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Abstract—Nowadays, software developers are increasingly
involved in GitHub and StackOverflow, creating a lot of valuable
data in the two communities. Researchers mine the information in
these software communities to understand developer behaviors,
while previous work mainly focuses on mining data within a
single community. In this paper, we propose a novel approach to
mining developer behaviors across GitHub and StackOverflow.
This approach links the accounts from two communities using a
CART decision tree, leveraging the features from usernames, user
behaviors and writing styles. Then, it explores cross-site developer
behaviors through T-graph analysis, LDA-based topics clustering
and cross-site tagging. We conducted several experiments to
evaluate this approach. The results show that the precision and
F-Score of our identity linkage method are higher than previous
methods in software communities. Especially, we discovered that
(1) active issue committers are also active question askers; (2)
for most developers, the topics of their contents in GitHub are
similar to that of their questions and answers in StackOverflow;
(3) developers’ concerns in StackOverflow shift over the time of
their current participating projects in GitHub; (4) developers’
concerns in GitHub are more relevant to their answers than
questions and comments in StackOverflow.

Index Terms—Identity Linkage; Developer Behavior Mining;
Machine Learning; GitHub; StackOverflow

I. INTRODUCTION

In recent years, software developers are intensively in-
volved in open source software development communities (e.g.
GitHub) and knowledge sharing communities (e.g. StackOver-
flow). As developers continuously contribute to or exchange
ideas through these communities, a lot of development data
and knowledge are accumulated there. According to the data
from ghtorrent1 and archive.org2, there are more than 20
million repositories and 5 million developers in GitHub, 30
million posts and 6 million users in StackOverflow as of
August 2016. It is a great opportunity to understand char-
acteristics and working habits of software developers through
analyzing and mining these data.

Previous studies mainly focus on mining data within a single
community [1] [2]. Meanwhile, it is more beneficial to conduct
cross-community behavior mining, as some deep behaviors
and developer relations can be discovered. Thus researches
have been conducted on linking accounts across software com-
munities and then making analysis. For example, Vasilescu [3]
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tried to find some associations between software development
and crowdsourced knowledge, although the cross-site analysis
is still quite simple.

Generally, we are facing three challenges when mining
developer behaviors across software communities:

1) Identity linkage problem. The traditional social network
relies on user names and email addresses for linking
identities between communities. However, StackOver-
flow has no longer provided users’ email addresses. Thus
it lacks strong evidence for linking users with the same
identities between GitHub and StackOverflow.

2) Data heterogeneous problem. Data across different soft-
ware communities is heterogeneous. For example, labels
of repositories in GitHub are programming languages,
but those of Q&As in StackOverflow are technical terms.

3) Association mining. After identity linkage, it is also
challenging to find the associations of developer behav-
iors across GitHub and StackOverflow, and recover the
latent, valuable information of these data.

To address these challenges, this paper proposes a novel
approach to mining developer behaviors across GitHub and
StackOverflow, as shown in Fig. 1. It consists of two phases:
identity linkage and behavior mining. At the identity linkage
phase, we extract the features from the developer profile and
behavior data, including the similarity between usernames,
user behaviors, and user writing styles. And then classification
and regression tree (CART) algorithms are applied to link the
accounts of developers between GitHub and StackOverflow. At
the behavior mining phase, we raise three research questions
for exploring the patterns on developer behaviors across these
two software communities. Statistics, Natural Language Pro-
cessing (NLP) and machine learning technologies are adapted
to analyze and mine the merged developer behavior data.

Our main contributions are summarized as follows:

1) We propose an approach to mining cross-site developer
behaviors. It links identities between GitHub and Stack-
Overflow by leveraging features from usernames, user
behaviors, and writing styles, using CART decision tree.
And then it mines the merged developer behavior data
to find some valuable observations.

2) We conducted several experiments to evaluate the min-
ing approach. The results show that the precision and
F-Score of our identity linkage method are higher than
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Fig. 1: Approach Overview

previous methods in software communities. Especially,
we discovered that (1) active issue committers are also
active question askers; (2) for most developers, the top-
ics of their contents in GitHub are similar to that of their
questions and answers in StackOverflow; (3) developers’
concerns in StackOverflow shift over the time of their
current participating projects in GitHub; (4) developers’
concerns in GitHub are more relevant to their answers
than questions and comments in StackOverflow.

II. RELATED WORK

A. Identity Linkage in Software Communities

Several methods have been proposed to solve the identity
linkage problem in software communities. A simple algorithm
[4] was proposed by Goeminne using several simple rules to
judge if two user pairs are the same person. Bird et al. [5]
proposed a more advanced algorithm that some text similarity
metrics are used, such as Levenshtein distance. Furthermore,
a semantic-based method LSA was proposed to link users by
Erik [6]. However, these methods didn’t use username as the
most important one of features to improve prediction accuracy,
nor do they take full advantage of the textual information left
by developers in software development.

B. Mining Developer Behaviors on Software Communities

There are many researches focusing on mining the data from
a single community. For example, William [1] showed some
developer behaviors and sentiments from open source reposito-
ry mining; Christoph [2] argued that how do programmers ask
ad answer questions on StackOverflow. On the other hand, Few
people studied the association between these two communities.
Bogdan [3] investigated the interplay between StackOverflow
activities and the development process in GitHub. They show
that the QA activity rate correlates with the code changing
activity. So, across software communities, there are still a lot
of patterns and insights to explore.

III. IDENTITY LINKAGE ACROSS SOFTWARE
COMMUNITIES

Accounts from GitHub and StackOverflow are less connect-
ed. Linking these accounts, which is called identity linkage,
is a prerequisite of behavior mining across these two commu-
nities. In this section, we define the identity linkage problem,
and then give our method, and its experimental results.

A. Problem Definition

Let P denote the collection of all natural persons, Ug denote
the collection of users in GitHub and Us denote the collection
of users in StackOverflow. Let T(u) = p be a mapping function
to map a user in GitHub or StackOverflow to a nature people
in the real world. Now our goal is to find such a function
f to solve the identity problem. For a user pair(c1,c2), where
c1∈Ug and c2∈Us, f(c1, c2)→ {0, 1}. If T(c1) = T(c2), which
means c1 and c2 refer to the same nature people, f(c1, c2)
equals 1, else f(c1, c2) equals 0.

B. Feature Extraction

To solve the identity linkage problem defined above, we
extract three kinds of features to calculate the similarities
between two users firstly. Then we use a ground-truth data
collection based on all these features as the input data and
apply CART Decision Tree, a machine learning algorithm,
to train an identity linkage model. Finally, each user pair is
assigned a probability by the model. Here, these features are
presented in detail, which are username features, user behavior
features, and writing style features.

1) Username Features: Since people usually use similar
usernames in different communities, it is very significant to
extract useful features from usernames. Four string matching
algorithms are chosen to measure the username similarity
features: (1) levenstein distance, which is the number of
transfers needed to transfer one string to another one; (2)
jaro winkler distance, which is commonly used for measuring
the similarity of short strings especially for usernames; (3)
longest common substring, which is the longest string which
is a substring of two strings; (4) longest common subsequence,
which is the longest subsequence common to two strings.

The value of the jaro winkler distance is in the range [0,1],
and we compute the ratio and transfer the value of the other
three methods in the same range. In the experiments, we will
set all these metrics as features to predict the identity linkage
using the decision tree model, and two of them with the best
performance will be chosen.

2) User Behavior Features : Existing empirical studies
about social behaviors (e.g., [7]) show that, a user’s social
behavior exhibits a surprisingly high level of consistency
across different communities over a sufficiently long period
of time. It is rational to hypothesize that two users in GitHub
and StackOverflow correspond to the same nature people in
real world if they have a high level of synchrony.



For each repository in GitHub or each question in Stack-
Overflow, there is a tag labeled to describe the programming
language or relational technologies. Therefore, we can obtain
topics in user behaviors with these tags, and measure the
similarity of two user behaviors by the distribution similarity
of the topics in their behaviors.

However, the tagging systems in these communities are
very different. For example, the number of tags in GitHub
and StackOverflow are 57 and 21300 respectively. Tags in
GitHub are marked by the system automatically but by users
themselves in StackOverflow. To solve this problem, we con-
verse those synonymous tags into the same tags based on a
synonyms relation3, and a common set of all tags both in
GitHub and StackOverflow are extracted. Then these tags are
used to build the distribution of topics in user behaviors.

Another problem we encountered is, people are not always
using different communities at the same time so that amount
of information could be missing in such a process. Therefore
we propose a user behavior matching method inspired by bio-
stimulation [8] to reduce the impact of that problem. The main
idea of the bio-stimulation is that the maximum stimulation
from a pooled signal set plays a significant role for perception.
So we segment the user behaviors by different time period. For
example, we divide developers’ behaviors into four quarters
for each year and three months for each quarter.

Suppose each user pair (u1,u2) where u1 ∈ GitHub and u2 ∈
StackOverflow. For each month, we obtain all the language
tags of the projects u1 in GitHub and get a tag distribution for
the tags belong to the common set. At the same time, we also
catch all the questions u2 asked on the StackOverflow in this
month and get a tag distribution. Then, a cosine similarity is
used to measure the user behaviors similarity for the month,
denoted as smr(i). Following formula is defined to calculate
the similarity of user behaviors for a quarter and for a year,
where N is the number of months. In our experiment, we
measure an average similarity of user behaviors per year, as
the final behavior similarity between two users.

Smr =
1

N
(

N∑
i=1

(smr(i))q)
1
q , q ≥ 1 (1)

3) Writing Style Features: Most of user generated data in
the GitHub and StackOverflow are textual. Some studies [9]
[10] [11] have shown that the user’s writing style can help to
achieve reliable results in user recognition situations. So we
apply the method in [11] to extract user writing style features,
listed in table I. Then, the writing style similarity between two
users is measured by KL-divergence, using those features.

C. Identity Linkage

With all the features above, we train a identity linkage model
on a ground-truth data set, using classification and regression
tree (CART). By this model, we can obtain the probability of
whether the user pair refer to the same user. And then, the
identity linkage problem is converted to a matching problem

3http://stackoverflow.com/tags/synonyms

TABLE I: WRITING STYLE FEATURES

Feature Definition
Length number of different words
Vocabulary richness frequency of hapax legomena, ddis legomena
Word shape frequency of words with different combinations of

upper and lower case letters
Word length frequency of words that have 1-20 characters
Letters frequency of a to z, ignoring case
Digits frequency of 0 to 9
Punctuation frequency of . ? ! , ; ” ( )
Function words frequency of words like ’the’, ’of’, and ’then’

in bigraph. Suppose user u1 in GitHub and each candidate user
u2 in StackOverflow, a conditional Heuristic Greedy Matching
(HGM) is used to avoid false positive matching and finally
generate a candidate user pair as (u1,u2).

For example, in Fig. 2, each user pair has a probability
which is assigned by the CART decision tree. In HGM, as
shown in Fig. 2(a), the information generation of each user
is calculated firstly. Suppose user X is the owner of the most
information and his best candidate is X’. User pair (X, X’)
will be the first linkage selected by HGM because (X, X’)
shares the highest probability. After selecting, X and X’ will be
deleted in the candidate list before our next matching. Finally,
three user pairs (X, X’), (Y, Y’) and (Z, Z’) are matched shown
in Fig. 2(b).
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Fig. 2: An Example of Heuristic Greedy Matching Algorithm

D. Experiments

The experiment data is from ghtorrent1 and archive.org2

before May, 2016. To construct the ground-truth data, users’
profile urls are used as the evidence to verify who are the same
users. As the result, 16,000 users are linked corresponding to
8,000 people and we divide them into 5 groups and adopt
5-folder cross validation to evaluate the performance of our
method.
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Fig. 3: Results for Combination of Different Username Metrics

1) Selection of Username Metrics: With the decision tree
model, all potential combinations from 4 metrics are set as
features to do prediction, and the best combination is selected.
The result is illustrated in Fig. 3, where levenstein distance,



longest common substring, longest common subsequence and
jaro winkler distance are abbreviated by 1,2,3 and 4 re-
spectively. The experiment shows that the combination of
levenstein distance and longest common subsequence has the
best performance.
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2) Feature Contribution: In this experiment, all kinds of
features above are used to train the decision tree model. They
are username similarity (abbreviated by U), user behavior
similarity (abbreviated by B), and user writing style similarity
(abbreviated by W). Fig. 4 illustrates how the model is
affected by each feature and the combination of features. It
is demonstrated that the model trained with all features has
the best performance.
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3) Comparison with Other Methods: We compare our
method with the TBIL [12] method and the Bird’s method
[5]. Bird focuses on the username and email address of users.
The TBIL is a state-of-the-art method, which uses usernames,
user topics and user skills as features. Fig. 5 illustrates the
result of the comparison. Bird’s method achieves a high
precision (around 0.91), but low recall and F-Score. That is
because not all user use similar usernames among different
communities and some users don’t offer their email addresses.
Since the TBIL uses a full matching strategy, it achieves a
same precision, recall and F-Score (0.718). Our method has
a good precision and recall, and get the best F-Score (around
0.75). Compared to those methods, our method adopts a bio-
stimulation method with more features, which can analyze the
user’s topics and actions meticulously, and thus has a better
performance. Furthermore, we use a conditional greedy-based
matching to avoid false positive matching, since not all users
have two different accounts in GitHub and StackOverflow.

IV. MINING DEVELOPER BEHAVIOR

After identity linkage, we will explore the developer behav-
ior patterns across GitHub and StackOverflow in this section.

A. Research Questions

Three main research questions are designed as follows:

RQ1: Do one developer’s activities in GitHub reflect
his activities in StackOverflow? If yes, how?

We wonder if the developer’s behaviors in GitHub and
StackOverflow are relevant, and if the productivity of GitHub
developer is relevant to his participation in StackOverflow. For
example, are active issue committers in GitHub also active
question askers in StackOverflow?

RQ2: How is the relevance of developers’ concerned
topics between GitHub and StackOverflow?

By our experience in software development, if a developer
who participates in the development of a java project will
encounter a lot of java errors or problems, then he is very likely
to concern on java-related contents in knowledge-sharing com-
munity. Therefore, we attempt to know how is the relevance
of developers’ concerned topics between GitHub and Stack-
Overflow and if the developers’ concerns in StackOverflow
will shift over the time of their current participating projects
in GitHub. By collecting the developers’ textual contents in
GitHub and StackOverflow, we will measure the similarity
between their topics.

RQ3: Which kind of activities in StackOverflow is
more relevant to the developer’s concerns in the software
development process?

We will also explore which one will be closer to developers’
concerned topics in GitHub among their questions, answers
and comments in StackOverflow and which activity in Stack-
Overflow is more representative of what developers concern
in the software development process.

B. Behavior Mining

Guided by the above research questions, we collect and
extract following developer behavior data from GitHub and
StackOverflow: the number of developers’ repositories in
GitHub; the number of developers’ questions, answers, com-
ments and age in StackOverflow; descriptions (or readme file)
of repositories, and issue data in GitHub; and textual contents
of questions, answers and comments in StackOverflow. On this
data, we conduct following analysis and mining:

1) T-graph Analysis: We summarize the results of T [13],
a multiple contrast test procedure using 5% family-wise error
rate, by means of T-graphs [14] showed in Fig. 7. The edges
correspond to the results of the pairwise comparisons and
nodes to the different groups being compared in such a
directed acyclic graph. For example, if A have a higher value
than B for a given metric, there is an edge from A to B (A→B).

2) LDA-based Topic Clustering: We merge all one’s docu-
ments before applying LDA, because a user always generate
more than one document. Firstly, Each document must be



converted to a bag of-words vector because the LDA method
is a bag-of-words model. For each document, Stopwords4 such
as ’is’ and ’the’ need to be removed. Then, we use stemming
to convert words into their root form5 and remove some low
frequency (no more than 20 times in all documents) words.
After that, we set these text vectors of all documents as
input, and apply the LDA method to get each user’s topic
distribution. We use the approach designed by [15] to decide
the number of topics K by experiments. Finally, we measure
the similarity of topic distributions by the symmetrical KL-
divergence.

3) Cross-site Tagging: The tagging systems in StackOver-
flow and GitHub are very different. According to the prin-
ciples set forth in [12], we can use a method to mark
GitHub with tags in StackOverflow based on cross-site tagging
which consists of two steps: (1) Unnecessary tags removal
in StackOverflow. Interestingly, we found that 20% of tags
could cover all questions in StackOverflow by experiments.
Therefore, we remove some low frequency tags and rewrite the
remaining 80% tags by some rules [12]. (2) Tag transfer from
StackOverflow to GitHub. Since all questions and answers in
StackOverflow (every answer is linked to a tagged question)
are marked, these tagged data are used to train a naive
Bayesian model for text classification. Then each repository
in GitHub is labelled and gets a tag distribution TD using this
model, based on the text contents in the readme file or project
instruction.

After cross-site tagging, we calculate the co-occurrence of
every two labels and apply the spreading activation to get more
related labels. In one iteration (Fig. 6), the spreading activation
method propagates corresponding similarity to other tags with
its weight. And then, we measure the similarity of the tag
distribution by symmetric KL-divergence.
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Fig. 6: An Example of Spreading Activation in One Iteration

C. Experiments and Findings

We conduct several experiments by the above technologies
to answer three research questions.

For RQ1, we observe the distributions of the number of
issues and questions. For each ordered pair of issues and
questions, with the data sorted along one dimension, we
split the other dimension into many groups and compare the
distributions.

We perform experiments with our groups being quartiles.
Fig. 8 shows that the most and second active 25% of the issue
committers (Q1&Q2) ask more questions in StackOverflow
than other quartiles (Q3&Q4), but Q1 and Q2 can not be

4http://www.textfixer.com/resources/commonenglish-words.txt
5The stemming package is in http://www.nltk.org/api/nltk.stem.html
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distinguished. This phenomenon is consistent with the result
using polynomial fitting as shown in Fig .9 that active issue
committers are also active question askers.

Active issue committers are also active question askers.

For RQ2, we measure everyone’s similarity of his textual
contents between GitHub and StackOverflow by LDA and
the tagging system. The similarities of developers are sorted
from low to high, and illustrated by a fitting curve in Fig.
10. It’s easy to observe in the figure that a small amount
of developers’ value is very low (only 0 to 0.28), but large
number of developers have the similarity value from 0.3 to 0.5.
The similarity between the contents of developers concerns
in GitHub and StackOverflow is about 0.45. In addition, the
experimental result shows that the cross-site tagging system
outperforms the LDA method, because those tags maintained
by StackOverflow already have a high degree of summary of
the textual content.
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For most developers, the topics of their contents in
GitHub are similar to that of their questions and answers
in StackOverflow.

And then, we conduct in-depth research on RQ2. Suppose
a developer participates in the project R, the readme file
or description text of R is set to Dg , and the developer’s
direct participation in the project R starts at time Ts. Set
the time interval ∆t months, we obtain all questions, answers
and comments of this developer in StackOverflow in Ts±∆t



and set to Ds. Then, the tagging system helps us to get the
tag distribution for all Ds and Dg , and the KL-divergence is
used to calculate the similarity between Ds and Dg . In this
experiment, we set ∆t to 4,6,8,10,12 and 14. And for each ∆t,
we simply filter out the upper and lower 10% extremum of
the calculated similarities. The median value of the remaining
similarity data is taken as the ordinate, and the abscissa is
∆t as shown in Fig. 11. When ∆t is 8 or 10, the contents
that developers concerned about in GitHub and StackOverflow
have the highest correlation, and the similarity is low when
∆t is less than 8 or greater than 10. So, we speculate that
developers will pay more attention to some of the project-
related areas in a period of time.
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Fig. 11: The Similarity Changed With the Time of Projects

Developers’ concerns in StackOverflow shift over the
time of their current participating projects in GitHub.

For RQ3, we respectively compare the questions, answers,
and comments of each developer in StackOverflow to the
textual contents they left in GitHub. Fig. 12 shows that
the textual contents that developers left in GitHub are more
relevant to their answers than questions and comments in
StackOverflow. In another word, the developer’s answers are
more representative of what developers concern in the software
development process.
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The contents of developers’ concerns in GitHub are
more relevant to their answers than questions or com-
ments in StackOverflow.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to developer
behavior mining across GitHub and StackOverflow. It links the
accounts from GitHub and StackOverflow, by leveraging the
features from usernames, user behaviors and writing styles.

Then, it mines developer behavior data across these two
communities, and gains some valuable findings.

In the future, we plan to research the identity linkage
problem among more than two software communities and
continue to explore how StackOverflow influences GitHub,
for example, what kind of issues or problem always be post
to StackOverflow and what are the performance of software
developers with different programming abilities in these two
communities.
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