
Exploring the Influence of Feature Selection Techniques on Bug Report
Prioritization

Yabin Wang, Tieke He, Weiqiang Zhang, Chunrong Fang, Bin Luo∗

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
∗luobin@nju.edu.cn

Abstract

To improve software quality, developers often open a bug
repository and allow users to find bugs, describe bugs in the
form of bug reports and submit bug reports to the reposito-
ry. Based on the description, testers assign a priority to
each bug report. In the beginning the process of priori-
ty assignment is performed manually. With the increasing
amount of bug reports, researchers introduced classifica-
tion methods to assign priorities automatically with all the
features considered. In this paper feature selection methods
are introduced to improve the effect of bug report prioriti-
zation using classification models. The experimental results
show that feature selection based on Information Gain and
Pearson Correlation can improve the precision and recall
for bug report prioritization on two models, i.e., SVM and
Naive Bayes.

Keywords: Feature selection, Bug report prioritiza-
tion, SVM, Naive Bayes

1 Introduction
Bug repositories of open software projects are often ac-

cessible to the public. Both users and developers can submit
problems and suggestions on how to improve the software
to the repository in the form of bug reports. A bug report is
helpful for debugging in many ways. It creates a communi-
cation between bug finders and bug fixers and enables de-
velopers discuss how to fix a bug. The openness of the bug
repositories makes more people being able to help to find
more bugs for the developers, such that the quality of the
software can be greatly improved. In order to use bug repos-
itory more effectively, bug reports should be managed. Re-
ported bugs should be analyzed to determine whether they
are valid or not, correct or not, and unique or not. This is
called a bug triage process [1].

Manually validating large number of bug reports can be
time-consuming and tedious. Not all the bug reports are re-
garded as important on the side of developers. Each bug re-
port should be assigned a priority to indicate its importance,
and this process is called bug report prioritization. Some
bug reports are about meaningful bugs, while other bug re-
ports maybe just suggestions of adding software functions.
Bug reports that report meaningful bugs should have a high-

er priority. If the developers analyze the bug reports one by
one, some important bug reports may be postponed.

The amount of bug reports are often very large. In the
Wordpress project we studied, there are more than 20 thou-
sand reports. The large amount of bug reports makes it very
time consuming to manually assign priorities to bug reports.
One way to solve the problem is to ask bug reporters assign
the priority. But lacking the full knowledge of the whole
project, bug reporters could not correctly assign priorities.

To correctly assign priority to the reports, a bug triager
needs to analyze the bug description in the bug report to get
the information about which component the bug may be-
long to, what type of the bug it is, its severity and whether
it shall be solved immediately or can be postponed. Ac-
cording to these information, priorities are assigned to bug
reports.

Currently, there have been many studies focusing on au-
tomatically prioritize bug reports. For example, DRONE
[2] analyzed the textual description, author and product of
bug reports to assign priorities. Kremenet et al. [3] checked
the success and failure of a bug report to prioritize reports.
Lamkanfi [4] used various classification algorithms such as
Support Vector Machine (SVM) and Naive Bayes to assign
priorities for bug reports. In their study textual descriptions
were transformed to feature vectors, which were the inputs
of classification models. However, the study of [1] tells that
not all the features are important for bug report prioritiza-
tion. Their results motivated us to adopt feature selection
methods on bug report prioritization.

In this paper, the textual description of a bug report are
first transformed into a feature vector, and then we use fea-
ture selection to build a subset of features that can represent
the whole set. This subset can give us enough information
for classification to prioritize bug reports. The subset could
obtain better classification results. In this paper, 7 most pop-
ular feature selection approaches including CfsSubset (CF-
S), Correlation (CO), GainRatio (GR), InfoGain (IG), On-
eR (OR), ReliefF (RF) and SymmetricalUncert (SU) [5, 6]
are considered. These 7 techniques cover two main feature
selection techniques the wrapper methods and filter meth-
ods. The wrapper methods search the feature space and e-
valuate feature set to find the optimal feature subset. The fil-
ter methods evaluate single feature, score each feature and
rank features according to the scores. We conducted ex-

10.18293/SEKE2017-073

periments to compare the feature selection techniques and
studied the effects of the number of features selected, and
we found that GR, IG and CO were more suitable for bug
report prioritization.

In our experiment, we evaluated the effects of some pop-
ular feature selection techniques on bug report prioritiza-
tion. Two large open source projects Trac [7] and Word-
press [8] were used.

The main contributions of this paper are summarized as
follows:

• We are the first to introduce feature selection methods
to find the features that are most relevant to priorities.
Previous researches used all the features to classify bug
reports but failed to study the important features that
are related with priorities. Feature selection can find
out the important features.

• We compare different feature selection techniques in
bug report prioritization. The results show that Infor-
mation Gain and Pearson Correlation based approach-
es achieve the best performance.

• We study the influence of the number of features on
the feature selection techniques and find that one third
to half of the features are optimal for feature selection.

• We conducted experiments on two large open projects
with large amount of bug reports to validate our pro-
posals.

The rest of the paper is organized as follows. Section
2 presents the related work. The introduction of classifica-
tion is described in Section 3. The framework along with
the classification model used is presented in section 4. The
experiment setup, evaluation and experiment results are p-
resented in section 5, 6 and 7. Finally we summarize the
threats to validity and conclude our work in section 8 and 9.

2 Related Work
Menzies and Marcus were the first researchers that s-

tudied the bug report prioritization [9]. They analyzed the
severity labels text and information of bug reports of NASA
and generated 5 severity labels. They first extracted word
tokens from text information of bug reports and then prepro-
cessed the text to remove stop words and performed stem-
ming. Then the words were transformed into feature vectors
and then fed into a classification model.

Lamkanfi et al. [10] extended the work of Menzies and
Marcus and studied various classification algorithms. They
found that SVM and Naive Bayse were two most effective
classification models. This motivated us to use these two
models in our research. Khomh et al. [11] studied crash
reports prioritization based on the frequency of the crashes.
In this paper all types of bug reports were studied instead of

only focusing on crash reports. All of existing approaches
failed to emphasize the features that are relevant to priority.
In this paper we introduce feature selection techniques on
bug report prioritization to find the most relevant features.

3 Classification of Bug Reports
Classification of bug reports consists of two main pro-

cesses. The first is training bug reports with priorities as-
signed correctly by triagers to build a learning model. Sup-
pose that R(r1, r2, ..., rn) is a feature vector transformed
from a bug report for training, r1, r2, ..., rn are n values of
n features. Each feature is a word in the bug description,
representing one dimension of information of the bug re-
port. Each ri represents the frequency of each word occur-
ring in R. For each feature vector Ri, there is a special class
label which represents the priority yi of that bug report. The
output of this step can be represented as a learning function.

y = f(R) (1)

In function 1, f(R) can be some regulations or some for-
mulas. In the second process of testing f(R) receives new
bug reports with no priority labels. The output y is the pre-
dicted priority for the input bug report. In order to evaluate
a classification algorithm, the bug reports with correct la-
bels of priority will work as inputs such that precision and
recall of the classification algorithm can be calculated.

4 Approach
Figure 1 shows the framework of our approach.

1 Preprocess bug reports: A commonly used text trans-
formation method [12] is adopted to preprocess bug
reports, and transform reports into feature vectors with
each bug report transformed into one vector. In this
phase, special symbols, brackets and punctuation are
removed. Non-alphabetic words, common words and
stop words are also removed, because these words are
meaningless and unimportant. Stemming is then ap-
plied on the remained words to convert them into their
ground meaning. The ground form of each word is
seen as a feature. The frequency of occurring of each
word in each bug report is generated as the value of a
specific feature in a vector.

2 Split data: The feature vector set is divided into two
sets, training set and testing set using five-fold cross
validation [13].

3 Select features: Different feature selection techniques
are applied on the training set to construct a subset of
features. The outputs of feature selection are the new
mapped feature vector set and the subset of features.
The new mapped feature vector set only contains the
information of constructed subset of features.

Bug reports

Preprocess

Feature
vector set

Training
set

Testing
set

Select
features

Features

New mapped
set

Train

Learning
model

Bug reports with
priority assigned Classify

Figure 1: Framework

4 Train: Two classification algorithms, i.e., SVM and
Naive Bayes are used for training the feature vectors.
The output of training is the specific learning model.

5 Classify: The selected features and the learning model
are used for classifying the testing set. The output is
that each report is assigned a priority class.

4.1 Feature Selection for Bug Report Prioritization

There are mainly two sorts of feature selection method-
s, “wrapper” and “filter” methods [14]. Wrapper methods
search for feature subsets of bug reports and find the sub-
set with the highest quality [15]. Filter methods score for
each feature of bug reports based on some criteria, indepen-
dently. Then the features are ranked according to the score
and top N features are selected [14]. In this paper 7 most
popular feature selection methods CfsSubset (CFS), Corre-
lation (CO), GainRatio (GR), InfoGain (IG), OneR (OR),
ReliefF (RF) and SymmetricalUncert (SU) are studied. The
description of the methods are as follows.

• CfsSubset (CFS): CFS uses Best First and Greedy
Stepwise to search feature space and uses minimum
description length (MDL) to measure the correlation
inside a subset and correlation between the subset and
the priority. The subset with the highest quality is se-
lected [16].

• Correlation (CO): CO measures the Pearson Correla-
tion between a feature and the priority to score for each
feature [17].

• InfoGain (IG): IG scores a feature by measuring the
Information Gain between a feature and the priority
[18]. The concepts of Information Gain comes from
information theory [19].

• GainRatio (GR): GR scores a feature by measuring the
gain ratio with respect to the priority. GR is a mea-
sure extended from IG. The difference is that based on
IG GR will further calculate the information generated
by splitting the training data according to the different
kinds of value of a feature [6].

• OneR (OR): OR evaluates a feature by measuring the
classification accuracy by using OneR classifier [5].

• ReliefF (RF): RF evaluates a feature by repeatedly
sampling a feature vector and considering the value of
the given feature for the nearest vector of the same and
different priority class [20].

• SymmetricalUncert (SU): SU evaluates a feature by
measuring the symmetrical uncertainty with respect to
the priority [21].

4.2 Feature Selection Based Naive Bayes

The Naive Bayes classifies bug reports by calculating the
probability of a bug report assigned to a priority label using
Bayes rule of conditional probability. The probability of
one new bug report belonging to each priority is calculated
and the priority with the highest probability is assigned to
the new report.

The Naive Bays can be stated as equation 2. P (Ci|R) in-
dicates that given a report R, the probability that the priority
Ci is assigned to R.

P (Ci|R) = (P (Ci)× P (R|Ci))/P (R) (2)

Naive Bayes maximizes P (R|Ci)×P (Ci) to find the pri-
ority with the highest probability for a bug report. The as-
sumption of Naive Bayes is that a value of a feature does not
depend on the value of other features. Therefore, P (R|Ci)
is calculated by equation 3.

P (R|Ci) =
∏

j∈SF

P (rj |Ci) (3)

P (Ci|R) > P (Cj |R) j 6= i (4)

If equation 4 is satisfied for each Cj , Ci is assigned to
the new bug report. In equation 3 SF is the selected feature
set. Feature selection techniques will adjust the value of
P (R|Ci) to affect the results of Naive Bayes by choosing
an optimized SF .

4.3 Feature Selection Based SVM

SVM transforms the input feature vectors of bug reports
to a higher dimension and then searches for a hyperplane
with the maximum margin in the new mapped space [22].
A simple hyperplane can be defined as equation 5.

w · x+ b = 0, x =

r11 r1j ... r1n
r21 r2j ... r2n
...
rm1 rmj ... rmn

, j ∈ SF (5)

In this equation, x are the feature vectors of bug reports
that lie on the hyperplane, b is a scalar often referred as a
bias, w is a weighting vector, · is the dot product, SF is
the index set of selected features. Feature selection tech-
niques adjust SF to change the hyperplane and will affect
the results of SVM.

5 Experimental Setup
In this paper, we use the data set of bug reports of Trac

Open Source Project and Wordpress which were popular
used on the researches of bug report prioritization [23]. Bug
reports of Wordpress and Trac collected between June, 2004
and March, 2013 and August, 2003 and July, 2013 were
used in the research. All the bug reports have been assigned
5 classes of priorities by the triagers correctly such that pre-
cision and recall of classification algorithms can be evaluat-
ed. After preprocessing the number of features for Trac and
Wordpress is 18, 231 and 14, 570. Two best classification
algorithms SVM and Naive Bayes for bug report prioritiza-
tion studied by Lamkanfi [4] were used on the experiments.

Project #Bug reports #Reporter #Versions
Wordpress 23,848 6,013 18

Trac 10,416 4,701 11

Table 1: Data set description

6 Evaluation
In order to evaluate our approach, feature selection were

performed before classification, then the precision and re-
call, popular evaluation criteria for bug report prioritization
techniques [12], were calculated for the classification algo-
rithms. A higher precision and recall mean that the specif-
ic feature selection techniques are more capable in finding
priority relevant features. Precision is the fraction of all the
predicted items that are relevant items. For a priority class
Ci predicted items are all the bug reports to which Ci is as-
signed by the classifier. Relevant items are bug reports to
which Ci should be assigned.

Precision =
|Relevant items ∩ Predicted items|

|Predicted items|
(6)

Recall is the fraction of all the relevant items that are
predicted items.

Recall =
|Relevant items ∩ Predicted items|

|Relevant items|
(7)

For each priority class the precision and recall are calcu-
lated and then the average values are summarized over all
priority classes. As prioritizing bug reports manually took
much longer time than classification based bug report prior-
itization techniques did, existing researches focused on the
effectiveness and did not study the efficiency and cost of
classification based techniques [12].

7 Experimental Results

Precision Recall Feature selection
Original 0.613 0.565 -

Rank

0.686 0.679 CO
0.715 0.693 GR
0.705 0.654 IG
0.632 0.577 OR
0.623 0.578 RF
0.630 0.587 SU

Best First 0.654 0.54 CFS
Greedy Stepwise 0.652 0.536 CFS

Table 2: Experimental results of Naive Bayes for Trac
project

Precision Recall Feature selection
Original 0.572 0.592 -

Rank

0.685 0.682 CO
0.723 0.719 GR
0.618 0.708 IG
0.595 0.603 OR
0.606 0.637 RF
0.607 0.613 SU

Best First 0.594 0.644 CFS
Greedy Stepwise 0.592 0.645 CFS

Table 3: Experimental results of Naive Bayes for Wordpress
project

In order to evaluate whether feature selection can find
priority relevant features, classification were performed on
the original feature vector set and the set which processed
by feature selection techniques. In order to get more precise
results, all the experiments were conducted 30 times and the
average value were recorded.

Table 2 and 3 show the experimental results of Trac
project of Naive Bayes. The first column shows the search
methods. Original means that original feature vector set
without feature selection performed on were used for clas-
sification. Rank means that features were scored indepen-
dently. Best First and Greedy Stepwise are two greedy al-

gorithms based searching methods used by CFS. The exper-
imental results show that feature selection techniques CO,
GR and IG can get higher precision and recall than the orig-
inal case and the other feature selection techniques.

Precision Recall Feature selection
Original 0.523 0.517 -

Rank

0.674 0.689 CO
0.694 0.713 GR
0.683 0.668 IG
0.545 0.5147 OR
0.543 0.519 RF
0.637 0.621 SU

Best First 0.544 0.582 CFS
Greedy Stepwise 0.542 0.536 CFS

Table 4: Experimental results of SVM for Trac project

Precision Recall Feature selection
Original 0.533 0.545 -

Rank

0.557 0.672 CO
0.642 0.649 GR
0.557 0.593 IG
0.558 0.521 OR
0.563 0.562 RF
0.521 0.58 SU

Best First 0.554 0.518 CFS
Greedy Stepwise 0.552 0.526 CFS

Table 5: Experimental results of SVM for Wordpress
project

Table 4 and 5 show the results of SVM for two projects.
From the two tables we can get similar observations with
the results of Naive Bayes. By comparing 4 tables we can
see that Naive Bayes performs better than SVM.

Precision
Naïve Bayes BestFirst 0.751

GreedyStepwise 0.753
·

Precision Recall
original 0.78
Ranker 0.834

0.849
0.779
0.777
0.773
0.827

Recall
IG

1
1010
2010

PrecisionRecall 3010
Naïve BayBestFirst 0.944 4010

GreedyStepwise 0.945 5010
· · 6010

7010
Precision Recall 8010

original 0.592 9010
Ranker 0.91 Correlation 10010

0.957 GainRatio 11010
0.773 InfoGain 12010
0.961 OneR 13010

Cfs

CfsSubset

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 5000 10000 15000

Pr
ec
is
io
n

Number of features selected

Naive Bayes

IG

RF

OR

GR

CO

SU

Figure 2: The influence of the number of features on preci-
sion for Trac project

Different number of features were set and the specific
precision and recall were recorded for each filter method.
Figure 2 shows that the precision first rises and then de-
clines with the increase of number of features selected. The
precision of GR reaches its peak when the number of fea-
tures reaches about one third of the total features. This phe-
nomenon gives us suggestions that a subset of priority rele-
vant features are able to give enough information about the

priority. We can also see that GR, IG and CO perform better
than other techniques.

0.93 Relief 14010
0.832 SymmetricalUncert 14570

RF
1010
2010
3010
4010
5010
6010
7010
8010
9010

10010
11010
12010
13010
14010
14570

i

OR
1

1010
2010
3010
4010
5010
6010
7010
8010
9010

10010
11010
12010
13010
14010
14570

CfsSubset
73

original_Baye
1457

new_Bayes_Gre
74

GR
1

1010
2010
3010
4010

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 5000 10000 15000

Re
ca
ll

Number of features selected

Naive Bayes

IG

RF

OR

GR

CO

SU

Figure 3: The influence of the number of features on recall
for Trac project

In Figure 3 we can see that the peak of recall of GR oc-
curs when the number of features reaches about half of all
the features, which is later than those in Figure 2. We can
also see that GR is obviously better than RF and SU.

5010
6010
7010
8010
9010

10010
11010
12010
13010
14010
14570

CO
1

1010
2010
3010
4010
5010
6010
7010
8010
9010

10010
11010
12010
13010
14010
14570

SU
1010
2010
3010
4010
5010
6010
7010
8010
9010

10010
11010
12010
13010
14010
14570

1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 5000 10000 15000

Pr
ec
is
io
n

Number of features selected

Naive Bayes

IG

RF

OR

GR

CO

SU

Figure 4: The effects of the number of features on precision
for Wordpress project

Figure 4 and 5 show that the peak occurs when the num-
ber of features reaches about one third of all the features.
Then the peak continues until about 13, 000 features select-
ed. In these two figures CO and GR are still better than oth-
ers. The performance of IG is similar with RF worse than
GR. The reason is that IG dose not take the number of kinds
of values of features into consideration. Features that has
too many kinds of values that are not relevant with priority
are also selected to make IG not as good as GR sometimes.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 5000 10000 15000

Re
ca
ll

Number of features selected

Naive Bayes

IG

RF

OR

GR

CO

SU

Figure 5: The influence of the number of features on recall
for Wordpress project

We also used spearman correlation (SC) to measure the

correlation between the assigned priorities and the actual
priorities. A higher value indicates a higher correlation. Ta-
ble 6 shows the average SC of different feature selection
techniques.

CO GR IG OR RF SU CFS
SC 0.51 0.55 0.53 0.42 0.38 0.38 0.34

Table 6: Spearman correlation on different feature selection
techniques

8 Threats to Validity
In our research the threats to validity mainly came from

the experimental errors. The priority of bug reports were
assigned by humans. They assigned priorities in a subjec-
tive way. Different people may have different opinions on
the priorities. In the experiment we only used two projects.
However, the projects were all large open source projects
with large number of bug reports. This made the experi-
ment results more universal. In the future we will study
more projects and more bug reports.

9 Conclusion
In this paper feature selection methods are introduced to

improve the effect of bug report prioritization using classi-
fication models. The experimental results show that feature
selection can pick out relevant features and improve the ef-
fect of bug report prioritization on two models, i.e., SVM
and Naive Bayes. For the feature selection techniques we
studied in this paper, IG and GR based on Information Gain
and CO based on Pearson Correlation obtained better per-
formance than other feature selection techniques. We also
studied the influence of the number of selected features and
found that one third to half of the features were enough to
get high precision and recall.

References
[1] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu, “To-

wards effective bug triage with software data reduction techniques,”
IEEE transactions on knowledge and data engineering, vol. 27, no. 1,
pp. 264–280, 2015.

[2] Y. Tian, D. Lo, and C. Sun, “Drone: Predicting priority of reported
bugs by multi-factor analysis.” in ICSM, 2013, pp. 200–209.

[3] T. Kremenek and D. Engler, “Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations,” in Internation-
al Static Analysis Symposium. Springer, 2003, pp. 295–315.

[4] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Compar-
ing mining algorithms for predicting the severity of a reported bug,”
in Software Maintenance and Reengineering (CSMR), 2011 15th Eu-
ropean Conference on. IEEE, 2011, pp. 249–258.

[5] J. Novakovic, “The impact of feature selection on the accuracy of
naı̈ve bayes classifier,” in 18th Telecommunications forum TELFOR,
vol. 2, 2010, pp. 1113–1116.

[6] A. G. Karegowda, A. Manjunath, and M. Jayaram, “Comparative s-
tudy of attribute selection using gain ratio and correlation based fea-

ture selection,” International Journal of Information Technology and
Knowledge Management, vol. 2, no. 2, pp. 271–277, 2010.

[7] M. D’Ambros, M. Lanza, and M. Pinzger, “” a bug’s life” visualiz-
ing a bug database,” in Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007. 4th IEEE International Workshop
on. IEEE, 2007, pp. 113–120.

[8] J. Xie, M. Zhou, and A. Mockus, “Impact of triage: a study of mozil-
la and gnome,” in Empirical Software Engineering and Measuremen-
t, 2013 ACM/IEEE International Symposium on. IEEE, 2013, pp.
247–250.

[9] T. Menzies and A. Marcus, “Automated severity assessment of soft-
ware defect reports,” in Software Maintenance, 2008. ICSM 2008.
IEEE International Conference on. IEEE, 2008, pp. 346–355.

[10] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010, pp. 1–10.

[11] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy eval-
uation approach for triaging field crashes: A case study of mozilla
firefox,” in Reverse Engineering (WCRE), 2011 18th Working Con-
ference on. IEEE, 2011, pp. 261–270.

[12] J. Kanwal and O. Maqbool, “Bug prioritization to facilitate bug re-
port triage,” Journal of Computer Science and Technology, vol. 27,
no. 2, pp. 397–412, 2012.

[13] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to sup-
port vector classification,” 2003.

[14] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “A
review of feature selection methods on synthetic data,” Knowledge
and information systems, vol. 34, no. 3, pp. 483–519, 2013.

[15] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extrac-
tion: foundations and applications. Springer, 2008, vol. 207.

[16] M. R. Wijaya, R. Saptono, and A. Doewes, “The effect of best first
and spreadsubsample on selection of a feature wrapper with naı̈ve
bayes classifier for the classification of the ratio of inpatients,” Sci-
entific Journal of Informatics, vol. 3, no. 2, pp. 41–50, 2016.

[17] G. Chandrashekar and F. Sahin, “A survey on feature selection meth-
ods,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28,
2014.

[18] R. Battiti, “Using mutual information for selecting features in super-
vised neural net learning,” IEEE Transactions on neural networks,
vol. 5, no. 4, pp. 537–550, 1994.

[19] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[20] Z. Pang, D. Zhu, D. Chen, L. Li, and Y. Shao, “A computer-aided
diagnosis system for dynamic contrast-enhanced mr images based on
level set segmentation and relieff feature selection,” Computational
and mathematical methods in medicine, vol. 2015, 2015.

[21] S. Fong, Y. Zhuang, H. Luo, K. Liu, and G. Kim, “Finding signifi-
cant factors on world ranking of e-governments by feature selection
methods over kpis,” in International Conference on Soft Computing
in Data Science. Springer, 2015, pp. 65–73.

[22] J. A. Suykens and J. Vandewalle, “Least squares support vector ma-
chine classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–
300, 1999.

[23] Z. Xu, T. He, W. Zhang, Y. Wang, J. Liu, and Z. Chen, “Exploring
the influence of time factor in bug report prioritization.”

