
A GQM-based Approach for Software Process
Patterns Recommendation

Zhangyuan Meng†, Cheng Zhang†, Beijun Shen†,Wei Yin‡
†School of Software, Shanghai Jiao Tong University, Shanghai, China

‡China Aeronautical Radio Electronics Research Institute, Shanghai, China
Email: {602389789, jonathenzc, bjshen}@sjtu.edu.cn, yin wei@careri.com

Abstract—A good software process can help project manager
manage software development effectively and control develop-
ment risks. For this reason, theory and experts’ experience are
concluded and put into process patterns. But it still requires
human skills to search for appropriate process patterns in
practice. To tackle this challenge, this paper proposes a Goal-
Question-Metric (GQM) based approach to recommending soft-
ware process patterns. The essential idea of this approach is to use
a GQM method to design scenario questions for software process
patterns, elicit the requirement of new project by answering these
questions, and then recommend the optimal matching patterns
to the project. In particular, we use a Latent Dirichlet Allocation
model on the scenario descriptions of software process patterns
to achieve a text-topic distribution, and then apply the K-means
method to do text clustering, which facilitate scenario questions
design a lot. We evaluate the performance of our topic clustering
method by comparing it with that of the statistics method
based on TF-IDF. The evaluation results show that our method
contributes a high F-score which is 11.6% higher than that of the
traditional TF-IDF approach. Furthermore, the average precision
of recommendation can reach 57%.

Index Terms—Software Process Pattern Recommendation; Ma-
chine Learning; Goal-Question-Metric

I. INTRODUCTION

Nowadays a large number of software systems are under
development, meanwhile, software process plays a key role in
helping software managers develop high-quality systems and
control risks. For aiding software development, process experts
have designed many software process patterns [1] [2] [3],
including waterfall process model, incremental process model,
evolution model, scrum model, test driven development and
so on. These process patterns have aggregated considerable
experience and knowledge, as they are extracted from many
successful projects, refined and improved constantly. Liter-
atures [4] [5] show that these patterns do provide general
process solutions that can lead to further successful software
projects.

Although many useful process patterns have been designed,
it is not easy to find an appropriate one for a given software
project. Software development is a knowledge intensive task,
and many technical, social, and environment constraints and
factors can influence the software development. Choosing an
appropriate process pattern is not only an intelligent work,

DOI reference number: 10.18293/SEKE2017-082

but also a manpower consumption work. The chosen pro-
cess patterns may not be appropriate if these constraints are
not considered. Therefore automated process pattern recom-
mendation with high performance is in urgent need. It can
put forward suggestions for the users to choose appropriate
process patterns so that the software development can be
significantly improved, which means the whole process can
be optimized, the redundant development activities can be
eliminated, and the quality and maintainability of the software
under development can be enhanced.

However, it is non-trivial to recommend software process
patterns automatically in practice because of two main diffi-
culties:

1) How to acquire and express the software process pat-
terns and software project requirements which can be
understood by computers? Software process patterns
are summed up by process experts through practical
experience. There is no pattern language standard to
unify formats and styles of process patterns, which
makes them unstructured and difficult for computers to
understand and process. There is the same problem with
the software project requirements.

2) How to recommend appropriate software process pat-
terns according to the project requirements automati-
cally? Traditionally, software process patterns are rec-
ommended by human experts. However, usually there
are not enough process experts, especially in small
organizations. Therefore, we need an AI expert to do
it in an automatic way, where the biggest trouble lies
in how to compute the matching degree between the
project requirements and software process patterns in a
universal way.

To tackle the above challenges, we propose a Goal-
Question-Metric (GQM) based approach to recommending
software process patterns. In this approach, we design scenario
questions and answers for each software process patterns ac-
cording to their description. When a new project comes, these
questions are answered according to its specific requirements
by the project manager (PM). By calculating the correlation
between project requirements and all process patterns based on
real answers and expected answers, a candidate list of software
process patterns is recommended.

This paper makes the following contributions:



1) We present a GQM-based approach of software process
pattern recommendation. Through questionnaires, we
extract the structured scenario data from the textual
description of software process patterns and project
requirements. And then, the correlations between re-
quirements and process patterns are calculated. As a
result, software process patterns with high correlations
are recommended.

2) We propose a topic clustering method to facilitate design
scenario questions. We use LDA [6] to build a topic
model for each sentences of software process patterns
descriptions. After that, we calculate the similarities
between sentences based on topic distribution, and use
K-means [7] algorithm to do text clustering. With these
clusters, we can design the scenario questions in a
cluster-level instead of single sentence level, which can
save lots of time and labor.

The remainder of this paper is organized as follows: Sec-
tion II presents the related work; Section III describes our
approach; Section IV discusses the experiments and results;
Section V concludes the paper.

II. RELATED WORK

Pattern is a common solution to a recurring problem in
a given context [8]. Birukou et al. [9] divided the problem
of reusing patterns into two steps, searching for patterns and
selecting patterns. The problem of searching for patterns is
to find appropriate patterns to solve given problems, and the
problem of selecting patterns is to choose patterns to apply
from a list of patterns. In the domain of software engineering,
there are many different kind of patterns. Research mainly
focus on the selection and recommendation of design patterns
and process model.

A. Selection and Recommendation of Design Patterns

R. Mustapha et al. [10] proposed a recommender system
for design patterns by labelling each patterns with several
key words, and ask user to input some key words and about
their project, then patterns are recommended according to key
words matching. F. Palma et al. [11] proposed a recommen-
dation method of software development design patterns. They
extracted features manually from various design patterns, and
then achieved scores of these extracted features by question-
naire. The matching degree between requirements and design
patterns was calculated by the sum of answered weights.
Sanyawong et al. [12] extracted names of classes and methods
from software design. With these names, the similarity be-
tween different software designs can be calculated, and design
patterns were recommended to novice designers. Issaoui et
al. [13] used semantic information of class names, method
names and description of software to do recommendation.

B. Selection and Recommendation of Process Model

In recent years, with the rapid development of the Internet
and open source communities, lots of historical data about
the software projects has been saved which can be used by

researchers. Little et al. [14] proposed several attributes to
score the suitability of the development process approach for
a particular project. Egwali and Akwukwuma [15] proposed
35 criteria and a relative rating mechanism for these criteria to
select appropriate process model. But these criteria rely heav-
ily on the authors’ subjective opinions which may affect the
selection appropriate process models. Song et al. [16] defined
a machine learning based method of software process model
recommendation. Choosing an appropriate process model for
a new project is achieved by utilizing the relationship between
software project characteristics and the appropriate process
models.

In summary, most of current research on patterns selection
and recommendation mainly adopt features extracted from
structured data. Kubo et al. [17] proposed a method to
search appropriate unstructured patterns according to patterns’
popularity, but this method can’t match the requirement of a
software project in detail.

III. APPROACH

A. Approach Overview

In order to deal with above problems, we propose a GQM-
based approach to software process pattern recommendation,
as shown in figure 1. The input is a reusable software process
pattern library, where each pattern is described in the form
of Name, Intent, Domain, Solution, Initial Context [4], as
illustrated in Table I. The output is a recommended pattern
list to a new project.

TABLE I: DESCRIPTION EXAMPLE OF PATTERN FLOOT.

Item Name Content
Name Full Life Cycle Object-Oriented Testing, FLOOT
Intent FLOOT methodology is a collection of testing tech-

niques to verify and validate object-oriented soft-
ware. The goal is to define software defects before
delivery to users and assure your software applicable
as a complete artifact.

Domain Testing
Solution 1. Make testing plan for systematic testing;

2. Input systematic testing plan;
3. Commit systematic testing, including functional
testing, pressure testing, installation testing and op-
eration testing;
4. Record problem and defect for regression testing.
Condition 1: If it passes regression testing, go to step
5;
Condition 2: If it fails to pass regression testing, go
to step 1.
5. After systematic testing, software is under user
testing, including Alpha/Beta testing, delivery test-
ing.

Initial Context 1. Your software is under package for delivery.
FLOOT will test software as a whole for installation
tools, documents and software.
2. Master test / quality assurance plans are finished.
You need to manage and track testing work.

Our approach consists of two phases:
1) At questions and answer design phase, we preprocess

scenario descriptions of process pattern, build topic
model for each scenario sentence. After that, we do text



Software Process 
Patterns

Preprocessing Text Topic 
Modelling

Pattern Text 
Clusters

Activity

Data

Text-Topic 
Matrix Scenario 

Questions

Text Clustering 
by Calculating 
Topic Similarity 

scenario 
description

Design 
Questions & 

Answers 

Q&A of 
Process 
Patterns

Design of Scenario 
Questions and Answers

Answers & 
Weights

Searching for 
Patterns based on 
Matching Points

Answering Questions and 
Scoring Weights According 

to Requirements PM of
New Project

Candidate
List of Patterns

Recommendation of 
Software Process Pattern

Fig. 1: Our Approach to Software Process Pattern Recommendation

clustering on all sentences for patterns by calculating
similarity on text topic matrix. For each cluster, scenario
questions are designed, and each question on every
related pattern is assigned with an answer.

2) At pattern recommendation phase, PM firstly needs to
answer related scenario questions and score the rele-
vance between their requirements and questions. We get
the candidate list of patterns recommended by calcu-
lating the matching degree between PM’s answers and
pattern answers designed in the previous phase.

B. Design of scenario questions and answers

Software process patterns are accumulated by experts’ past
experience and knowledge. However, such textual descriptions
cannot be understood by machine. We adopt scenario questions
to describe process pattern characteristics and new project
requirements, for the further recommendation. Here, it will
be described in details how the questions and answers are
designed using the GQM model and machine learning tech-
nology.

1) Goal-Question-Metric Model: GQM [18] is a three
layer model, where goals should be identified first, questions
are designed to achieve these goals, and then questions are
answered by metrics. In this paper, we apply GQM model to
the questions design of process patterns. As Figure 2 shows,
goals on the top layer are process patterns, questions on the
middle layer are scenario questions, and metrics on the bottom
layer are the answers to scenario questions, which are in the
form of (Yes / No / Don’t know) with a weight on a scale of 0-
10. Each pattern has its scenario questions and corresponding
answers.

Fig. 2: GQM Model for Pattern Question Design.

2) Steps of Question Design: There are four steps in
scenario question design.
• Preprocessing. The sentences in the Intent, Domain and

Initial Context from pattern description (Table I) are
extracted and filtered as the scenario descriptions of a
pattern, and then represented in the form of bag of words.

• Text topic modeling. We apply LDA [6] on all the
scenario sentences from all patterns to build topic model,
and get text-topic probability distribution matrix. The size
of matrix is d × k, where d means the amount of all
sentences and k indicates the count of topics (in our
method we set k with 100). Each row vector in matrix
means topic probability distribution of one sentence, and
the whole matrix represents topic probability distribution
of all pattern descriptions.

• Calculating topic similarity and sentences clustering.
We adopt K-means [7] to probability distribution matrix
for sentences clustering. The similarity between texts is
related to the similarity between vectors in matrix, which
is calculated by Euclidean distance, as defined in formula
(1).

distance(X,Y ) =

√∑k

i=1
(xi − yi)2 (1)

where X,Y is the row vector which consists of xi and
yi; xi and yi are respective probability of the sentence
belonging to the ith topic; and k is the number of all
topics. After text clustering to all the pattern description
sentences, we can obtain the topic cluster collection of
all the sentences. In our method, we set K for K-means
with 25.

• Design of questions and answers. We design scenario
questions according to all clusters of pattern descriptions.
Each pattern has one or more questions. As the example
in Figure 3 shows, each pattern description consists of
several sentences. After topic clustering, each cluster con-
tains various sentences from different patterns. Questions
are mainly from the clusters sentences. Once all questions
have been designed for all clusters, we assign a right
answer to each question on every related pattern.

3) An Example: Here is an example of how to design
scenario questions and answers. Table II shows the scenario



Fig. 3: Patterns, Clusters and Questions.

descriptions of three patterns, waterfall development (WD),
iterative development (ID), and prototype development (PD).
Table III lists the topic clustering results and their designed
questions. And Table IV shows the scenario questions and
answers for each pattern, where ’—’ means the question is
not related to the pattern.

TABLE II: EXAMPLE OF SCENARIO DESCRIPTION.

Pattern Name Pattern Description Sentences
Waterfall development 1. Be useful for complex system whose re-

quirements should be stable and clear.
2. Be suitable for the projects with less risks.
3. Places emphasis on documentation.
4. Emphasis is on planning, time schedules,
target dates, budgets and implementation of
an entire system at one time.

Iterative development 5. The requirements could be not so stable at
the beginning.
6. Offer many different available versions.
7. Often contact with users to obtain feed-
back.
8. Can reach a high demand of risk control.

Prototype development 9. Be suitable for small project whose require-
ments are not very clear.
10. Work with users during the development.
11. Ensure the developed software with a high
usability.
12. May delay the whole development cycle.

TABLE III: TOPIC CLUSTERING AND QUESTION RAISE.

Sentence Clusters Scenario Questions
{1,5,9} 1. Are the requirements of your project stable and

clear?
{2,8} 2. Does your project have some high risks need to

control?
{3} 3. Do you need detailed documents?
{4,12} 4. Do you need a complete development and strict

plan?
{6} 5. Do you need to release system versions quickly?
{7,10} 6. Do you need to contact with users often during

development process?
{11} 7. Does your project need a high usability?

C. Recommendation of Software Process Pattern
In this phase, appropriate patterns will be recommended

according to the requirement of a new project. Our approach

TABLE IV: EXAMPLE OF Q&A DESIGN FOR PATTERNS.

Question WD ID PD
1. Are the requirements of your project
stable and clear?

Yes Yes or No No

2. Does your project have some high risks
need to control?

No Yes —

3. Do you need detailed documents? Yes — —
4. Do you need a complete and strict devel-
opment plan?

Yes — No

5. Do you need to release system versions
quickly?

— Yes —

6. Do you need to contact with users often
during development process?

— Yes Yes

7. Does your project need a high usability? — — Yes

obtains project requirements by questionnaire and uses sce-
nario questions to match process patterns. The benefit of ques-
tionnaire is that it avoids analyzing the textual requirements
of a new project by nature language processing technology,
and helps understand them more accurately.

1) Recommendation Method: Figure 4 shows the recom-
mendation method of software process pattern. When a new
project coming, PM will answersthe scenario questions with
”Yes/No/Don’t know” and score the weights between the
project requirements and questions. The weight is an integer
from 0 to 10 for quantification of the relationship between
patterns and project requirements. After recording the answers
and weights, we can calculate all the matching degrees be-
tween patterns and questions. As a result, we sort all the
matching degrees and pick the first five process patterns as
the candidate list to PM. In addition, it is not all questions
that should be answered. Questions are often correlative, so
we will filter the remaining questions based on the answers of
previous questions.

Ask PM

Start

End

PM Answers 
Scenario Questions

Filter Questions 
According to Answers

Is Collection 
Empty?

Calculate Matching 
Degree of Patterns

Recommend Candidate 
List of Patterns

Traverse 
Question Collection

Exclude 
Irrelevant Questions

Record Answers & 
Weights

True

False

Fig. 4: Recommendation Method

To recommend the appropriate patterns for a project, the
matching degree between their answers of scenario questions
is calculated by formula (2).



MD =
1

NQ
(

n∑
i=1

(Weighti same)−
m∑
j=1

(Weightj diff)) (2)

In the formula, MD is the matching degree between patterns
and new project requirements; NQ is the number of all related
questions for the pattern;

∑n
i=1(Weighti same) is the weight

sum of all PM’s answers in accordance with pattern’s answers;∑m
j=1(Weightj diff) is the weight sum of all PM’s answers

inconsistent with pattern’s answers. For example, there is
a question collection {Q1,Q2,Q3} and their pattern answers
are {yes,no,no}. A PM answers these questions and gives
{(yes,10),(yes,8),(no,9)}. The questions with the same answers
are Q1 and Q3, while Q2 is the question with different
answer. As a result,

∑n
i=1(Weighti same answer) is 19 and∑m

j=1(Weightj diff answer) is 8. So the matching degree
between this pattern and PM’s requirements is 11

3 .
2) An Example: Here is a small example to illustrate

which pattern is prefered. Company A needs to develop a
graphic software. The requirement is not very clear and the
client ask for a high usability. In order to get appropriate
software process patterns, PM needs to answer the scenario
questions. Table V shows the records of pattern recommen-
dation questionnaire. In the table, column ’A’ represents the
answer to question and ’W’ is the weight. Three patterns
are examined, including waterfall development pattern (WD),
iterative development pattern (ID), and prototype development
pattern (PD).

Take waterfall development pattern as an example, its
related question collection is {Q1,Q2,Q3,Q4} and corre-
sponding answers are {yes,no,yes,yes}. PM’s answer pairs
are {(no,8),(yes,5),(no,5),(yes,3)}. Only Q4 is matched. So
Weightsame answer is 3, Weightdiff answer is 18 and the
matching degree between pattern waterfall development and
PM’s requirements is - 154 . According to the total weight,
prototype development pattern is the optimal fit among these
three patterns.

TABLE V: RECORDS OF PATTERN RECOMMENDATION QUESTIONNAIRE.

Question A W WD ID PD
1. Are the requirements of your
project stable and clear?

No 8 -8 8 8

2. Does your project have some
high risks need to control?

Yes 5 -5 5 —

3. Do you need detailed docu-
ments?

No 5 -5 — —

4. Do you need a complete and
strict development plan?

Yes 3 3 — -3

5. Do you need to release system
versions quickly?

No 8 — -8 —

6. Do you need to contact with
users often during development
process?

Yes 8 — 8 8

7. Does your project need a high
usability?

Yes 10 — — 10

Total Weight — — - 15
4

13
4

23
4

TABLE VI: PERFORMANCE COMPARISONS OF TEXT CLUSTERING.

Clusters Num Of Sentences
TF-IDF LDA

P R F P R F

Architecture 11 0.63 0.64 0.63 0.72 0.73 0.72

Documentation 8 0.83 0.63 0.71 0.75 0.75 0.75

Design 25 0.65 0.60 0.62 0.82 0.76 0.79

Governance 19 0.71 0.53 0.61 0.72 0.68 0.70

Testing 12 0.50 0.75 0.60 0.75 0.83 0.79

IV. EXPERIMENTS

In this section, we conduct experiments to answer these two
research questions:

RQ1: Compared to traditional text clustering approaches
based on statistics, does our approach reach a better perfor-
mance?

RQ2: Does our approach recommend appropriate software
process patterns to a new project?

A. Experimental Settings

Ambler published an online software process pattern col-
lection*. We extract totally 378 description sentences for 89
patterns from this website. For RQ1, we use Precision, Recall
and F1-Measure as the evaluation criteria. For RQ2, we use
HitRate to calculate the precision of pattern recommendation,
as defined in formula (3), where hitCnt means the number
of successful recommendation and TotalCnt means the total
number of recommendation.

HitRate =
hitCnt

TotalCnt
(3)

B. Text Clustering Experiment

To answer RQ1, we conduct a comparison experiment
between our approach and the statistics approach based on
TF-IDF. We select 75 sentences from all these 378 description
sentences and divide them into 5 topics manually, as the
benchmark. At the same time, the automatic text clustering
is made by two approaches, where the topic number for LDA
is set with 100 and the target clusters number of K-means with
5.

The experimental result is illustrated in Table VI. It shows
that our approach based on LDA has higher precision and
recall compared traditional TF-IDF approach, which has better
effect on text clustering of software process pattern descrip-
tions.

C. Pattern Recommendation Experiment

To answer RQ2, we collect 30 software projects which have
been closed successfully and record their corresponded process
patterns manually as the benchmark. We invite 18 PMs with
different professional level to involve in this experiment. For
each PM, we select 5 projects randomly and offer them enough
time to understand the requirements of selected projects. Then
they follow our approach to obtain recommended patterns.

*http://www.ambysoft.com/processPatternsPage.html



In a recommendation, if one of the top five recommended
patterns matches with the recorded patterns, we regard this
recommendation as a successful one.

In our method, Totally 57 questions are designed for all
these 89 patterns we extract. Table VII (HR denotes hit recom-
mendations and TR denotes total recommendations) lists the
recommendation results for different PM professional levels.
It shows that the average precision of pattern recommendation
can reach 57%, which can meet the managers’ requirements
on recommending software process patterns.

TABLE VII: RECOMMENDATION RESULTS.

Professional Level of PMs Num of PMs HR TR HitRate
Beginner 4 10 20 50%
Normal 4 11 20 55%
Medium 4 13 20 65%

Advanced 4 12 20 60%
Skilled 2 6 10 60%

D. Comparison with other methods

Considering other two state-of-the-art methods mentioned
in [14] and [16]. For the first method, it only uses 4 kinds
of different process model, so it is not suitable to do a direct
comparison. For the second method, a huge amount of historic
software project data are collected to employ this model.,
it is hard for us to obtain satisfied data for redoing their
experiments. So we just analyze the pros and cons of different
methods as shown in Table VIII. Our approach can deal with
unstructured textual descriptions of software patterns, and thus
is more practical and can be applied in more scenarios.

TABLE VIII: COMPARISON OF DIFFERENT APPROACHES.

Method Pros Cons
Our Method accurate recommendation; ex-

pandable pattern repository;
unstructured data understand-
able

semi-automatic
questions design; Rely
on the answering of the
PM, not so objective

[14] Raise criteria to measure com-
plexity and uncertainty; Divide
projects into 4 categories ac-
cording to complexity and un-
certainty

unstable precision; di-
vide all process patterns
into 4 category, not spe-
cific enough

[16] quantified software develop-
ment attribute; accurate recom-
mendation

inapplicable to unstruc-
tured data(such as re-
quirements); not conve-
nient to add new process
patterns

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a GQM based software process
recommendation approach. The approach applies GQM model
to design scenario questions for different patterns, with the
help of natural language processing and machine learning tech-
niques. For a new project, its requirements are elicited through
answering these questions, and then the optimal matching
patterns are recommended. Experimental results show our
approach can recommend the proper process patterns to a
specific project with a high precision.

As for future work, we will explore an automatic ap-
proach to generate scenario questions from the descriptions
of software process patterns. And we also plan to do more
experiments to compare our approach with others, apply our
approach in practice and improve it according to the feedback.

ACKNOWLEDGEMENT

Beijun Shen is the corresponding author. This research is
supported by National Natural Science Foundation of China
(Grant No. 61472242) and 973 Program in China (Grant No.
2015CB352203).

REFERENCES

[1] W. W. Royce et al., “Managing the development of large software
systems,” in proceedings of IEEE WESCON, vol. 26, pp. 1–9, Los
Angeles, 1970.

[2] B. W. Boehm, “A spiral model of software development and enhance-
ment,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[3] K. Beck, “Embracing change with extreme programming,” Computer,
vol. 32, no. 10, pp. 70–77, 1999.

[4] S. W. Ambler, Process patterns: building large-scale systems using
object technology. Cambridge University Press, 1998.

[5] S. W. Ambler, More process patterns: delivering large-scale systems
using object technology. Cambridge University Press, 1999.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[7] J. B. Macqueen, “On convergence of k-means and partitions with
minimum average variance,” Annals of Mathematical Statistics, vol. 36,
1965.

[8] J. M. Küster, C. Gerth, A. Förster, and G. Engels, “Detecting and
resolving process model differences in the absence of a change log,” in
International Conference on Business Process Management, pp. 244–
260, Springer, 2008.

[9] A. Birukou, “A survey of existing approaches for pattern search and
selection,” in Proceedings of the 15th European Conference on Pattern
Languages of Programs, p. 2, ACM, 2010.

[10] Y. G. Guéhéneuc and R. Mustapha, “A simple recommender system
for design patterns,” Proceedings of the 1st EuroPLoP Focus Group on
Pattern Repositories, 2007.

[11] F. Palma, H. Farzin, Y. G. Guéhéneuc, and N. Moha, “Recommendation
system for design patterns in software development: An dpr overview,”
in Proceedings of the Third International Workshop on Recommendation
Systems for Software Engineering, pp. 1–5, IEEE Press, 2012.

[12] N. Sanyawong and E. Nantajeewarawat, “Design pattern recommenda-
tion based-on a pattern usage hierarchy,” in International Computer
Science and Engineering Conference (ICSEC), pp. 134–139, IEEE,
2014.

[13] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, “A new approach for
interactive design pattern recommendation,” Lecture Notes on Software
Engineering, vol. 3, no. 3, p. 173, 2015.

[14] T. Little, “Context-adaptive agility: Managing complexity and uncer-
tainty,” IEEE Software, vol. 22, no. 3, pp. 28–35, 2005.

[15] A. O. Egwali and V. V. N. Akwukwuma, “Security framework for
software process models: Measures for establishing a choice,” Asian
Journal of Information Technology, no. 1, pp. 463–471, 2012.

[16] Q. Song, X. Zhu, G. Wang, H. Sun, H. Jiang, C. Xue, B. Xu, and
W. Song, “A machine learning based software process model recommen-
dation method,” Journal of Systems and Software, vol. 118, pp. 85–100,
2016.

[17] A. Kubo, H. Nakayama, H. Washizaki, and Y. Fukazawa, “Patternrank: A
software-pattern search system based on mutual reference importance,”
15th Pattern Languages of Programming (PLoP), 2008.

[18] N. E. Fenton, Software Metrics: A Rigorous and Practical Approach.
International Thomson Computer Press, 1996.


