
 

 

FSCR:A Feature Selection Method for Software 

Defect Prediction 
 

Xiao Yu1,2,3, Ziyi Ma2,3, Chuanxiang Ma2,3* ,Yi Gu2,3,Ruiqi Liu4, Yan Zhang2,3 
1State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China 
2School of Computer Science and Information Engineering, HuBei University, Wuhan, China 

3Educational Informationalization Engineering Research Center of HuBei Province, Wuhan, China 
4 International School of Software, Wuhan University, Wuhan, China 

*Corresponding author email: mxc838@hubu.edu.cn 

 
Abstract—Prediction the number of faults in software 

modules can be more helpful instead of predicting the modules 

being faulty or non-faulty. Some regression models have been 

used for predicting the number of faults. However, the software 

defect data may involve irrelevant and redundant module 

features, which will degrade the performance of these regression 

models. To address such issue, this paper proposes a feature 

selection method based on Feature Spectral Clustering and 

feature Ranking (FSCR) for the number of software faults 

prediction. First, FSCR groups the original features with spectral 

clustering according to the correlation between every two 

features. Second, FSCR employs ReliefF algorithm to compute 

the relevance between each feature with respect to the number of 

faults and selects top p most relevant features from each resulted 

cluster. We evaluate our proposed method on 6 widely-studied 

project datasets with four performance metrics. Comparison 

with five existing feature selection methods demonstrates that 

FSCR is effective in selecting features for the number of faults 

prediction. 

Keywords—software fault prediction;regression model;feature 

selection; spectral clustering 

I. INTRODUCTION 

Software defect prediction is one of the most important 
software quality assurance techniques. Based on the 
investigation of historical metrics, defect prediction aims to 
detect the defect proneness of new software modules. 
Therefore, defect prediction is often used to help to reasonably 
allocate limited development and maintenance resources [1]. 
So far, many efficient software defect prediction methods using 
statistical methods or machine learning techniques have been 
proposed [2-5], but they are usually confined to predicting a 
given software module being faulty or non-faulty by means of 
some binary classification techniques.1 

However, predicting the defect-prone of a given software 
module does not provide enough logistics to software testing in 
practice [6]. Some of the faulty software modules may have 
comparatively vast quantities of faults compared to other 
modules and hence require some additional maintenance 
resources to fix them. So, it may result in a waste of limited 
maintenance resources if simply predicting the defect-prone of 
a given software module and allocating the limited 
maintenance resources solely based on faulty and non-faulty 
information. If we are able to predict the accurate number of 

 
1 DOI reference number: 10.18293/SEKE2017-081 

faults, software testers will pay particular attention to those 
software modules that have more number of faults, which 
makes testing processes more efficient in the case of limited 
development and maintenance resources. Thus, prediction the 
number of faults in software modules can be more helpful 
instead of predicting the modules being faulty or non-faulty [6]. 

A number of prior studies have investigated regression 
models on predicting the number of faults. Some researchers 
[7-12] have investigated genetic programming, decision tree 
regression, and multilayer perceptron in the context of the 
number of faults prediction and found that these models 
achieved good performance. Chen et al. [11] performed an 
empirical study on predicting the number of faults using six 
regression algorithms and found that the prediction model built 
with decision tree regression had the highest prediction 
accuracy in most cases. In another similar study, Rathore et al. 
[12] presented an experimental study to evaluate and compare 
the other six regression algorithms for the number of faults 
prediction. The results found that decision tree regression, 
multilayer perceptron, and linear regression achieved better 
performance in many cases.  

However, the performance of these regression models is 
still vulnerable to irrelevant and redundant module features that 
may undermine the prediction effect.  It is crucial to apply 
feature selection to the number of faults prediction since 
feature selection can filter out irrelevant and redundant features 
by evaluating the contributions of module features. The output 
of feature selection is a subset of the original feature set. This 
feature subset is more effective for the number of faults 
prediction. 

In this paper, we propose a novel feature selection method, 
FSCR, to support feature selection for the number of faults 
prediction. FSCR is short for feature selection based on Feature 
Spectral Clustering and feature Ranking, which enhances 
feature selection for the number of software faults prediction 
via a two-stage approach. First, FSCR groups the original 
features with spectral clustering according to the correlation 
between every two features. Second, FSCR employs ReliefF 
algorithm to compute the relevance between the features and 
the number of faults and selects top p most relevant features 
from each resulted cluster. 

We evaluate our proposed feature selection method, FSCR, 
by answering two research questions on performance. 
Experiments are conducted on 6 publicly available projects. 



 

 

Experimental results show that FSCR can effectively select 
features to improve the performance of the models for the 
number of faults prediction.  

II. RELATED WORK 

In this section, we first briefly review the existing defect 
prediction methods. Then, we review the existing feature 
selection methods. 

A. Defect Prediction 

Many researchers have proposed various models for 
predicting the module being faulty or non-faulty. Support 
vector machine [13-14], neural networks [15], decision trees 
[16] and Bayesian methods [17] paved the way for 
classification-based methods in the flied of defect prediction. 
These methods used software metrics to properly predict 
whether a module is defect-prone or not.  

A number of prior studies have investigated regression 
models on predicting the number of software faults. Graves et 
al. [18] presented a generalized linear regression based method 
for the number of faults prediction using various change 
metrics datasets collected from a large telecommunication 
system and found that modules age, changes made to module 
and the age of the changes were significantly correlated with 
the defect-prone. Chen et al. [11] performed an empirical study 
on predicting the number of faults using six regression 
algorithms and found that the prediction model built with 
decision tree regression had the highest prediction accuracy in 
most cases. In another similar study, Rathore et al. [9] 
presented an experimental study to evaluate and compare the 
other six regression algorithms for the number of faults 
prediction. The results found that decision tree regression, 
genetic programming, multilayer perceptron, and linear 
regression achieved better performance in many cases. 
However, the prediction performance of these models gets 
worse when the defect datasets contain irrelevant and 
redundant features. 

B. Feature Selection in Defect Prediction 

A number of prior studies have investigated feature 
selection methods on predicting the module being faulty or 
non-faulty. Gao et al. [19] studied four different filter-based 
feature selection methods with five different classifiers on a 
large telecommunication system and found that the 
Kolmogorov-Smirnov method performed the best. Gao et al. 
[20] presented a comparative investigation to evaluate their 
proposed hybrid feature selection method, which first uses 
feature ranking to reduce the search space and then applies 
feature subset selection. In order to investigate different 
feature selection methods to classification-based bug 
prediction, Shivaji et al. [21] utilized six feature selection 
methods to iteratively remove irrelevant features until 
achieving the best performance of F-measure. Chen et al. [22] 
proposed a two-stage data preprocessing framework, TC, 
which combines feature selection and instance reduction. Liu 
et al. [23] proposed a new feature selection framework, 
FECAR, to conduct feature clustering and feature ranking.  

III. METHODOLOGY 

In this section, we present our FSCR method for the 
number of faults prediction. We first introduce the framework 
of our proposed method; then we present the detailed steps in 
the stage of feature spectral clustering and feature ranking. 

A. The framework of our method 

The method consists of two major stages: feature spectral 
clustering and feature ranking. Fig.1 illustrates the process of 
FSCR using a simple example. 
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Figure 1. The process of FSCR 

Assumes that the dataset has ten original features, 
represented by hollow circle in Fig.1. In the first stage, these 
features are partitioned into three clusters by using the spectral 
clustering algorithm, namely, C1={0,1,4,8}, C2={2,6,9} and 
C3={3,5,7}. In the second stage, we rank all features in every 
clusters based on the relevance between each feature with 
respect to the number of software faults, and select the top p 
features from each cluster. Therefore, the final feature subset 
contains 1, 6, 7 and 8.  

Therefore, the input of the FSCR method is the original 
feature set {f1,f2,…,fn}, the correlation measure FA between 
every two features, the relevance measure FB between each 
feature and the number of software faults, the number of the 
clusters k and the number of selected features m. The output of 
the FSCR method is the final feature subset R. The details are 
shown in the Algorithm 1. 

B. The first stage 

The first stage partitions the original features into k 
clusters such that features in the same cluster are similar and 
features in different clusters are dissimilar to each other. The 
main goal of the stage of feature clustering is to eliminate 
redundant features that have similar effect with other features. 
Note that in contrast to traditional clustering, our goal is to 
group features rather than instances. 

This stage first uses the Pearson correlation coefficient to 
calculate the pairwise correlation between every two features 
using the following formula: 

r=
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑖

√∑ (𝑥𝑖−�̅�)2
𝑖 √∑ (𝑦𝑖−�̅�)2

𝑖
                     (1) 

where values xi and yi denote the numeric values of the feature 

x and feature y in the i-th instance (i=1,2,…,n),  �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑘=1 and �̅� =

1

𝑛
∑ 𝑦

𝑖
𝑛
𝑘=1 (𝑖 = 1,2, … , 𝑛). 

 



 

 

Algorithm 1.   FSCR method 

Input:  

Original feature set {f1,f2,…,fn}  

Correlation measure FA between every two features 

Relevance measure FB between each feature and the 
number of software faults  

Number of the clusters k  

Number of selected features m 

Output:   

Final feature subset R 

/*The first stage: feature clustering*/ 

1: for i=1 to n do 

2:    for j=1 to n do 

3:       Compute the correlation between fi and fj. using FA; 

4:    end for 

5: end for 

6: Partition original n features into k clusters {C1,C2,…,Ck}using 

spectral clustering algorithm; 

/*The second stage: feature ranking*/ 

7: for i=1 to n do 

8:    Using the relevance measure FB to compute the relevance 

between fi and the number of the software faults;  

9: end for 

10: for i=1 to n do 

11:    Ranking the features in Ci in descending order according to 

the relevance;  

12: end for 

13: for i=1 to k do 

14:     Adding top [
|𝐶𝑖|×𝑚

𝑛
] features of  Ci  into R; 

15: end for 

16: return R； 

  Then, this stage uses spectral clustering to cluster the 
original feature set based on the correlation between every two 
features. Different from the other distance-based clustering 
algorithms, spectral clustering [24] makes use of the spectrum 
(eigenvalues) of the similarity matrix of the instances to 
perform dimensionality reduction before clustering in fewer 
dimensions. The similarity matrix can be defined as a 
symmetric matrix W, where Wij represents a measure of the 
similarity between every two instances Xi and Xj.  

C. The second stage 

In this stage, we select top p relevant features from each 
resulted cluster to construct the final feature subsets. We first 
employ the ReliefF algorithm [25] to compute the relevance 
between each feature and the number of the software faults. 
ReliefF randomly selects an instance Ri, but then searches for k 
of its nearest neighbors from the same class, called nearest hits 
Hj, and also k nearest neighbors from each of the different 
classes, called nearest misses Mj(C). It updates the quality 
estimation for all features depending on their values for Ri, hits 
Hj and misses Mj(C). If instances Ri and H have different 
values of the attribute A then the attribute A separates two 
instances with the same class which is not desirable so we 
decrease the quality estimation W[A]. On the other hand if 
instances Ri and M have different values of the attribute A, then 
the attribute A separates two instances with different class 
values which is desirable so we increase the quality estimation 
W[A]. The whole process is repeated for q times, where q is a 
user-defined parameter. In this experiment, we use the default 
parameter specified by sklearn [26]. 

Then, we rank the features in Ci in descending order 

according to the relevance and select [
|𝐶𝑖|×𝑚

𝑛
]  features from 

each clusters, where |Ci| is the number of the features in the 
cluster Ci, m is the size of the final feature subset and n 
represents the number of the original features. The selected 
features construct the final feature subset. According to 

literature [19], we select ⌈log2n⌉  features from the original 

features. 

IV. EXPERIMENT SETUP 

A. Data set 

In this experiment, we employ 6 available and commonly 
used software project datasets with their 22 releases which can 
be obtained from PROMISE [27]. The details about the 
datasets is shown in Table I, where #Instance represents the 
number of instances, #Defects represents the total number of 
faults in the release, %Defect represents the percentage of 
defect-prone instances, and Max is the maximum value of 
faults. There are the same 20 independent variables (the 20 
feature metrics) and one dependent variable (the number of 
faults) in the six datasets. A comprehensive list of the metrics 
refers to literature [12]. 

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Release #Instance #Defects %Defects Max 

Ant 

Ant-1.3 125 33 16.0% 3 

Ant-1.4 178 47 22.5% 3 

Ant-1.5 293 35 10.9% 2 

Ant-1.6 351 184 26.2% 10 

Ant-1.7 745 338 22.3% 10 

Camel 

Camel-1.0 339 14 3.4% 2 

Camel-1.2 608 522 35.5% 28 

Camel-1.4 872 335 16.6% 17 

Camel-1.6 965 500 19.5% 28 

Jedit 

Jedit-3.2 272 382 33.1% 45 

Jedit-4.0 306 226 24.5% 23 

Jedit-4.1 312 217 25.3% 17 

Jedit-4.2 267 106 13.1% 10 

Jedit-4.3 492 12 2.2% 2 



 

 

Project Release #Instance #Defects %Defects Max 

Synaps

e 

Synapse-1.0 157 21 10.2% 4 

Synapse-1.1 222 99 27.0% 7 

Synapse-1.2 256 145 33.6% 9 

Xalan 

Xalan-2.4 724 111 15.3% 7 

Xalan-2.5 804 388 48.3% 9 

Xalan-2.6 886 412 46.5% 6 

Xerces 
Xerces-1.3 503 69 13.7% 30 

Xerces-1.4 589 438 74.4% 62 

B. Performance measures 

Since CERFS is a model to predict the number of faults, it 
should be evaluated using criteria for regression models. In the 
experiment, we employ root mean square error (RMSE) to 
measure the performance. In addition, considering the 
imbalanced characteristic of software defect datasets, we also 
employ three commonly used performance measures that 
evaluate classification models, including pd, pf and G-measure. 
These performance measures are defined in Table III and 
summarized as follows. 

TABLE II.  PERFORMANCE MEASURES 

 Actual 

yes no 

Predicted yes TP FP 

no FN TN 

pd 𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

pf 𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

G-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)
 

RMSE 

√
∑ |𝒀�̅� − 𝒀𝒊|

𝟐𝒏
𝒊=𝟏

𝒏
 

 

● Probability of detection or pd is the measure of defective 
modules that are correctly predicted within the defective class. 
The higher the pd, the fewer the false negative results. 

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the 
results. 

● G-measure is a trade-off measure that balances the 
performance between pd and pf. A good prediction model 
should have high pd and low pf, and thus leading to a high G-
measure. 

● RMSE measures the deviation between the predicted 
value �̅� i and the actual value Yi. It is a good measure of 
accuracy to compare prediction errors of different regression 
models for a given variable, e.g., the number of faults. 

C. Research Questions 

Our evaluation answers two research questions.  

RQ1. Does our proposed FSCR method perform better than 
state-of-the art feature selection methods in terms of predicting 
the modules being faulty or non-faulty? 

This question validates the important criterion of defect 
prediction: the performance improvement in terms of pd, pf 
and G-measure (as defined in Section IV-B). 

RQ2. Does our proposed FSCR approach perform better 
than state-of-the art feature selection methods in terms of the 
accuracy of predicting the number of the software faults? 

This question validates the important criterion of the 
number of faults prediction: the performance improvement in 
terms of RMSE. (as defined in Section IV-B). 

We compare our method with six classical feature 
selection methods in defect prediction:(1)Full, (2)Chi-Square 
[28], (3) Signal-to-Noise [29], (4)Information Gain [30], 
(5)Gain Ratio [31], and (6)FSCAR [23].  

Full is the original feature subset. Compared to this 
method, we can study whether the FSCR can improve the 
performance of the number of faults prediction. Chi-Square 
(CS) and Signal-to-Noise (S2N) are statistic-based feature 
selection methods. Information Gain (IG) and Gain Ratio (GR) 
is the probability-based feature selection method. FECAR is a 
feature selection method combining feature ranking and 
feature clustering proposed by Liu et al [23]. FECAR first 
clusters features via k-medoids method and then select several 
representative features from each cluster. 

D. Experiment Procedure 

In experiments, we performed 10-fold cross validation 
when training classifiers on the selected features throughout 
this paper, to avoid any potential problem of overfitting 
particular training and test sets within a specific project. In 10-
fold cross validation, a dataset is divided into 10 folds at 
random. Nine of the ten folds take turns to be used as the 
training set while the other fold is used as the test set. The 
training data are used to build a regression model; then the 
built model is evaluated on the test data. The above procedure 
is repeated 300 times (10 folds 30 independent runs) in total 
for each feature selection method to avoid sample bias. Then, 
the mean values of performance for all methods are calculated. 

In order to compare the performance of feature selection 

methods, we employ three regression models in defect 

prediction, Bayesian Ridge Regression (BRR), Gradient 

Boosting Regression (GBR) and Linear Regression (LR). The 

reason we choose these regression models is that these models 

perform best in predicting the number of software faults [11-

12]. 

V. EXPERIMENT RESULTS 

In this section, we present the experiment results to answer 
our two research questions mentioned above. 

A. RQ1 

As mentioned in Sections IV-C, we compare our method 
FSCR with six feature selection methods. Table IV records the 
pd, pf and G-meausre of six datasets with six different feature 
selection methods on three regression models, BRR, GBR, LR. 
The column “Full” presents the training set without involving 
any feature selection method; W/D/L, short for Win/Draw/Loss, 
denotes the number of projects, on which FSCR performs 
better than, the same as, or worse than another method, in 
terms of G-measure. 



 

 

As is shown in the Table III, FSCR performs better G-
measure values than all the other methods. For BRR model, 
FSCR achieves the best average pd and G-measure value, but 
fails in the best pf value. For GBR model, FSCR can achieve 
the best pf and G-measure values. For LR model, FSCR 
achieves best values in terms of all the three measures. The 
Win/Draw/Loss values shows that, on three regression models, 
FSCR outperforms others on over half of projects in terms of 
all the three measures. 

TABLE III.  AVERAGE PERFORMANCE OF 6 PROJECTS WITH  THREE 

REGRESSION MODEL  ON PD, PF, AND G-MEASURE 

Model Metric Full FSCR CS GR S2N IG FECAR 

BRR 

PD 0.512  0.584  0.514  0.521  0.556  0.548  0.579  

PF 0.236  0.169  0.182  0.171  0.164  0.165  0.170  

G 0.613  0.668  0.591  0.586  0.642  0.622  0.665  

W/D/L 4/0/2 
 

5/0/1 4/0/2 5/0/1 4/0/2 4/0/2 

GBR 

PD 0.479  0.521  0.466  0.498  0.535  0.501  0.513  

PF 0.157  0.121  0.206  0.142  0.123  0.161  0.126 

G 0.610  0.637  0.585  0.613  0.633  0.609  0.631  

W/D/L 6/0/0 
 

5/0/1 4/0/2 6/0/0 4/0/2 4/1/1 

LR 

PD 0.504  0.591  0.434  0.536  0.523  0.511  0.586  

PF 0.244  0.152  0.183  0.213  0.221  0.175  0.159  

G 0.604  0.671  0.565  0.625  0.609  0.649  0.668  

W/D/L 5/0/1 
 

4/0/2 4/0/2 6/0/0 6/0/0 3/0/3 

 
Fig. 2 shows the box-plots of G-measure values, with six 

methods for three regression models on 6 projects. For BRR 
model, the median value by FSCR is much higher than that by 
all the other methods. For GBR model, the median value by 
FSCR is higher than that by CS and S2N, while is similar with 
that by GR and IG, and is a little lower than that by FECAR. 
However, the maximum by FSCR is much higher than FECAR 
and all the other methods. For LR model, the median is similar 
with that by GR and FECAR, while is much higher than that by 
S2N and IG. In addition, the maximum by FSCR is much 
higher than that by all the other methods. 

 

Figure 2.  Box-plots for G-measure on 6 projects with three regression 
models. 

RQ1 Summary. According to the experiment results in 
Table 4 and Figure 2, we conclude that FSCR can perform 
better than state-of-the-art feature selection methods in 
terms of predicting the modules being faulty or non-
faulty. 

B. RQ2 

Tables IV, V and VI present the detailed RMSE values of 
each project on three regression models. From these tables, we 
can observe that FSCR performs better average RMSE value 
than all the other methods. The Win/Draw/Loss records also 
indicate that FSCR wins other methods on most projects on 
three regression models in term of RMSE measure. In addition, 
Hedges’g [32] is employed to demonstrate the effect size. The 
effect size of Hedges’g values are greater than 1.0 on most 
projects, which can be interpreted as a large improvement.  

TABLE IV.  RMSE VALUES ON 6 PROJECTS USING BAYESIAN RIDGE 

REGRESSION WITH THE HEDGES’G 

Project Full FSCR CS GR S2N IG FECAR 

Ant 1.155 0.829 1.074 1.129 0.945 1.176 0.921 

Camel 1.046 1.031 1.142 1.023 0.972 0.824 0.837 

Jedit 1.426 0.986 0.965 0.965 1.028 0.975 0.912 

Synapse 1.247 0.892 0.978 0.911 0.945 0.994 0.978 

Xalan 1.010 0.714 1.123 1.101 0.897 1.109 0.925 

Xerces 1.206 0.821 0.912 0.956 0.852 0.912 0.944 

AVG 1.181  0.878  1.032 1.014  0.939 0.998 0.919 

W/D/L 6/0/0 
 

6/0/0 5/0/1 5/0/1 5/0/1 5/0/1 

Hedges’g 2.252  1.457  1.327  0.657  0.980  0.462 

 

TABLE V.  RMSE VALUES ON 6 PROJECTS USING GRADIENT BOOSTING 

REGRESSION WITH THE HEDGES’G 

Project Full FSCR CS GR S2N IG FECAR 

Ant 1.011 0.986 0.894 0.954 0.949 1.024 0.929 

Camel 0.945 1.031 1.035 0.927 0.975 0.961 1.163 

Jedit 1.295 0.714 0.917 1.082 1.021 0.913 1.075 

Synapse 1.091 0.821 0.941 0.959 1.047 0.974 0.838 

Xalan 0.906 0.837 1.109 1.056 1.145 1.127 0.914 

Xerces 1.472 0.892 0.952 1.214 0.969 0.917 0.977 

AVG 1.120 0.880 0.974 1.032  1.017  0.986  0.982 

W/D/L 5/0/1 
 

6/0/0 4/0/2 4/0/2 5/0/1 6/0/0 

Hedges’g 1.361 
 

0.939  1.356  1.420  1.064  0.873  

 

TABLE VI.  RMSE VALUES ON 6 PROJECTS USING LINEAR REGRESSION 

WITH THE HEDGES’G 

Project Full FSCR CS GR S2N IG FECAR 

Ant 1.152 0.957 0.982 1.053 0.964 1.058 0.973 

Camel 1.059 1.045 1.123 0.949 1.103 0.934 1.078 

Jedit 0.914 0.794 0.994 1.027 1.025 0.853 0.935 

Synapse 1.015 1.124 0.854 1.154 1.161 0.927 0.926 

Xalan 1.205 0.885 0.942 1.048 1.054 1.185 0.910 

Xerces 1.012 0.921 0.952 1.038 1.035 0.924 0.953 

AVG 1.059 0.954 0.974 1.044 1.057 0.980 0.962 

W/D/L 5/0/1 
 

5/0/1 5/0/1 6/0/0 5/0/1 5/0/1 

Hedges’g 0.944   0.193  1.048  1.075 0.219 0.086  

 

RQ2 Summary. According to the experiment results in 

Tables 4-6, we conclude that FSCR can perform better than 

state-of-the-art feature selection methods in terms of the 

number of faults prediction. 



 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a novel feature selection method 
for the number of faults prediction.  The method involves the 
following two stages: in the first stage, we employ a feature 
spectral clustering method to cluster the original features; in the 
second stage, we select the highly relevant features from each 
cluster. Experiments on 6 project datasets indicate that the 
proposed method, FSCR, can perform competitive results for 
the number of faults prediction. 

In the future, we will further investigate the impact of the 
parameters setting, such as the number of clusters and the 
number of features selected from each cluster. In addition, we 
would like to validate the generalization ability of our method 
on more datasets [33-34]. 
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