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Abstract—Accurate fault prognosis of machine component is
important to maintain industry operation system. Faults analysis
can be very helpful in fault early warning and reducing mainte-
nance cost. The goal of our work is to design an integrated ap-
proach of machine faults analysis. A method widely used is Fuzzy
Neural Networks (FNNs), but such method lacks of flexibility.
We present a Membership-based Multi-dimension Hierarchical
(MMH) neural network model to jointly include new feature
selection approaches and generalized membership operators.
MMH model is an adaptive model that employs modified KPCA
and Back Propagation algorithm respectively. By introducing
optimized KPCA we can extract features of higher importance
that are appropriate for fault diagnosis. Our prediction model is
inspired by the traditional fixed membership. In our approach,
an observing value will be segmented into multiple dimensions
where each dimension captures deep structural information in
the network. The transformation is updated by back propagation.
The proposed approach takes advantage of membership thinking
and benefits from large learning capacity of deep neural networks
(DNNs). This is aiming to take advantage of membership thinking
and neural network deep learning abilities. Experimental results
on public datasets demonstrate the superiority of our model that
has the character of faster convergence, which also improving
the accuracy by an average of 5% for fault prediction.

Index Terms—Feature Selection; Modified KPCA; Back Prop-
agation; Multi-dimension Hierarchical Neural Network

I. INTRODUCTION

Growing attentions on resource shortages around the world
have led to an increasing number of researches on improving
the energy efficiency. At the same time, machine maintenance
and repairs have played an indivisible role in energy consum-
ing. It has been reported that faults in machine may increase
about 15% of energy consumption [1], which may also result
in many other additional costs.

Fault diagnosis and resolution in a system network are
essential for clearing faults that manifest in an electrical sensor
transmission or distribution network. Many studies have been
carried out on the use of intelligent methods for fault diagnosis
in an electrical system.

In the case of faults analysis, we usually have different di-
mensions of fault feature indication data which is represented
as x1, x2, · · · , xD and F (x) that is on behalf of the fault type
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of comparison given a series of faults feature observations:

F (x) = f(x1,x2, · · · ,xn)

assuming that the fault type ranges from f1 to fc, from this
point, we hope to get implicit relationships from xn to F (x)
in the real application scenario.

We get used to analyze and mine this set of D-dimensional
vectors, but the complexity of many machine learning algo-
rithms is closely related to the dimensionality of the data, so
it is necessary for us to reduce the dimensionality of the data
first.

Principal component analysis (PCA) [2] and kernel PCA [3]
[4] are well-known methods in feature engineering. However it
is still not enough for a KPCA algorithm solving faults feature
selection. The existence of noise will keep on disturbing
eigenvalues. In this paper, we propose a integrated algorithm
combining the original eigenvectors’ importance with the final
faults type. Our main contributions are listed as follows:

1. By calculating the between and within class in a new
way, it can minimize the impact of uncertain factors
and increase the benifits of reducing dimensions of input
features.

2. When processing the faults diagnosis problem, we find
that the existing methods are lacking of mining infor-
mation of each input dimension. Based on a member-
ship algorithm, we change the structure of now existing
multiple level proceptron by seperating input layer into
several patchs, also we remove the full connected edge
to the hidden layer in order to keep locality of each
dimension feature contribution.

The remainder of the paper is organized as follows. Section
II describes related work on fault diagnosis algorithm. In
Section III, we present how to make fault feature extracted
and evaluated by putting the faults type information into con-
sideration before modeling. The new idea of MMH modeling
for fault diagnosis problem is provided in Section IV. The
experiment on public UCI datasets as well as discussions on
baseline algorithm is shown in Section V. Finally we conclude
our work in Section VI.



II. RELATED WORK

The study of fault diagnosis and prognosis recently have
concentrated on theoretical research, mainly based on fuzzy
theory, pattern recognition, bayes rules, logistics regression,
neural network algorithms and so on. Others are focusing on
building deep learning models to infer the relation between
data and fault results or estimate the probability of faults occur.
Below we highlight a few and explain what advantages and
drawbacks they have.
• Classical Fuzzy Set Interface Theory. Previous research

[5] has been done extensively concentrated on inference
system design. Fuzzy rule based system (FRBS) deals
with IF-THEN rules. FRBS consititute an extension to
the classical fuzzy rule inference [6] [7].

• Deep Learning Models. Deep learning so long has
became a point of focus as it is the skilled-expert in
the domain of complex problems. In particular of fault
diagnosis domain, different neural network (NN) models
are proposed to fitting various background [8] [9] [10].

• Hidden Markov Model. A classification method [11] for
reluctance motors’ fault diagnosis using HHM is carryed
out and shown that parameter learning need huge a mount
of histrorical data.

III. FAULTS FEATURE EXTRACTION

A. Principal component analysis (PCA)

Principal Component Analysis (PCA) analysis is an im-
portant means of dimension reduction. It applies a linear
correlation transformation on original data features which can
explain most of the datasets information in new scope.

Given a set of centered input vectors xt (t = 1, · · · , n),
and each of which is one of m dimension: xt =
(xt(1), xt(2), · · · , xt(m))

T then we have the input data ma-
trix Xn×m (usually n > m), In general, we will select
the eigenvector in which the largest eigenvalues are located.
The information in these directions is rich, and is generally
considered to contain more information of interest.

B. Theory of Kernel Principal Component Analysis (KPCA)

On account of there are some limitations of PCA, there is no
way for the existence of high-order correlation, Kernel PCA
can be introduced, using a kernel function we can transform
the nonlinear correlation into a linear one. Given a set of input
data Φ(xi), i = 1, 2, . . . , n for this discussion, the covariance
matrix C̄ of centralized data: C̄ = 1

n

∑n
i=1 Φ̃(xi)Φ̃(xi)

T Now
finding the eigenvingue and eigenvector of C̄ and kernel matrix
is respectively donated as λc, λ̃k and υc, αc

C̄υk = λkυk(k = 1, 2, · · · , D) (∗) (1)

the final conclusion by reducing both sides of the equation
(1): λc = λ̃k

N , αc = 1√
λ̃k
Φ̃αk. If the adoption of the kernel

function is Radial Basis Function,

k(xi, xj) = exp(−‖xi − xj |
2σ2

2

) (2)

here σ is the only parameter of function. In general, KPCA
realize non-linear transformation between the data space and
feature space through the kernel function.

C. Modified Kernel Principal Component Analysis

The traditional KPCA algorithm only considers the maxi-
mum information content of the reserved feature space and
does not consider whether these information quantities are
effective for classification.

Here, we reconsider the degree of dispersion among the
intra-classes and inter-classes, which can both retain good
dimension reduction and more conducive to the fault pattern
classification.

Before we want to balance the degree of aggregation within
class and between classes for each feature vector, a important
notation firstly is introduced to represente one class center
as x̄i = 1

ni

∑ni
p=1 xip, i = 1, 2, · · · , c, where c stands for the

number of fault classes, ni is the total number of labeled class
i and xi is the principal component after kernel transformation.
The within class distance:

Wσ =
1

ni

c∑
i=1

ni∑
q=1

‖xiq − x̄i‖ (3)

in the equation, we can calculate each Wσ vary from the
extracted dimension d, also the inter-class discretization degree
of each eigenvector is:
Bσ =

∑c
i=1

∑c
j=i+1‖mj −mi‖ where mi =

∑ni
i=1 xi. If

we get a bigger between class value Bσ and a smaller within
class value Wσ , the more it is with the ability to distinguish
categories. Intuitively, the definition of χ is χ = Wσ

Bσ
.

IV. FAULTS DIAGNOSIS MODELING

After selecting the most informative feature in section III.
In this part, we present the wide and multiple neural network
and compare it with the traditional model we mentioned in
related work. we want to highlight a few previous work by
applying neural networks in the domain of fault diagnosis.
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Fig. 1. Example of a tempreture degree membership.

Figure 1 shows a temperature perception in a real scene.
In the theory, we assume that any temperature value will
correspond to a linguistic description value when a fuzzy rule
needs to be applied, or findind the corresponding exact value
range. In the figure, when the temperature appears 15◦C, we
subjectivity feel that the temperature value is a degree of cold
is 0.25, a moderate degree of 0.75 or when the description of
the value of the cold, the corresponding temperature range of
0◦C and 20◦C.



Here goes our Membership-based Multidimensions model
assumptions as follows:

1. Each observed measurable value υ (normalized) will
consists by multi-tuplesM(υ1, υ2, · · · , υd), d is a multi-
dimension parameter that represent the disperse level.

2. The summation of υ equals to a fixed setting:
∑d
i=1 υi =

s, s here represents the multi-dimension central degree.
(e.g., specific s = 1, due to the result of normalization,
it somehow play as a limitation to d-dimension tuples)

3. Such extended dimensions in a descriptive way (like Fig
1) are independent.

4. Nonlinear relations exist during the learning the faults
classes patterns.

Consider the basic structure of a back-propagation network
with a single hidden layer, as shown in Figure 2:
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Fig. 2. Model of faults diagnosis based on multiple dimensions neural
network.

We divide the input each of the n dimensions into indepen-
dent description vectors 1-d of the d dimension. If we want
our multiple layer outputs are scaled to [a, b](a, b ∈ (0, 1]), the
sigmoid function is given as follows: s(xi) = 1

1+e−αi(xi−βi)

where: αi =
(Qi−1) ln( b

1−b )

xi,max−xi,min , βi =
Qixi,min−xi,max

Qi−1 , Qi =
ln( 1−b

b )

ln( 1−a
a )

, and Qi 6= 1. Here αi and βi are parameters of the
active function. The purpose of this approach is to avoid xi
spills out and can be mapped to (0, a) or (b, 1) respectively.

If we have N training examples and C classes label of fault
diagnosis then the loss for our prediction ŷ with respect to the
true labels y is given by:

Loss(y, ŷ) =− 1

N

∑
n∈N

∑
i∈C

yn,ilogŷn,i

+ l2 reg para ∗ (a0 + a1 + · · ·+ ai)

(4)

Before we doing the back propagation, the difference vector
should be compute as : δa = a2 − y, then we describe
the backpropagation in a functional way, and specially the
w0 matrix update: δa0 = δz1 · wT1 , δz0 = δa0 · S′(z0),
δb0 = δz0, δw0 = xTi · δz0,

∑i+d−1
i=1,d,2d,··· ,nd w0i = s. By

finding parameters that minimize the loss of our training
data, variations such as SGD (stochastic gradient descent) or
minibatch gradient descent typically perform better in practice.

wnew ← wold − η · δwold (5)

In the process of gradient descent, to prevent local shock, we
also introduce decaying learning rate over time: η = η0 ·e−d0t.

V. EXPERIMENTS

In this section, we empirically study the performance of
Modified Kernel PCA and MMH model in public date sets.

Datasets: we used two large UCI datasets: Secom [12]
and Sensorless Drive Diagnosis [13]. The first is a binary
classification problem where data were taken from a semi-
conductor manufacturing process and used to select most
relevant signals. The second dataset was extracted from 11
different labels motor current with intact components.

TABLE I
DATESETS FOR KPCA AND MMH MODEL

Dateset Dimens. Classes Instances Train Prop.
Secom 591 2 1567 -

Sensorless 49 11 58509 0.8

A. Feature Extraction Task

We solve feature extraction task by compareing the PCA
and KPCA with RBF kernel in the first step.

TABLE II
COMPARATION IN SVM RESULT BY ORIGINAL AND MODIFIED KPCA

Method Reduced
Dimensions

Accumulate
Contribution Accuracy

6 89.20% 72.24%
Original KPCA 9 90.73% 79.92%

12 96.21% 82.21%
6 90.82% 85.27%

Modified KPCA 9 92.12% 89.23%
12 97.44% 92.27%

In tabel II, we put the Original KPCA, Modified KPCA into
the based SVM classificator. After 10-fold cross-validation,
chaging the dimensions from 6, 9, 12, our proposed Modified
KPCA algorithm can obtain more valuable information form
each disparate dimension. It can more likely find the number of
selected features with the strongest causal effect relationship.

Using Modified KPCA we proposed, comparing with PCA,
KPCA in the same dataset experiment, we can find modified
kpca performs well and quickly from the view of aggregate
proportion of importance. Although the contribution of the
first dimension, PCA is little higher than KPCA and modified
KPCA, as dimensions extend bigger, the accumulative propor-
tion line of KPCA goes higher than naive PCA.

B. Faults Event Diagnosis Task

We cast faults event diagnosis tasks upon the UCI sensorless
dataset. In this task, basically, we set up multi layer perceptron
serve as a contrast to our proposed model with 3 hidden
layer of [100, 300, 100] and the learning rate is 0.05. Also,
we experiment a few traditional method as baseline.
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Fig. 3. Comparation of Loss Convergence Case

Since the existing open-source machine learning library
can not meet the needs of the model, we build our own
MMH model in Tensorflow. Under the premise of multiple
dimensions equal to 3, the hidden layer structure is [50, 300],
and we set the adaptive learning rate η to 0.5.

To avoid overfitting, we introduced the normalization pa-
rameter of 0.005 to reduce overfitting probability as mentioned
in the previous model introduction, and randomly discarded
some of the neural during each iteration.The idea behind
dropout is simple. The drop-out approach stochastically dis-
ables a fraction of its neurons. This can prevent neurons
from co-adapting and forces them to learn individually useful
features. The fraction of neurons we keep enabled is defined
by the dropout probability with 0.1 input to our network.

In Figure 3 we can see a more undulating concussion loss
convergence in common multi-layer perceptron. Our approach
has more competitives in the aspect of convergence speed.
Figure 4 show the diagnosis results we obtain through baseline
algorithms and our MMH model. The results indicate that our
method outperforms others by an average of 5% on the faults
diagnosis problem.
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In particular of Figue 5, when we take the range of d from 1
to 100, we find that the accuracy of the classification of MMH
model increases first, and then slowly decline, basically meet
the hypothesis, we speculate it is due to the fact that when
d is becoming huger, the information is increased, and the
contribution of this increment to the accuracy of the model is
lower than the expected value of its own noise, which makes
the accuracy of the model moves down. The certain range of
evaluation is helpful for us to obtain the most appropriate d
dimension mapping space according to the actual problem.

VI. CONCLUSION

The MMH neural network proposed in this paper is an
effective and practical model for faults diagnosis and detection
from a series of extracted features. MMH model gains the

merit of classic neural network and benefits from valuable de-
scribing and multi-dimension information. When compared to
traditional MLP model, experimental results shows that more
latent information obtained by MMH are more convincing and
quickly in convergence. Our Modified KPCA approach also
provides a better supervised approach considering type labels
which can accomplish more meaningful and useful feature
extraction work.

Possible future directions for this work include limiting the
summation of each multi-dimensions central degree with more
certified principle and accelerating the process of Modified
KPCA evaluating. As a result of calculating multi-dimensions
vector enlarging the set size of multi-variables to estimate,
our MMH model is more likely slower than a traditional MLP
method. It would be of more importance to improve efficiency
and reducing computational expense of vector extending for
larger faults data input.
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