
A Formal Design Model of Cloud Services

Meng Sun∗ and Guirong Fu†

∗LMAM & DI, School of Mathematical Sciences, Peking University, Beijing, China
sunmeng@math.pku.edu.cn

†Yuanpei College, Peking University, Beijing, China
fgr079@126.com

Abstract—To support rigorous development of cloud applica-
tions, a formal model for understanding and reasoning about
cloud services is needed. Unifying Theories of Programming
(UTP) provide a formal semantic foundation for various expres-
sive programming and specification languages. A key concept in
UTP is design: the familiar pre / post-condition pair that describes
a contract. In this paper we use UTP to provide a formal model
for cloud computing, whereby cloud services are interpreted as
designs in UTP. Refinement and equivalence relations between
cloud services can be naturally established by implication between
predicates. A family of composition operators that can be used to
put different cloud services together to construct more complex
services and applications are defined based on the design model
for cloud services. On the other hand, dynamic reconfiguration of
cloud applications can be dealt with in the context of the design
model as well, by applying the reconfiguration rules on the design
models for the corresponding applications.
Keywords: Cloud service, design, composition, refinement, dy-
namic reconfiguration

I. INTRODUCTION

Cloud computing has been coined as an umbrella term
to describe a family of sophisticated computing services and
gained a significant amount of attention in the past decades.
It denotes a model on which a computing infrastructure is
viewed as a “cloud”, from which businesses and individuals
access applications from different locations. According to [3],
Cloud is defined as a parallel and distributed computing system
consisting of a collection of inter-connected and virtualized
computers that are dynamically provisioned and presented as
one or more unified computing resources based on service-
level agreements (SLAs). Instead of running or storing ap-
plications locally, one can host their application in the cloud
and access it from any location using a client such as a web
browser.

To support rigorous development of cloud applications, we
need to investigate the formal foundations for understanding
and reasoning about clouds. Although researches on cloud
computing are mainly focused on technical problems such
as resource allocation [9], resource sharing [12], resource
management [21], policy optimization [16] and task scheduling
[22], there are some attempts to the formalization of funda-
mental notions in cloud computing. An abstract formal model
of cloud workflows was proposed in [8] using the Z notation.
In [7], the hierarchical colored Petri Net model was adopted
to specify the security mechanism in cloud computing. The
Petri Net model is also used in [4] to build the fault tolerant

DOI reference number: 10.18293/SEKE2017-055.

model of cloud computing, and as the basis for a dynamic fault
tolerant strategy in cloud computing. The agent paradigm was
adopted in [19] to manage cloud resources and support cloud
service discovery, negotiation and composition. A Bigraph
model was proposed in [2], [18] to formally specify cloud
services and customers and their interaction schemes. A formal
model for aspects of performance, resource consumption, and
deployment on the cloud is developed using the abstract
behavioral specification language ABS in [5]. In [1], the model
checker UPPAAL is used to synthesize an optimal infinite
scheduler for a given specification of Mobile Cloud Computing
systems.

The problem that we address in this paper is to develop
a formal model for cloud services under the UTP (Unifying
Theories of Programming) semantic framework. UTP was
proposed by Hoare and He in [10], and aims to formalize the
similar features of different languages in a similar style. UTP
has been proved to be appropriate for formal semantics of var-
ious programming languages and specification languages like
Circus [15], TCOZ [17], rCOS [11] and Reo [20]. We believe
it is also well suited for developing a proper formal foundation
of cloud computing. Furthermore, interpreting cloud services
as UTP designs makes it easier to guarantee the consistency of
cloud service specifications and the corresponding implemen-
tations in different concrete languages and platforms whose
semantics can also be given in UTP, which is very important
for Cloud computing.

Clouds provide applications / storages / services that can be
used by local clients from different locations in the real world,
and clients can link to the cloud via different instruments.
Since our observation on the cloud can only be obtained by
interactions between users and services provided by the cloud,
for an arbitrary cloud service C the relevant observations
usually come in pairs on its input ports and output ports respec-
tively. When a user send a requirement to the cloud to acquire
some service, the requirement will be distributed to some
available resource and dealt with in the cloud. Afterwards, the
result is sent out to the user and the resource is released and
available again to be invoked later. Thus cloud services can be
interpreted as designs in UTP, i.e., pairs of predicates P ⊢ Q,
where P is a predicate specifying the relationship among what
happen as the inputs of the cloud service and Q is the predicate
specifying the condition that should be satisfied by the outputs.

The design model for cloud services proposed in this paper
provides a family of composition operators to compose differ-
ent cloud services or resources to build complex applications.
An advantage of representing cloud services as such designs in

our model is that cloud applications can be decomposed into
simpler services, and in suitable circumstances the behavior of
the whole application can be captured by the composition of
the predicates describing its component services. It is natural to
verify cloud service properties by assume-guarantee reasoning
based on the design model framework and the verification
of separate services are becoming quite easy. Furthermore,
dynamic reconfigurations of cloud applications can also be
captured by the reconfiguration rules for transforming the
design models.

The paper is organized as follows. Section II shows how
cloud services are interpreted as designs in UTP based on
observations on their input and output ports, and introduces the
refinement and equivalence relations between cloud services.
Then, in Section III we provide a family of composition opera-
tors that can be used to put different cloud services together to
construct more complex services and applications. Section IV
introduces dynamic reconfiguration for cloud services based
on the design model. Finally, Section V summarizes the paper
and comes up with some future work we are going to work
on.

II. CLOUD SERVICES AS DESIGNS

Usually the computing and storage resources in the cloud
are located far from the users. Users have no knowledge
about its details and configuration, and can access the cloud
applications regardless of their locations or what device being
used. Thus the only possible way that users can know about a
cloud application is via observations on the services provided
by the application: A cloud service is interpreted as a relation
between an initial observation on inputs to the cloud service
and a subsequent observation of the behavior of the execution.

During observations it is usual to wait for some initial
transient behavior to stabilize before making any further obser-
vation. To express this, two Boolean variables ok and ok′ are
introduced, where ok stands for a successful initialization of
computation in the cloud service or communication with other
services by external users or organizations, and ok′ denotes
the observation that the cloud service has either terminated or
reached an intermediate stable state. When ok′ is false, the
cloud service becomes divergent.

A. Cloud Services as Designs

In this paper we use inC and outC to denote what happen
as inputs and outputs of a cloud service C, respectively. For
every port of a cloud service C, the corresponding observation
on it is given by a timed data stream, which is defined as
follows:

Definition 1: Let D be a set of data elements and R+ be
the set of non-negative real numbers which is used to represent
time moments. Let DS = Dω be the set of data streams, that
is, the set of all streams α = (α(0), α(1), α(2), . . .) over D,
and Rω

+ be the set of all streams a = (a(0), a(1), a(2), . . .)
over R+. The set of time streams is defined by the following
subset of R+:

TS = {a ∈ Rω
+ | a < a′}

where a′ is the derivative of a defined as

a′ = (a(1), a(2), a(3), . . .)

for a = (a(0), a(1), a(2), . . .), and for two time streams a and
b, a < b ≡ ∀n ≥ 0.a(n) < b(n). A timed data stream is
defined as a pair ⟨α, a⟩ consisting of a data stream α ∈ DS
and a time stream a ∈ TS. We use TDS to denote the set of
timed data streams.

Let IC and OC be the set of input and output port names of
C, then inC and outC are defined as the following mappings
from the corresponding port sets to TDS.

inC : IC → TDS

outC : OC → TDS

Definition 2: A design is a pair of predicates P ⊢ Q, where
neither predicate contains ok or ok′, and P has only input
variables. It has the following meaning:

P ⊢ Q ≡ ok ∧ P ⇒ ok′ ∧Q

We use relations on timed data streams to model cloud
services. Every cloud service C can be represented by the
design P (inC) ⊢ Q(inC, outC). In the following we write
such a design for cloud service C as:

C(in : inC; out : outC)

pre :P (inC)

post :Q(inC, outC)

where C is the name of the cloud service, P (inC) is the
condition that should be satisfied by inputs inC of the cloud
service, and Q(inC, outC) is the condition that should be
satisfied by outputs outC of C.

Fig. 1. Remote Printing Service

Example 1: Consider a simple example where a remote
printer offers its printing service to two clients, which compete
for the use of this shared resource. Each client can send out
multiple printing requests to the printer and the requests from
different clients are placed in a queue to be processed by
the printer in a first-come first-served manner. After a file is
printed out it can be collected by the client later. In order to
keep the example simple to expose without considering non-
deterministic choice, we assume that requests from different
clients never arrive simultaneously.

The cloud service M in Figure 1 receives requests from
different clients at ports A and B, and delivers a sequence of
requests through port C to a queue on the printer side. The
specification of such a service is given as follows:

M(in : (A 7→ ⟨α, a⟩, B 7→ ⟨β, b⟩); out : C 7→ ⟨γ, c⟩)
pre : D(⟨α, a⟩) ∧ D(⟨β, b⟩) ∧ ∀i, j ≥ 0.a(i) ̸= b(j)

post : D(⟨γ, c⟩) ∧M(⟨α, a⟩, ⟨β, b⟩, ⟨γ, c⟩)

where D(⟨α, a⟩) is a predicate to judge whether ⟨α, a⟩ is a
well-defined TDS satisfying the requirements on the corre-
sponding port, and M(⟨α, a⟩, ⟨β, b⟩, ⟨γ, c⟩) is a predicate that
captures the behavior of merging two timed data streams ⟨α, a⟩
and ⟨β, b⟩ into ⟨γ, c⟩, and is defined as follows:

M(⟨α, a⟩, ⟨β, b⟩, ⟨γ, c⟩)

=

⟨γ, c⟩ = ⟨α, a⟩ if |⟨β, b⟩| = 0

⟨γ, c⟩ = ⟨β, b⟩ if |⟨α, a⟩| = 0
γ(0) = α(0) ∧ c(0) = a(0)∧
M(⟨α′, a′⟩, ⟨β, b⟩, ⟨γ′, c′⟩) if a(0) < b(0)

γ(0) = β(0) ∧ c(0) = b(0)∧
M(⟨α, a⟩, ⟨β′, b′⟩, ⟨γ′, c′⟩) if b(0) < a(0)

otherwise

B. Refinement and Equivalence of Cloud Services

The notion of refinement has been widely used in different
kinds of system descriptions. For example, in data refinement
[6], the concrete model is required to have enough redundancy
to completely represent the abstract model. Such a relationship
is guaranteed by a surjective map from the concrete model to
the abstract one. Implication of predicates establishes a proper
refinement order over cloud services. Thus, more concrete
implementations imply more abstract specifications. For two
cloud services C1 and C2, if inC1

= inC2
and outC1

=
outC2

, then

C1 ⊑ C2 =df (P1 ⇒ P2) ∧ (P1 ∧Q2 ⇒ Q1) (1)

In other words, preconditions on inputs of cloud services are
weakened under refinement, and postconditions on outputs
of cloud services are strengthened. Taking equation (1) into
consideration, C2 is stronger than C1 because it has a weaker
assumption P2, and so it can be used in more contexts.
Furthermore, in all circumstances where C1 can be applied,
C2 has a stronger commitment, so its behavior can be more
precisely predicted and controlled comparing with C1.

Equivalence of cloud services is defined in the normal way
by mutual refinement:

C1 ≡ C2 iff C1 ⊑ C2 ∧C2 ⊑ C1

Fig. 2. Refinement of Query Flight Service

Example 2: Consider a cloud application where clients can
check flight information and order tickets. If the client plan to
make a trip between two places and make a query for the
flight information, because there can be many flights between
these two places provided by different companies, and the
availability and price for each flight may change at any time,
the client hope to collect the information for all available
flights at the latest time. We first take the service QF1 into
consideration. It has a buffer on the server side for each flight
company, accepts query from the client and put a copy of the
query into every buffer. We have its specification by design
model as follows:

QF1(in : A 7→ ⟨α, a⟩; out : (B1 7→ ⟨β1, b1⟩,
B2 7→ ⟨β2, b2⟩, B3 7→ ⟨β3, b3⟩))

pre : D(⟨α, a⟩)
post :

∧
1≤i≤3

(D(⟨βi, bi⟩) ∧ βi = α ∧ a < bi < a′)

Then we can consider another cloud service QF2 in Figure
2, whose buffer’s location is on the client’s side, which is
different from QF1. It can accept the query from the client
as well, puts it into the buffer and sends a copy of the query
to each flight company simultaneously. The trick here is the
query waits in the buffer and be delivered to each server
end simultaneously. The design model description of it is as
follows:

QF2(in : A 7→ ⟨α, a⟩; out : (B1 7→ ⟨β1, b1⟩,
B2 7→ ⟨β2, b2⟩, B3 7→ ⟨β3, b3⟩))

pre : D(⟨α, a⟩)
post :

∧
1≤i≤3

(D(⟨βi, bi⟩) ∧ βi = α) ∧ a < b1 = b2 = b3 < a′)

From the two design models we can easily derive that
QF1 ⊑ QF2 since their preconditions are equal while the
postcondition for QF2 is stronger.

III. COMPOSITION OF CLOUD SERVICES

Different cloud services can be composed together to build
more complex services / applications. Since cloud services
are interpreted as designs, their composition can be naturally
modeled by composition on designs, which leads to a new
design capturing the behavior of the composed cloud service /
application. In this section, we introduce a family of compo-
sition patterns for two cloud services Ci(i = 1, 2):

Ci(in : inCi
; out : outCi

)

pre : Pi(inCi
)

post : Qi(inCi , outCi)

In the following, we use Pi and Qi instead of Pi(inCi
) and

Qi(inCi
, outCi

) for simplicity of expression when it is clear
from the context.

A. Sequential composition

Suppose one output port O of C1 and one input port I
of C2 can be joined together and the timed data stream that
happen on O thus can be taken as the input on I for C2.
After joining these two ports, what happened on O (and I)

will be hidden from outside, which can be specified by using
existential quantification on the corresponding predicates. Let
the output on O in C1 and the input on I in C2 be O 7→
⟨δ1, d1⟩ ∈ outC1 and I 7→ ⟨δ2, d2⟩ ∈ inC2 , respectively. Then
the results cloud service by sequentially composing C1 and
C2 is:

C1;O→IC2(in :
∪

i=1,2

inCi
\ {I 7→ ⟨δ2, d2⟩};

out :
∪

i=1,2

outCi \ {O 7→ ⟨δ1, d1⟩})

pre : P1 ∧ ¬(Q1⟨δ1,d1⟩;⟨δ2,d2⟩ ¬P2)

post : Q1⟨δ1,d1⟩;⟨δ2,d2⟩ Q2

where the sequential composition of predicates is defined as
follows:

P⟨δ1,d1⟩;⟨δ2,d2⟩ Q

≡ ∃⟨δ, d⟩.P [⟨δ, d⟩/⟨δ1, d1⟩] ∧Q[⟨δ, d⟩/⟨δ2, d2⟩]
For inCi : ICi → TDS, i = 1, . . . , k,∪

i=1,...,k

inCi
:

∪
i=1,...,k

ICi
→ TDS

is defined as:∪
i=1,...,k

inCi
(K) = inCj

(K) if K ∈ ICj
.

And for an arbitrary port K,∪
i=1,...,k

inCi
\ {K 7→ ⟨δ, d⟩} = (

∪
i=1,...,k

inCi
)∪

i=1,...,k ICi
\K

Definitions for union and subtraction on outputs are similar.

For a predicate P and a variable v in P , P [u/v] is the
predicate obtained by replacing all the occurrence of v in
P by u. Note that when two cloud services C1 and C2 are
sequentially composed, we can certainly join more than one
pair of ports together and the definition of the resulting service
is similar, but it is not necessary to join all the output ports
of C1 to all the input ports of C2. Some ports in the services
can be left as the input / output ports for the resulting service.
The definition for the general situation is similar and can be
easily obtained.

B. External, internal and conditional choices

Cloud services can be aggregated in a number of different
ways, besides the sequential composition. In the following
we consider a few such combinators. A typical composition
pattern being widely used is external choice. For the two cloud
services C1 and C2, when they are put together and interacting
with the environment, clients from the environment are allowed
to choose either to input on the input ports of C1, or on input
ports of C2, which will trigger the corresponding cloud service
C1 or C2, respectively, and produce the associated output
on the corresponding output ports. Formally, the results cloud
service as an external choice of C1 and C2 is defined as:

C1 2 C2(in :
∪

i=1,2

inCi
; out :

∪
i=1,2

outCi
)

pre : P1 ∨ P2

post : (P1 ⇒ Q1) ∧ (P2 ⇒ Q2)

Sometimes it is possible that both cloud services might
have input ports in common so that there is no clear prescrip-
tion as to which route is followed when one of these common
ports is chosen. In the implementation, either service can be
chosen to be executed. This case is captured by the internal
choice pattern, which is formally defined as follows:

C1 ⊓ C2(in :
∪

i=1,2

inCi
; out :

∪
i=1,2

outCi
)

pre : (inC1 ∩ inC2 ̸= ∅) ∧ P1 ∧ P2

post : Q1 ∨Q2

Besides the external and internal choices, a further form of
choice, the conditional choice which is based on the value of
a boolean expression, is also needed for combination of cloud
services. This case is formally defined by the following design
which means that if b is satisfied then the cloud service C1 is
executed, and otherwise, C2 is executed:

C1 � b� C2(in :
∪

i=1,2

inCi ; out :
∪

i=1,2

outCi)

pre : P1 � b� P2

post : Q1 � b� Q2

C. Parallel composition

After the study of the choice combinators we proceed to
that of parallel composition. The simplest form of parallel
combinator captures the case that both cloud services C1 and
C2 are invoked and executed in parallel when triggered by a
pair of inputs on the corresponding input ports of both C1

and C2. Therefore, to make it possible to execute the parallel
combination of C1 and C2, both P1 and P2 should be satisfied
and the execution will lead to the result that Q1 ∧Q2.

C1 ∥ C2(in :
∪

i=1,2

inCi
; out :

∪
i=1,2

outCi
)

pre : P1 ∧ P2

post : Q1 ∧ Q2

In the parallel composition defined above, when two cloud
services are put into parallel, they may evolve completely
autonomously, i.e., we have no restriction on the inputs for
the two services and they can arrive at any time. Sometimes
we may hope to have some inputs for C1 and C2 arrive only
at the same time. For simplicity, we assume that the data
can only arrive at the input ports I1 and I2 simultaneously,
where I1 and I2 belong to the input ports of C1 and C2

respectively. And the data arriving at all the other input ports
except I1 and I2 are independent. Furthermore, we assume that
Ii 7→ ⟨δi, di⟩ ∈ inCi for i = 1, 2. Then we have

C1 I1∥I2 C2(in :
∪

i=1,2

inCi
; out :

∪
i=1,2

outCi
)

pre : P1 ∧ P2 ∧ d1 = d2
post : Q1 ∧ Q2

In many cases, a family of cloud services may exist and
behave in parallel in a pairwise fashion. To model this, the n-
ary version of both parallel combinators ∥ and I1∥I2 are very
helpful. The definition of ∥ and I1∥I2 can be easily generalized

to the case for composing multiple services and we will omit
the technical details here.

A similar situation we consider is the case of merging two
input ports of cloud services C1 and C2 into one port. Let
⟨δi, di⟩ for i = 1, 2 be the timed data streams on the input
port Ii in Ci, respectively. By merging I1 and I2 into one port
I , when the resulting service receives a request on I , it will
behave in a ”broadcasting” way. In other words, the request
will be replicated on I and sent to both C1 and C2 to trigger
their execution simultaneously. The definition of this operation
is as follows:

C1∥{I1,I2}≫IC2(in : (
∪

i=1,2

inCi
\ {Ii 7→ ⟨δi, di⟩})

∪ {I 7→ ⟨δ, d⟩}; out :
∪

i=1,2

outCi)

pre :
∧

i=1,2

Pi[⟨δ, d⟩/⟨δi, di⟩]

post :
∧

i=1,2

Qi[⟨δ, d⟩/⟨δi, di⟩]

Based on the design model of cloud services, we can
develop various (equivalence and refinement) laws for cloud
services, especially for those composed by applying the com-
binators defined previously, and encode them as theorems to
support a reasoning system in theorem provers like Coq or
PVS. However, instead of proceeding further with such laws,
we shall discuss about dynamic reconfiguration of cloud ap-
plications in the following section, which is a rather important
topic for Cloud computing.

IV. DYNAMIC RECONFIGURATION

Dynamic reconfiguration is necessary in Cloud computing.
For example, when we consider a cloud application that uses
cloud services provided by different providers, where the ser-
vices are usually not under our control, and thus cannot be reset
in general. During the execution of such an application, it is
not surprising that some service provider becomes unavailable
or the QoS properties of some service becomes much worse,
which might be unacceptable for the clients of the application.
In such cases, a dynamic reconfiguration is certainly necessary
and can be either very simple like switching to an alternative
cloud service, or very complex like modifying the whole
application architecture.

In our approach, we model dynamic reconfigurations of a
cloud application using a family of reconfiguration rules on the
corresponding design model. A reconfiguration rule captures a
possible pattern that should be matched by the reconfiguration,
and specifies how the application should be changed during
the reconfiguration. It is obvious that we cannot provide a
complete set of rules for all possible reconfiguration situations
here. Instead, we only consider the basic reconfiguration
situation for adding new services during the execution, which
is rather simple but quite common in Cloud computing. Details
about the operation are given in the following of this section.

Suppose we have a cloud application S, and C1 is a service
being used in this application. Another service C2 which
behaves like C1 might be offered as another option for use

when C1 is invoked during the execution of the application,
while C1 is still available there. When the request to execute
service C1 is coming, either C1 or C2 will be invoked and
return the corresponding results. Such a situation is captured
by the reconfiguration rule for adding service as another option
to choose:

Rule 1: S[[C1]] ; S[[C1 ≬C2]].

This rule means that the service C1 is replaced by C1 ≬C2

in the application S, while all the other parts in S are
kept unchanged in the reconfiguration. Let Ci(in : (Ii 7→
⟨αi, ai⟩); out : (Oi 7→ ⟨βi, bi⟩)), i = 1, 2, be two cloud
services, then we have ∗:

C1 ≬C2

=Router;{Ki→Ii} (C12C2);{Oi→Ji} Merger

where Router and Merger are defined as follows:

Router(in : (I1 7→ ⟨α, a⟩);
out : (K1 7→ ⟨α1, a1⟩,K2 7→ ⟨α2, a2⟩))

pre : D(⟨α, a⟩)
post : (

∧
i=1,2

D(⟨αi, ai⟩)) ∧M(⟨α1, a1⟩, ⟨α2, a2⟩, ⟨α, a⟩)

and

Merger(in : (J1 7→ ⟨β1, b1⟩, J2 7→ ⟨β2, b2⟩);
out : (O1 7→ ⟨β, b⟩))

pre :
∧

i=1,2

D(⟨βi, bi⟩)

post : D(⟨β, b⟩) ∧M(⟨β1, b1⟩, ⟨β2, b2⟩, ⟨β, b⟩)

Fig. 3. Dynamic Reconfiguration of Query Flight Service

We can also add a service in parallel with another existing
service. Just for a brief illustration, we can consider the flight
query application depicted in Example 2. When the application
is running, it is possible that some new flight company provide
the flight query service for flights provided by this company,
which is not available for the application at the beginning. In
this case, the application should still work properly when the
new service is added to the application and return the flight
information for possible flights of all the companies, including
the new one. Such a situation is captured by Figure 3, which
specifies the result after reconfiguration on QF2.

∗For simplicity of representation here we assume that both C1 and C2

have only one input port and one output port, while the definition can be
easily generalized to cloud services with multiple input and output ports.

It is also possible that some services are becoming un-
available during the execution of a cloud application. In this
case, we can have similar rules to remove a service from
the application, which is either running in parallel with other
services, or just as an option for choice.

In retrospect, the design model illustrated here seems
promising either to capture known reconfiguration patterns, or
to identify new ones, for a variety of cloud applications. A lot
of work, however, remains to be done.

V. CONCLUSION

In this paper we define a comprehensive formal model for
cloud services, their composition and dynamic reconfiguration
under the UTP framework. Cloud services are interpreted
as designs in UTP, which is a pair of predicates specifying
the relationship between inputs and outputs. A number of
combinators are defined corresponding to different ways of
combining cloud services, and dynamic reconfiguration of
cloud applications can be specified as rules for transforming
between different designs.

Prospects for future work include the investigation of
other features present in cloud computing, such as service
discovery, coordination and negotiation, as well as the planning
of significative case studies to assess empirically the merits
of the approach proposed here by linking the model to con-
crete implementations. We are also interested in simulation
of application behavior. In addition, another natural follow up
of this paper concerns reasoning about cloud applications in
theorem provers like PVS or Coq, extending our previous work
on formal reasoning about component connectors (e.g., in [13])
to take into account behavior of services. Developing rules for
composition and dynamic reconfiguration of cloud services is
in our plan as well. In particular, we would like to tackle the
consistency problem among different applications / services,
and to explore the relationship between reconfiguration and
other kinds of model transformation, such as architectural
refinement [14].

ACKNOWLEDGEMENTS

The work was partially supported by the National Natural Sci-
ence Foundation of China under grant no. 61532019, 61202069
and 61272160.

REFERENCES

[1] L. Aceto, K. G. Larsen, A. Morichetta, and F. Tiezzi. A Cost/Reward
Method for Optimal Infinite Scheduling in Mobile Cloud Computing.
In Proceedings of FACS 2015, volume 9539 of LNCS, pages 66–85.
Springer, 2016.

[2] Z. Benzadri, F. Belala, and C. Bouanaka. Towards a Formal Model for
Cloud Computing. In ICSOC 2013 Workshops, volume 8377 of LNCS,
pages 381–393. Springer, 2014.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation Computer
Systems, 25:599–616, 2009.

[4] L. Chen, G. Fan, and Y. Liu. Modeling and analyzing cost-aware fault
tolerant strategy for cloud application. In Proceedings of SEKE 2016,
pages 439–442. KSI Research Inc. and Knowledge Systems Institute
Graduate School, 2016.

[5] F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte, and P. Y. H. Wong.
Formal Modeling of Resource Management for Cloud Architectures: An
Industrial Case Study. In Proceedings of ESOCC 2012, volume 7592
of LNCS, pages 91–106. Springer-Verlag, 2012.

[6] W.-P. de Roever and K. Engelhardt. Data Refinement: Model Oriented
Proof Methods and their Comparison. Cambridge University Press,
1998.

[7] D. Fitch and H. Xu. A raid-based secure and fault-tolerant model
for cloud information storage. International Journal of Software
Engineering and Knowledge Engineering, 23(05):627–654, 2013.

[8] L. Freitas and P. Watson. Formalizing workflows partitioning over
federated clouds: multi-level security and costs. International Journal
of Computer Mathematics, 91(5):881–906, 2014.

[9] M. Graiet, A. Mammar, S. Boubaker, and W. Gaaloul. Towards Correct
Cloud Resource Allocation in Business Processes. IEEE Transactions
on Services Computing, 10(1):23–36, 2017.

[10] C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice
Hall International, 1998.

[11] H. Jifeng, X. Li, and Z. Liu. rCOS: a Refinement Calculus of Object
Systems. Theoretical Computer Science, 365(1-2):109–142, 2006.

[12] A. Jin, W. Song, P. Wang, D. Niyato, and P. Ju. Auction Mechanisms
Toward Efficient Resource Sharing for Cloudlets in Mobile Cloud
Computing. IEEE Transactions on Services Computing, 9(6):895–909,
2016.

[13] Y. Li and M. Sun. Modeling and Verification of Component Connectors
in Coq. Science of Computer Programming, 113(3):285–301, 2015.

[14] S. Meng, L. S. Barbosa, and Z. Naixiao. On Refinement of Software
Architectures. In Proceedings of ICTAC’05, volume 3722 of LNCS,
pages 469–484. Springer, 2005.

[15] M. Oliveira, A. Cavalcanti, and J. Woodcock. A Denotational Semantics
for Circus. Electronic Notes in Theoretical Computer Science, 187:107–
123, 2007.

[16] X. Pei, H. Yu, and G. Fan. Achieving Efficient Access Control via
XACML Policy in Cloud Computing. In Proceedings of SEKE 2015,
pages 110–115. KSI Research Inc. and Knowledge Systems Institute
Graduate School, 2015.

[17] S. Qin, J. S. Dong, and W. Chin. A Semantic Foundation for TCOZ in
Unifying Theories of Programming. In Proceedings of FME’03, volume
2805 of LNCS, pages 321–340. Springer, 2003.

[18] H. Sahli, C. Bouanaka, and A. T. E. Dib. Towards a formal model
for cloud computing elasticity. In Proceedings of 2014 IEEE 23rd
International WETICE Conference, pages 359–364. IEEE Computer
Society, 2014.

[19] K. M. Sim. Agent-based cloud computing. IEEE Transactions on
Services Computing, 5(4):564–577, 2012.

[20] M. Sun, F. Arbab, B. K. Aichernig, L. Astefanoaei, F. S. de Boer, and
J. J. M. M. Rutten. Connectors as designs: Modeling, refinement and
test case generation. Science of Computer Programming, 77(7-8):799–
822, 2012.

[21] D. Weerasiri, M. C. Barukh, B. Benatallah, and J. Cao. A Model-
Driven Framework for Interoperable Cloud Resources Management. In
Proceedings of ICSOC 2016, volume 9936 of LNCS, pages 186–201.
Springer, 2016.

[22] P. Zhang, C. Lin, X. Ma, F. Ren, and W. Li. Monitoring-Based Task
Scheduling in Large-Scale SaaS Cloud. In Proceedings of ICSOC 2016,
volume 9936 of LNCS, pages 140–156. Springer, 2016.

