
Algebraic Formalization and Verification of PKMv3
Protocol using Maude

Jia She, Xiaoran Zhu, Min Zhang(B)

Shanghai Key Laboratory of Trustworthy Computing,
MoE International Joint Lab of Trustworthy Software, ECNU, 200062, China

melodyspencer@126.com, zhangmin@sei.ecnu.edu.cn

Abstract—PKMv3 is the third version of Privacy and
Key Management protocol, which plays an important
role by providing key distribution and security access
control in IEEE802.16m, the standard of Worldwide
Interoperability for Microwave Access. The protocol
should be guaranteed safe in terms of confidentiality,
authentication and integrity. In this paper, we develop
an executable formal specification of PKMv3 in an
algebraic language called Maude and verify safety prop-
erties of the protocol using state exploration and LTL
model checking in Maude. Unlike existing approaches,
we consider the behaviors of intruders and time feature
in our verification and verify both safety properties and
time-related properties of the protocol.

I. Introduction
IEEE802.16m [4] is the newer generation of WiMAX,

a communication standard for long-distance high-speed
transmission of wireless data. In IEEE802.16m, PKMv3
protocol is defined for key management and used to control
security access to the network by establishing encryption
connections. Based on its first two generations, PKMv3
improve message hierarchical protection and its encryp-
tion algorithm. In addition, PKMv3 support Extensible
Authentication Protocol (EAP) method and Cipher-based
Message Authentication Code (CMAC), which largely re-
duce the possibility of attack.

The mobile WiMAX network faces more threats than
traditional wireless networks. Security of the network must
be guaranteed. Many efforts have been done to verify secu-
rity properties of PVM protocol. In [8], BAN logic is used
to analyze the key management protocols of the previous
two generations, and the defects of one-way authentication
in PKMv1 and the interspersed attacks in PKMv2 are
pointed out. In [5], Scyther (an automated protocol testing
tool) is used to implement the formal analysis of PKMv2
protocol to verify the defects of confidentiality, authen-
ticity and integrity in the protocol. In [9], the PKMv2
protocol is described by the Casper protocol modeling tool
and the output of the process communication is analyzed
by FDR tool. It is found that the intruder can intercept
the message and replay the attack. In [7], the security

This material is based upon work supported by National Natural
Science Foundation of China (NSFC) project: No. 61502171.

DOI reference number: 10.18293/SEKE2017-061

flaws of authentication and authorization have been in
WiMAX, such as the possible DoS attack, and the defects
of authentication and key space. Raju et. al. also use
CasperFDR tool to model the process of transmitting
plaintext messages between base station, mobile station
and relay station in PKMv3 protocol, and get the attack
model of stealing secret keys by analyzing outputs [6]. Zhu
et al consider the time characteristics of PKMv3 protocol
key lifecycle and model them using Promela language and
use DT-Spin model checker to verify the protocol liveness,
key period and message consistency [10].

In this work, we formalize PKMv3 protocol in an al-
gebraic language called Maude [1] with considering both
the behaviors of intruders and the time feature of the
protocol. Six properties including three safety properties
and three time-related properties are verified using the
searching and LTL model checking functions provided
by Maude. The verification results coincide with those
in existing works [5], [7], [6], [10]. Besides that, we find
the integrity vulnerability of PKMv3 by verification and
propose a solution on the basis of the verification result.

II. PKMv3 Protocol

PKMv3 protocol provides security distribution mech-
anism of key material between the server called base
station (BS) and the client called subscriber station (SS).
More precisely, it generates traffic encryption keys (TEK)
for stations to encrypt the messages they exchange. The
generation of TEK consists of three procedures which
are called AK authentication, SA negotiation and TEK
transmission. Each procedure is achieved by exchanging
key information between SS and BS. After a TEK is
generated, secret keys i.e., AK and TEK, may expire
because their lifetime is limited. After they expire reau-
thorization is needed. Figure 1 depicts the whole process
of key generation and reauthorization. In this section, we
give the details of three procedures and reauthorization.

A. AK Authentication
By this phase, SS and BS establish mutual authentica-

tion and SS receives a Pairwise Master Key (PMK) sent by
BS. PMK is used by BS and SS to generate Authorization

PMK (generated by EAP Auth)

PMK(160bits)

AK = Dot16KDF(PMK,SS address,BSID)

CMAC-TEK prekey = Dot16KDF(AK,AK_COUNT)

CMAC key = Dot16KDF(CMAC-TEK prekey)

TEK = Dot16KDF(CMAC-TEK prekey,SAID,COUNTER_TEK)

AK(160bits)

CMAC-TEK prekey(160bits)

CMAC-TEK prekey(160bits)

TEK(128bits)

Message Transmisson
ReAuth TEK ReAuth AK

AK Authentication

SA Negotiation

TEK Transmission

Fig. 1. The process of key generation and reauthorization

Key (AK), which are used in the subsequent process. This
phase consists of the following three message exchanges:

Msg1. SS → BS: CertSS |NS |Capabilities|SIGSS

Msg2. BS → SS: CertBS |NS |NB |ENCSS(PMK)|
PMK SN |SIGBS

Msg3. SS → BS: NB |SS Address|CheckSum

Firstly, SS sends BS an auth-request message, which is
encrypted with the private key of SS as a digital signature,
SIGSS . The message includes a digital certificate of SS, a
nonce NS generated by SS and the encryption capabilities
that SS supports. On receiving the message, BS decrypts it
with the public key of SS, and then sends an auth-response
message encrypted with the private key of BS. This mes-
sage includes a certificate of BS, the nonce NS received
from SS, a nonce NB generated by BS, a PMK encrypted
with SS’s public key, and the sequence number PMKSN
of PMK. SS decrypts the message and authenticates the
legitimacy of the BS’s digital certificate. Finally, SS sends
BS an auth-success message containing the address of SS,
with which an AK can be generated.

B. SA Negotiation
By the phase, SS and BS negotiate the security asso-

ciation (SA) through three message exchanges. SA is an
information set that is required for secure communication.
The three message exchanges are shown below:

Msg4. BS → SS: NB |PMK SN |AKID|CMAC
Msg5. SS → BS: NB |NSPMK SN |AKID|SNP|

Security Capabilities|CMAC
Msg6. BS → SS: NS |PMK SN |SAID|SNP|CMAC

Before message exchange, SS and BS generate CMAC
keys using AK separately. CMAC keys are used to calcu-
late CMAC digest. BS firstly sends SS a key agreement
message, including nonce NB generated in this round,
PMKSN , and identifier AKID of AK. In particular, BS

generates a CMAC digest with the three arguments and
sends along with the message. On receiving the message,
SS calculate a CMAC digest using its CMAC key and
compares it with the received one. If they are equal,
SS sends BS the second key agreement message, includ-
ing NB , PMKSN , AKID, security negotiation parameter
(SNP), and newly generated nonce NS and CMAC digest.
Once BS checks the validity of the CMAC digest, it sends
SS the identifier of SA (SAID) and other information.
SAID is used to identify different security levels of security
association. At this point, SS and BS have negotiated the
necessary information required for secure communication.

C. TEK Transmission
By this phase, SS and BS generates TEK after three

message exchanges, as shown below.

Msg7. SS → BS: SAID|PMK SN |TEK Refresh
Flag|CMAC

Msg8a. BS → SS: SAID|PMK SN |Counter TEK
EKS |CMAC

Msg8b. BS → SS: SAID|Wrong Code|CMAC

SS first sends BS a TEK-Request message, includ-
ing SAID, PMK SN, TEK refresh flag and CMAC di-
gest. After checking the correctness of CMAC digest and
SAID, BS sends SS a request confirm message TEK-
Reply, including SAID, PMK SN, the counter of TEK
(Counter TEK), the encryption key sequence (EKS), and
the CMAC digest. Counter TEK is used to generate TEK
together with SAID and the CMAC-TEK prekey that is
derived by AK, and EKS is used to distinguish consecutive
TEKs. If the TEK request fails, BS sends SS a request
invalid message TEK-Invalid, including SAID, error code
and the CMAC digest. In this case, SS needs to re-send
TEK-Request message to BS.

D. Reauthorization
After the whole process of the three procedures, BS and

SS establish a security connection for the transmission
of communication messages encrypted by TEK. As men-
tioned above, because both AK and TEK have limited
lifetime BS and SS have to be re-authorized to keep
liveness and safety when the lifetime of the keys expire.

When AK’s lifetime expires, SS needs to send an Auth-
request message to BS to request a new AK. It ends the
current process and restart from AK authentication, as
shown in Figure 1. Because TEK’s lifetime is embedded in
AK’s, when TEK becomes invalid but it corresponding AK
is still alive, SS only needs to send TEK-request message
to BS to start the process of TEK transmission.

III. Maude Nutshell
Maude is an algebraic specification language and also

an efficient rewriting engine [1]. The underlying rewriting
logic of Maude is a logic of concurrent changes well-suited
to formalize states and concurrent computations [2].

A. Formalization in Maude
A system is formalized in Maude as a rewrite theory

i.e., (Σ, E ∪A,R), consisting of a signature Σ, a collection
E of (possibly conditional) equations and memberships
defined on Σ, a collection A of equational attributes, and
a set R of rewrite rules. The two-tuple (Σ, E ∪ A) is
called a membership equational theory, which specifies
the “statics” of a system, i.e., the algebraic structure of
the set of system states, and the rules in R specify the
“dynamics” of the system, i.e., all the possible transitions
that the system can perform. In Maude, a system state
is usually represented as an algebraic inductive structure
which can be a tuple, a soup of components, or even an
object. Thanks to the inductive representation, Maude
can naturally specify both finite-state and infinite-state
systems. Transitions among the states are formalized by
rewrite rules. Given two states υ1 and υ2, let tυ1 and tυ2

be their corresponding terms. There is one-step transition
from υ1 to υ2 if there is a rewrite rule r such that tυ1 can
be rewritten into tυ2 by applying r once.

Finally, we briefly summarize the syntax of Maude (see
the work [1] for more details). Sorts and subsort relations
are declared by the keywords sorts and subsort, respec-
tively. Operators are declared with the op keyword in the
form: op f : s1 . . . sn-> s, where si(i = 1, . . . , n) and s
are sorts. Maude allows for user-defined mixfix operators
and uses underbars in operators to indicate each of the
argument positions. An equation in Maude is declared in
the form of eq t = t′, where t and t′ are two terms of
the same sort. An equation can be conditional, which is
declared by the keyword ceq and ended with the keyword
if, followed by a conjunction of conditions. A rewrite rule
in Maude is declared in the form of rl [label]: t => t′.
A conditional rewrite rule is declared by the keywords crl
and if with a conjunction of rewrite conditions.

B. Formal analysis in Maude
Maude programs are executable. For this feature Maude

provides multiple formal analysis methods, mainly includ-
ing simulation, reachability analysis, and model checking
to formally analyze systems.

Simulation is achieved using Maude’s rewrite com-
mand, which repeatedly applies the rewrite rules to trans-
form a given term step by step. The transformation process
simulates one behavior of the specified system.

Maude provides a search function to explore the reach-
able state space of specified systems. The search function
can be used to verify invariant properties of systems. An
invariant property states that something bad should never
happen. We verify an invariant property by specifying
the negation of the property as the condition in search
command and using Maude to find if there are solutions.
A solution can be interpreted as a counterexample of the
property. If the reachable state space is infinite or finite
but too large to be explored due to time or memory

Message Pool

Information
sets of

Node SS

Information
sets of

Node BS

Information sets
of Node Intruder

PKMv3
Network

Environment

Other
Nodes

Send Messages Send Messages

Receive Messages
Gather Information

Receive Messages
Gather Information

Intercept Messages Reply Messages
Tamper Messages

{AK Lifetime, TEK Lifetime, Current Process}

Fig. 2. Configuration of PKMv3 network

limitations, a bound on the searching depth is needed, and
thereafter properties are partially verified in such cases.

Maude also provides an efficient LTL model checker
[3] to verify LTL properties of systems. Given a Maude
specification and a set of atomic propositions, the model
checker takes an initial state and an LTL formula and
returns true or a counterexample. A condition of doing
model checking in Maude is that the set of states that are
reachable from the given initial state must be finite.

IV. Formal Modeling of PKMv3 Protocol
This paper treats PKMv3 protocol and its environment

as a dynamic system. In the network, there are stations
e.g., SS, BS and other intruder, and message transmis-
sions, as depicted in Figure 2. We assume the correctness
of all the encryption algorithms used in the protocol and
one BS communicates with only one SS at a time.
A. Definition of basic data types

In Maude we define abstract data types to formalize the
objects in the network such as stations, messages, lifetime
and nonce. Due to space limitation, we only explain the
main data types as examples.

We declare a sort Station for stations and three sub-
sorts Ss, Bs and Intruder of it for BS, SS, and intruder
respectively. Three constructors ss, bs and intruder are
defined to construct stations for SS, BS and intruder with
a string as their argument.

1 sorts Station Ss Bs Intruder .
2 subsorts Ss Bs Intruder < Station .
3 op ss : String -> Ss [ctor] .
4 op bs : String -> Bs [ctor] .
5 op intru : String -> Intruder [ctor] .

We use random numbers to model nonce, as formalized
by the following Maude codes. A random number can be a
seed or a successor of an existing one. A nonce consists of
a station which generates it, a station to which the nonce
is to be sent, and a random number.

1 sorts Rand Nonce .
2 ops seed seed0 seed1 : -> Rand [ctor] .
3 op next : Rand -> Rand [ctor] .
4 op nonce : Station Station Rand -> Nonce [ctor] .

Keys and certificates of stations are formalized likewise.
As defined below, constructor pubkey (resp. prikey) con-
structs a public (resp. secret) key, macaddr constructs a
MAC address of a station, and cert constructs a certifi-
cate with a station, a MAC address and a public key.

1 sorts Pubkey Prikey MacAddr Cert .
2 op pubkey : Station -> Pubkey [ctor] .
3 op prikey : Station -> Prikey [ctor] .
4 op macaddr : Station -> MacAddr [ctor] .
5 op cert : Station MacAddr Pubkey -> Cert [ctor] .

B. Formalization of system states
A system state of PKMv3 protocol consists of a set of

nodes, a pool of messages and the connection time between
SS and BS.

A message is formalized as a triple, consisting of source,
destination and a collection of contents such as certificates,
keys and nonce. Message and contents are defined in
Maude as follows:

1 sorts Content Contents Message .
2 subsorts Key Cert Nonce ... < Content < Contents .
3 op _,_ : Content Content -> Content [assoc comm].
4 op msgnil : -> Message [ctor] .
5 op from_to_send_ : Station Station Content ->

Message .

The mixfix operator _,_ represent the union of two col-
lection of contents, msgnil represents an empty message,
and from_to_send_ constructs a message with a source
station, a destination station and a collection of contents.

A node consists of a station and a collection of contents.
The duration time of a connection consists of remaining
lifetimes of AK and TEK and a flag to indicate to which
process the communication is proceeding. We use natural
numbers to represent the lifetime of AK and TEK, and
formalize duration time as a triple. The Maude definition
of nodes and connection time is given below:

1 sorts Node LTime Process ConnTime .
2 subsort Nat < LTime .
3 op node[_]:_ : Station Content -> Node .
4 ops pak psa ptek pmt : -> Process .
5 op {_,_,_} : LTime LTime Process -> ConnTime .

Constructors pak, psa, ptek and pmt of sort Process
respectively represent the processes AK authorization, SA
negotiation, TEK exchange and message transmission.
Lifetime of secret keys is defined as sort LTime with
predefined sort Nat. The connection time is defined by sort
ConnTime and represented using the constructor {_,_,_}.
It is worth mentioning that before AK (resp. TEK) is
generated, the time in the triple represents the AK (resp.
TEK) grace time, i.e., the time that is allowed before AK
(resp. TEK) is generated [10].

As defined below, sort States is declared for system
states, and Node, Message and ConnTime are declared as
its subsorts. A state is composed of nodes, messages and
connection time by the constructor __.

1 sorts States .
2 subsorts Message Node ConnTime < States .
3 op __ : States States -> States [assoc comm] .

TABLE I
Variables used in the specification

Variables Sorts Descriptions
A, B, C Stations SS, BS, Intruder
R1, R2, R0 Rand Random number
NC_X(X=A,B,C) Nonce Nonce sent by Station
CERT_X(X=A,B,C) Cert Certificate of Station
PMKSN Pmksn Key sequence of PMK
AKID AkId Identifier of AK
AKCOUNT AkCount Counter of AK
MSG2 AuthResponse Ak-response message
MSG5 SAResponse SA-response message
CMAC1,CMAC2 Cmac CMAC digest
CMACKEY Cmackey Cmac key
SAID SaId Identifier of SA
FLAG TRFlag TEK refresh flag
C_TEK CounterTek Counter of TEK
AKLT,TEKLT LTime Life time of AK,TEK
PS Process Process of PKMv3
CS1,CS2 Content Message contents

C. Formalization of message exchanges
We formalize the eight message exchanges explained in

Section 2 by rewrite rules in Maude. There are totally 22
rewrite rules defined. We take three of them as examples.
Table 1 shows all the variables that are used in rewrite
rules as well as their data types and descriptions.

The first one specifies the behavior of sending an auth-
request message from SS to BS for AK authentication.

1 rl [SendAuthRequestMsgReal] :(node[A]: R0 , CERT_A)
2 (node[B]: R1 , CERT_B) (msgnil) {AKLT ,TEKLT ,pak} =>
3 (node[A]: next(R0),CERT_A ,nonce(A,B,R0))
4 (node[B]: R1 , CERT_B)
5 (from A to B send sencrypt (authrequest (CERT_A ,

nonce(A,B,R0),capa(A)),prikey (A)))
6 {sd(AKLT ,tt),TEKLT ,pak} .

The term pak in the rule indicates that the behavior
occurs at the AK Authentication process. The right-hand
side of the rule says after the behavior a message is put
into the network. The message consists of a certificate
CERT_A, a nonce generated by station A and the encryption
capabilities capa(A) of station A. It is encrypted by the
private key prikey(A) of A and sent to B. After sending
the message, AK grace time AKLT is decreased by a fixed
number tt of time units which can be customized initially.

The second rewrite rule describes the behavior of BS
receiving SA-response message from SS for SA negotiation
process. The condition of the behavior is that there is an
SA-response message sent to BS in the network. In the
message, the AKID and nonce NB should be same as the
ones that B holds, and attached CMAC digest CMAC2 is the
same as the one calculated using the information in MSG5
and CMACKEY. The rewrite rule is defined as follows:

1 crl [RecvSAResponseReal] :
2 (node[B]:NC_B ,AKID ,CMACKEY ,CS1)
3 (from A to B send (MSG5 ,CMAC2)){AKLT ,TEKLT ,ps}=>
4 (node[B]:NC_B ,AKID ,CMACKEY ,getsc(MSG5),getnon52 (
5 MSG5),getsnp5 (MSG5),CS1)(msgnil){AKLT ,TEKLT ,psa}
6 if getakid5 (MSG5) == AKID /\
7 equals (getnon51 (MSG5),NC_B) == true /\
8 equalm (cmac(MSG5 , CMACKEY),CMAC2) .

The last rewrite rule specifies key reauthorization. Key
reauthorization occurs when lifetime of AK AKLT is no less
than a predefined value tt of time units and TEK is less
than tt in message transmission procedure, as defined by
the condition part of the following rewrite rule.

1 crl [CircleTEKMsgReal] :
2 (node[A]: PMKSN ,CMACKEY ,SAID ,FLAG ,TEK ,C_TEK ,CS1)
3 (node[B]: PMKSN ,CMACKEY ,SAID ,FLAG ,TEK ,C_TEK ,CS2)
4 {AKLT ,TEKLT ,PS} (msgnil) =>
5 (node[A]: PMKSN ,CMACKEY ,SAID ,flag (1) ,CS1)
6 (node[B]: PMKSN ,CMACKEY ,SAID ,CS2)
7 (from A to B send(tekrequest (SAID ,PMKSN ,flag (0)),
8 cmac(tekrequest (SAID ,PMKSN ,flag (1)),CMACKEY)))
9 {sd(AKLT ,tt),sd(tgt ,tt),ptek}

10 if AKLT >= tt /\ TEKLT < tt .

The right-hand side of the rule means that by reauthoriza-
tion A and B delete all the data gathered in TEK exchange
such as FLAG, TEK and C_TEK first, and A generates new
TEK refresh flag flag(1) and sends B a TEK-request mes-
sage containing SAID received in SA negotiation, PMK_SN
and TEK refresh flag and CMAC digest.

D. Formalization of intruders
Intruder is a part of the network environment. We

assume intruders have three capabilities: (1) participating
in the protocol communication with the same capacity
of normal station; (2) eavesdropping on the messages in
the network; and (3) replaying received messages and
tampering with message contents. Intruders may intervene
in each procedure of the protocol and hinder the normal
communication of SS and BS.

We formalize the behavior of intruder as rewrite rules
in the same way as we formalize those of normal stations.
Due to space limitation, we only discuss two as examples.

The following rule formalizes the process of intruder C
intercepting auth-response message in AK authentication.
When B sends A auth-response message MSG2, C can in-
tercept this message from message pool and encrypt its
digital signature using the public key of B.

1 crl [RecvAuthResponseMsgFake] :
2 (node[C]: R2 ,CERT_C ,CERT_A ,NC_A)
3 (from B to A send sencrypt (MSG2 ,PRI)) =>
4 (node[C]: R2 ,CERT_C ,CERT_A ,NC_A , getcert2 (MSG2),

getnon22 (MSG2),decrypt (getcipher (MSG2),prikey
(C)),getpmksn2 (MSG2)) (msgnil)

5 if equals (getnon21 (MSG2),NC_A) == true /\
6 getpub (getcert2 (sdecrypt (sencrypt (MSG2 ,PRI_B),

pubkey (B)))) == (B) .

The condition says that if the certificate of B and NB are
correct, intruder C retrieves corresponding data from MSG2
and tries to decrypt PMK with its own secret key.

The second rewrite rule specifies the behavior of in-
truder C sending fake auth-confirm message in AK au-
thentication process. After eavesdropping communication
between SS and BS, intruder has gathered necessary in-
formation including nonce NB , PMK SN and address of
station A. Hence, C can forge auth-confirm message with
NB and fake address ssaddr(C) and then disguise that SS
sends BS this message.

1 crl [SendAuthConfirmMsgChange] :
2 (node[B]: AKCOUNT ,PMKSN ,CS1)
3 (node[C]: NC_B ,PMKSN , ssaddr (A),CS2) (msgnil)
4 {AKLT ,TEKLT ,PS} =>
5 (node[B]: AKCOUNT ,PMKSN ,CS1)
6 (node[C]: NC_B ,PMKSN , ssaddr (A),CS2)
7 (from A to B send(authconfirm (NC_B , ssaddr (C)),

checksum (authconfirm (NC_B , ssaddr (C)),iv)))
8 {sd(AKLT ,tt),TEKLT ,PS}
9 if AKLT >= tt /\ not(ssaddr (C) inc CS1) .

The condition says that the message can be sent if the
lifetime of AK is no less than transmission time tt and B
has not received auth-confirm message yet. In addition, in-
truder can reply auth-confirm message to B as the identity
of station A, without changing original contents of auth-
confirm message which sent by A.

V. Formal Verification of PKMv3’s Properties
With the specification, we verify both safety properties

and time-related properties by the searching function and
Maude LTL model checker.

A. Definition of initial states
An initial state should be provided for verification. We

assume that in the initial state there is a mobile station,
a base station and an intruder, which have their own
digital certificates. The message pool is empty. Message
transmission time tt is set 4, and the grace time of AK
agt and TEK tgt 60. We use init to denote the initial
state of PKMv3 network, which is defined as follows:

1 op init : -> States .
2 eq init = (msgnil) {agt ,tgt ,pak} (node[ss("a")]:

seed ,cert(ss("a"),macaddr (ss("a")),pubkey (ss
("a"))))(node[bs("b")]: seed1 ,cert(bs("b"),
macaddr (bs("b")),pubkey (bs("b"))))(node[intru
("c")]: seed0 ,cert(intru ("c"),macaddr (intru ("
c")),pubkey (intru ("c")))) .

B. Formalization of properties
We consider six properties of PKMv3, including three

safety properties and three time-related properties.
The three safety properties are called confidentiality,

authentication and integrity. By confidentiality it means
that intruders can never obtain PMKs that are used by two
normal stations. Without PMK intruders cannot calculate
AK and participate in the subsequent process even if it has
gathered other important key material. Authentication is
another important property of the protocol. That is, even
if there are attacks from intruders in the network, normal
stations should still be able to verify each other’s identity
and carry on communication. Integrity property says that
messages transmitted between the honest subjects should
not occur transmission error or be tampered with, or at
least wrong message data can be detected. In Maude,
safety properties can be verified using search command
and do not need to specify separately.

The three time-related properties are succession, reau-
thorization, and key freshness. Succession means that the
four procedures should take place in turn. Reauthorization

says that when AK and TEK expire, authorization needs
to be re-established immediately. Key freshness says that
transmitting those messages with expired AK and TEK is
not allowed. The three properties can be specified as the
following LTL formulas in Maude.

1 (eap -auth U nego -sa) /\ (<> nego -sa U exch -tek)
/\ (<> exch -tek U msg -trans)) .

2 (<> msg -trans U exch -tek) /\ (<> msg -trans U eap -
auth)) .

3 [](˜ inva -msg) .

In the above formula, eap-auth, nego-sa, msg-trans and
exch-tek are atomic propositions which are true in those
states where the process tag is respectively pak, psa, ptek
and pmt, and inva-msg is an atomic proposition which is
true in those states where the lifetime of current AK or
TEK is less than zero. The symbols U, <> and [] represent
the temporal connectors U, F and G in LTL.

C. Formal verification and result analysis
We use searching function to verify the safety properties

and Maude LTL model checker to verify the time-related
properties of the protocol. For instance, the following
search command is used to find a state where an intruder
obtain a PMK that is not supposed to belong to it.

1 search init =>* (S: States) (node[intru ("c")]:
2 pmk(ss("a"),bs("b"),nonce(ss("a"),bs("b"),seed),
3 nonce(bs("b"),ss("a"),seed1),algo),C: Contents).

Maude returns no solution, which means that the confi-
dentiality holds. The other two safety properties can be
verified likewise by searching. For model checking, one
only needs to call modelCheck(init,F) with init the
predefined initial state and F an LTL formula.

The verification results of the six properties are shown
in Table II. For time-related properties, the succession and
reauthorization of PKMv3 protocol can be satisfied, which
means that the procedures of PKMv3 and period lifetime
of secret keys are correct. Meanwhile, messages are always
transmitted with valid secret keys which guarantee key
freshness. For the safety properties, confidentiality and
authentication can also be satisfied by our Maude model.
The intruder can never obtain the PMKs and other secret
keys that are not supposed to belong to it. SS and BS can
always authenticate each other’s identity. The verification
results coincide with those in the work [5], [7], [6], [10].

Another finding in our verification is that the integrity
of messages can not be guaranteed. Maude returns a
case that BS receives a fake auth-confirm message with
incorrect address of SS, and then generates invalid AK.
The reason is that auth-confirm message is generated using
common checksum algorithm, but intruder can tamper
with this message and generate corresponding checksum.
In this case, BS acknowledge that the received message
does not have transmission error, but can not verify
whether the message is tampered with or not by intruder.

The integrity vulnerability of PKMv3 can be improved
by using AK to generate the checksum of auth-confirm

TABLE II
Verification results of the six properties

Property Method Rewrite Time Result
Succession Model checking 388 2ms

√

Reauthorization Model checking 264 4ms
√

Key freshness Model checking 1199 2ms
√

Confidentiality Searching 1843 44ms
√

Authentication Searching 1843 112ms
√

Integrity Searching 420 4ms ×

message. More precisely, the modified message is described
as: SS → BS: NB |SS Address|AK(NB |SS Address).
BS generates AK with received SS Address, and then
compares the calculated checksum with the one that re-
ceived. Verification results after the refinement show that
the integrity of message transmission is satisfied.

VI. Conclusion
We have presented an algebraic approach to formal

modeling of PKMv3 protocol and verification of its six
safety properties and time-related properties using Maude.
In our model, we consider both the behaviors of intruders
and the time feature of the protocol. Verification results
show that our model of PKMv3 can satisfy the succession
of whole process, re-authorization, validation secret keys
and authentication, which coincide with the results of
other existing works. We also found that the integrity
of messages can not be guaranteed due to auth-confirm
message may encounter man-in-the-middle attacks. We
proposed a solution to the problem and verified its validity.

References
[1] Clavel, M., et al.: All about Maude, LNCS, vol. 4350. Springer

(2007)
[2] Clavel, M., Durán, F., Eker, S., et al.: Maude: specification and

programming in rewriting logic. Theor. Comput. Sci. 285(2),
187–243 (2002)

[3] Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL
model checker. In: 4th WRLA, ENTCS 71. pp. 162–187. Elsevier
(2002)

[4] IEEE, B.E.: Ieee standard for local and metropolitan area
networks part 16: Air interface for broadband wireless access
systems amendment 3: Advanced air interface pp. 1–1112 (2011)

[5] Kahya, N., Ghoualmi, N., Lafourcade, P.: Formal analysis of
PKM using scyther tool. In: International Conference on Infor-
mation Technology and E-Services. pp. 1–6 (2012)

[6] Raju, K.V.K.: Formal Verification of IEEE802.16m PKMv3
Protocol Using CasperFDR. In: Information and Communica-
tion Technologies - International Conference. pp. 590–595 (2010)

[7] Sikkens, B.: Security issues and proposed solutions concerning
authentication and authorization for WiMAX (IEEE 802.16e).
In: Proc. of 8th Conference on IT Enschede University of Twente
(2008)

[8] Xu, S., Huang, C.T.: Attacks on PKM Protocols of IEEE 802.16
and Its Later Versions. In: International Symposium on Wireless
Communication Systems. pp. 185–189 (2006)

[9] Xu, S., Huang, C.T., Matthews, M.M.: Modeling and analysis
of IEEE 802.16 PKM Protocols using CasperFDR. In: IEEE
International Symposium on Wireless Communication Systems.
pp. 653–657 (2008)

[10] Zhu, X., Xu, Y., Guo, J., Wu, X.: Formal Verification of PKMv3
Protocol Using DT-Spin. In: International Symposium on The-
oretical Aspects of Software Engineering. pp. 71–78 (2015)

