure data maintained in an application, and the
system itself on which an application is running [4]. The security
relevant input to applications is a user’s input to applications or
the input from an external system or external devices to
applications in which the inputs require security. An account
identification (ID) or password entered by a user to an
application can be an example of the security relevant input to
applications. A secure data stored in an application can be a
target of an attack. The example of a secure data can be the credit
card information maintained by an electronic commerce
application or a patient’s medical record stored in a healthcare
system. Also, a system on which an application is running should
be a security asset when the system’s availability affects an
application’s availability.

The security assets in a security failure-tolerant application
can be identified by analyzing the use case descriptions for each
application use case. The use case description describes
application business logic in terms of the actor’s inputs to a
system and the system’s responses to the actor. Also, a use case
description addresses the data stored in the application and the
actions applied to the data so as to process the actor’s input and
generate a response to the actor. The actor’s input or the data
stored in an application is a security asset if it requires security.

The make order request use case in online shopping
application [14] receives a customer order request, checking the
sufficient credit to pay for the requested items and creates a
delivery order for the customer if the credit is sufficient. The
use case description for make order request use case is
described as follows:

Use case name: Make Order Request
Summary: Customer enters an order request to purchase items. The
customer’s credit card is checked for validity and sufficient credit to
pay for the requested items.
Actor: Customer
Precondition: Customer has selected one or more catalog items.
Main sequence:
1. Customer selects the order request service.

<Secure ID and Password>
2. System prompts the input for order request to customer.
3. Customer provides a purchase order request and customer

account ID and password to pay for the purchase <Threat
point: ID and Password>.
<Tolerant ID and Password>
<Secure Credit Card>
<Tolerant Credit Card>

4. System retrieves customer account information, including the
customer’s credit card details <Threat point: Credit Card>.

5. System checks the customer’s credit card for the purchase amount
and, if approved, creates a credit card purchase authorization
number.

6. System creates a delivery order containing order details, customer
ID, and credit card authorization number.

7. System confirms approval of purchase and displays order
information to customer.

8. System sends email confirmation to customer.
Alternative sequences:
Step 4: If customer does not have an account, the system prompts the
customer to provide information in order to create a new account.
Step 5: If authorization of the customer’s credit card is denied, the
system prompts the customer to enter a different credit card number.
Threat and Security:
 Threat at Step 3: Release ID and Password

o Security Asset: ID and Password
o Description: ID and Password can be released to

attackers
o Security goal: Confidentiality of ID and Password
o Security use case: Check Keystroke Logging security

use case
o Security failure-tolerant use case: Verify Image

security failure-tolerant use case
 Threat at Step 4: Release Credit Card

o Security Asset: Credit Card
o Description: Customer credit card information might

be released
o Security goal: Confidentiality of Credit Card
o Security use case: Check Malicious Code security use

case
o Security failure-tolerant use case: Fraud Monitor

security failure-tolerance use case
Post-condition: System has created a delivery order for the
customer.

The customer account ID and password at step 3 in the make
order request use case description can be a security asset in
terms of a customer input that requires security. Also, the
customer’s credit card details at step 4 are another security asset
stored in the application so that the system processes the
customer’s purchase request.

A threat identified is modeled with application use cases in
the use case model. A threat threatens an application use case at
a threat point. In this paper, a threat is represented using the use
case notation in the use case model, but a threat use case does
not have a specific actor because an attacker can be any
malicious person. Also the threat use case does not have a
common scenario as to how to realize the threat. This is because
an attacker can realize a threat in an unpredictable way. A threat
point is a point in the application use case where a threat can
occur. Also, a threat point is a step in the use case description
for an application use case where a security asset is jeopardized
if a security service is broken and there is no any security
failure-tolerant service to protect the asset.

The threats to make order request use case are modeled in
Fig. 1 in which the release ID and password threat threatens the
make order request use case at the ID and password threat
point. Similarly, the release credit card threat threatens the
make order request use case at the credit card threat point. A
threat point is designated in the use case description by means
of <threat point> with the threat point name. The ID and
Password threat point is designated at step 3 as <threat point:
ID and Password> in the make order request use case
description. Also the credit card threat point is presented with
<threat point: Credit Card> at step 4 in the same use case
description.

Customer

Make Order Request

Release ID and
Password

Release Credit
Card

«threathen»

«threathen»

«threat»

«threat»

«application»

ID and Password
Credit Card

Fig. 1 Threats to Make Order Request application use case

Each threat is specified to analyze security concerns so that
a security failure-tolerant service is developed along with a
security service. A threat can be described in the use case
description for an application use case. A threat is described
shortly in the threat and security section of the use case
description in terms of threat name, security asset, threat
description, and security goal. In the make order request use case
description above, the release ID and password threat is
specified with security asset (ID and password), description (ID
and Password can be released to attackers), and security goal
(Confidentiality of ID and Password). Similarly, the release
credit card threat is specified in the use case description. As an
alternative to a short threat description, a threat can be analyzed
and specified in detail in terms of threat attributes, threat effect,
and security concern [15].

B. Security Requirements Modeling

Security requirements of security services for an application
system are specified with security use cases [10] separately
from non-secure application use cases. When the application
system requires security services, the security use cases are
extended from the application use cases at extension points. An
extension point is a location in an application use case where a
security use case extends an application use case if the
application requires the security use case. An application use
case provides an extension point where a security use case
extends the application use case.

The security use cases for the make order request
application use case are depicted in Fig. 2 in which the check
keystroke logging security use case and check malicious code
security use case are provided for the non-secure make order
request application use case. A user’s computer might be
infected with malicious keystroke logging code that records
user credentials and sends them to a third party location to do
further harm. The check keystroke logging security use case
mitigates the leak of user’s ID and password using anti-malware
software on the user’s computer. The make order request
application use case is extended to the check keystroke logging
security use case at the secure ID and password extension point
if the application use case requires the security use case. The
secure ID and password extension point is described in the use
case description for make order request application use case.
The check keystroke logging security use case is specified as
follows:

Security use case: Check Keystroke Logging

Summary: System checks a keystroke logging attack to protect
customer input.
Actor:
Precondition: Anti-Keystroke Logging software is running.
Description:
1. System checks a keystroke logging attack.
2. If system detects a keystroke logging software, system displays

a warning message “Keystroke Logging Attack” and removes
the keystroke logging software.

3. System logs a keystroke logging attack.
Alternatives:
Post-condition: keystroke logging software has been checked.

The check malicious code security use case is another
security measure that has been employed to protect the make
order request application use case. Malicious code may get in
the application system and it can release user’s credit card
information to an attacker. When the make order request use
case requires the check malicious code use case, the check
malicious code security use case is extended from the make
order request application use case at the secure credit card
extension point, which is designated in the make order request
application use case.

Customer

Make Order Request

«application»

Check Malicious
Code

«security»
[Release Credit Card]

«extend»

Check Keystroke
Logging

«security»

[Release ID
and Password]

«extend»

Verify Image

«SFT»

[Release ID
and Password]

«extend»

Fraud Monitor

[Release Credit Card]
«extend»

«SFT»

Secure ID and Password
Tolerant ID and Password

Secure Credit Card
Tolerant Credit Card

Fig. 2 Security use cases for make order request use case

C. Security Failure-Tolerant Requirements Modeling

Security failure-tolerant requirements are modeled with
security failure-tolerant use cases, which tolerate the breaches
of security services for applications. By careful separation of
concerns, the security failure-tolerant requirements are captured
in security failure-tolerant use cases separately from security
use cases and application use cases. When an application use
case requires a security failure-tolerant use case, the security
failure-tolerant use case tolerates the breach of security use
case.

Fig. 2 depicts verify image and fraud monitor security
failure-tolerant use cases, which tolerate the breaches of check
keystroke logging and check malicious code security use cases
for make order request application use case, respectively. The
verify image security failure-tolerant use case verifies that an
image selected by the customer is matched with the image that
the customer registered in the system. Even though the customer
ID and password are released to an attacker due to failure of
check keystroke logging security use case, the attacker should
know of the customer’s image registered in the system in order
to make a malicious purchase order. The fraud monitor security

failure-tolerant use case activates a service to monitor credit card
fraud so that it prevents the damage caused by the release of
credit card information. Malicious code hidden in the system
might release the customer’s credit card information to an
attacker if the check malicious code security service fails to
detect malicious code. However, the fraud monitor security
failure-tolerant use case tolerates the attacker’s fraud of released
credit card. Providing a credit monitoring service to its
customers can ensure that even if credit card information gets
released, customer will be protected from further damage.

 A security failure-tolerant use case is extended from an
application use case at an extension point if the application
requires tolerating the breaches of security service. An extension
point for a security failure-tolerant use case is a location in an
application use case where the security failure-tolerant use case
extends the application use case. An extension point of a security
failure-tolerant use case is distinguished from that of a security
use case. For example, the verify image security failure-tolerant
use case extends the make order request use case at the tolerant
ID and password extension point (Fig 2), where the check
keystroke logging security use case is extended from the make
order request use case at the secure ID and password extension
point (Fig. 2). The tolerant ID and password extension point is
designated in the make order request use case description. The
verify image security failure-tolerant use case is described as
follows:

Tolerant use case: Verify Image
Summary: Customer clicks an image rather than keystroking his/her
ID and password and system verifies the image.
Actor: Customer
Precondition: Customer’s personal image is stored in the system.
Description:
1. System displays multiple images, which includes the image that

customer has selected while registering for the system.
2. Customer selects an image that he/she has selected when

registering for the system.
3. System verifies that the image selected by the customer is

matched with the customer’s image stored in the system.
4. If the images are the same, system approves that the customer

makes an order.
Alternatives:
Step 4: If the customer selects the incorrect image consecutively for
2 times, the customer account is locked.
Post-condition: System has verified an image selected by a
customer.

IV. CONCLUSIONS AND FUTURE WORK

This paper presumes that security services are broken all the
time in a real-world setting. On this assumption, first our
approach has identified threats associated with security assets
in terms of security relevant user’s input, secure data stored in
the application, and the system on which an application is
running. Second we constructed security use cases against the
threats so that the application would be protected from the
threats identified. Finally, security failure-tolerant use cases
have been specified to tolerate the breaches of security use
cases.

The security failure-tolerance can be envisioned with
further research. The security failure-tolerant requirements can
be extended to security failure-tolerant analysis modeling that
describes the static modeling and dynamic modeling. Also, this
research can be extended to develop a framework for security
failure-tolerant requirements in which security failure-tolerant
use cases are categorized with security use cases in terms of
security goals.

REFERENCES
[1] J. Rumbaugh, G. Booch, and I. Jacobson, “The Unified Modeling Language

Reference Manual (2nd Edition),” Addison Wesley, Reading MA, 2004.

[2] B. Schneier, “Attack trees: Modeling security threats,” Dr.Dobbs Journal,
pages 21–29, December 1999.

[3] M. Abi-Antoun, D. Wang and P. Torr, “Checking Threat Modeling Data
Flow Diagrams for Implementation Conformance and Security”, ASE
2007, 21 pages, 2006.

[4] G. Sindre and L. Opdahl, “Eliciting Security Requirements with Misuse
Cases,” Requirements Engineering, Volume 10 Issue 1, January 2005, pp.
34 - 44.

[5] J. McDermott and C. Fox, “Using Abuse Case Models for Security
Requirements Analysis,” In Proceedings of 15th Annual Computer
Security Applications Conference (ACSAC`99), pp. 55-64, Phoenix,
Arizona, December, 1999.

[6] T. Srivatanakul, “Security Analysis with Deviational Techniques,” PhD
thesis, Department of Computer Science, University of York, UK, 2005.

[7] T. Lodderstedt, D. Basin, J. Doser, “SecureUML: A UML-Based Modeling
Language for Model-Driven Security”, Fifth International Conference on
the Unified Modeling Language, London, UK., 2002.

[8] J. Jürjens, “UMLsec: Extending UML for Secure Systems Development”,
Fifth International Conference on the Unified Modeling Language,
London, UK, 2002.

[9] E. B. Fernandez, “Security Patterns in Practice”, Wiley, 2013.

[10] H. Gomaa and M. E. Shin, “Modeling Complex Systems by Separating
Application and Security Concerns”, 9th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2004), Italy, April,
2004.

[11] M. E. Shin, H. Gomaa, D. Pathirage, C. Baker, and B. Malhotra, “Design
of Secure Software Architectures with Secure Connectors”, International
Journal of Software Engineering and Knowledge Engineering, Vol. 26, No.
5, pp 769–805, 2016.

[12] S. Gantz, “Layered Security Architecture: Establishing Authentication,
Authorization, and Accountability”, securityarchitecture.com/docs/, 2008.

[13] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology”,
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computin
g.pdf, 2001.

[14] H. Gomaa, “Software Modeling and Design: UML, Use Cases, Patterns,
and Software Architectures”, Cambridge University Press, 2011.

[15] M. E. Shin, S. Dorbala, and D. Jang, “Threat Modeling for Security
Failure-Tolerant Requirements”, ASE/IEEE International Conference on
Privacy, Security, Risk and Trust (PASSAT2013), Washington D.C., USA,
2013.

[16] I. E. Mir, D. S. Kim, and A. Haqiq. "Security modeling and analysis of a
self-cleansing intrusion tolerance technique." IEEE 11th International
Conference on Information Assurance and Security (IAS), 2015.

[17] D. Olawande, G. Sindre, and T. Stalhane, "Pattern-based security
requirements specification using ontologies and boilerplates", IEEE
Second International Workshop on Requirements Patterns (RePa), 2012.

